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Abstract—With the increased complexity of digital architec-
tures and aggregation of specialized hardware, functional simu-
lation has become a major bottleneck in digital design. During
functional and performance verification of a design, engineers
make several iterations to determine the impact of code changes
into the simulation result. These iterations are time-consuming
both because the compilation time of hardware description to
binary is slow and because simulation can take several hours until
the point of interest is reached. In contrast, live programming
environments allow developers to manipulate the system under
development as it is being run. They have become increasingly
popular as they provide rapid feedback, yet there is no available
live environment for hardware development. In this paper, we
propose a live programming and simulation environment that
targets hardware design. Our approach is language-independent
and leverages incremental compilation, hot binary reloading,
and checkpointing to provide fast feedback to the user. We
take special care to not replicate code for multiple instances
of the same module and thus prevent code bloat, for instance,
for multi- and many-core architectures. Our framework also is
careful in verifying the consistency across checkpoints, to leverage
parallel execution and reduce the amount of code that requires
compilation. Our results show that this approach can provide
simulation feedback in under 2 seconds, even when simulating a
256 RISC-V multicore architecture. As a reference, Verilator did
not finish compiling this architecture after 24 hours of runtime.

I. INTRODUCTION

Digital designers spend much time waiting for the compila-
tion and simulation of hardware designs during the functional
and performance verification phases of a project. While there
have been many attempts to accelerate simulation [1], [2],
[3], the underlying issues remain: 1) designs are complex, in
particular for large multi-core systems, and 2) to guarantee
code coverage, simulations need to be long to account for
different scenarios. These issues lead to long compilation
and simulation times. Modern languages like Chisel [4] or
PyMTL [5] aim to improve design productivity by raising
the abstraction level but typically further the compilation and
runtime issues. This adds a real cost to developer productivity,
as it is not uncommon that after fixing a single bug, the
engineer relaunches the simulation only to find another close
by.

Moreover, studies [6] show that debugging accounts for over
40% of the verification time and that its importance has been
increasing in the last few years. The process of debugging
involves observing a problem with the system under devel-
opment, reasoning about the root cause, and correcting the
issue. For large-scale digital design, the primary bottlenecks
in debugging is the time required to observe the behavior of the
system (due to the speed of simulation/synthesis tools), which
incurs in latency between making a change and observing the

effects of the change. Reducing the feedback time is expected
to improve designer productivity [7].

Live programming stands in stark contrast to traditional
hardware design flows. With live programming, developers
write the program as it is running and see the effects of the
code change immediately reflected in the system’s behavior.
Prior work has shown that faster feedback leads to a faster
and less frustrating development experience [8], [9], [10]. In
practice, live programming is accomplished by a combination
of incremental compilation techniques. Hot binary reload
(Hot Reload) means swapping the binary without stopping
execution, which allows the current state of the program to be
maintained. Checkpointing is another technique used by live
compilation flows where a state is saved throughout execution.
A checkpoint can then be loaded, and execution continues
from that point, avoiding the need to execute the code from
the beginning. In hardware design, this is especially useful
for very long input sets for booting architectural simulation to
an initial state, which is often repeated across many different
simulations and could be skipped.

Recently, incremental techniques [7], [11] have been pro-
posed to address lengthy synthesis times for hardware design.
However, hardware simulation is notoriously slow and typi-
cally run much longer than synthesis, during functional and
performance validation. Typical industrial simulation flows
require tens of minutes just to do a minimal code change; for
large-scale designs like modern processors, it is not uncommon
for a simulation to take hours to reach a failure point.

In this paper, we propose LiveSim, a framework for Live
Simulation of hardware designs. The main goal of LiveSim
is to reduce the edit-run-debug (ERD) loop, i.e., the latency
between a code change and the availability of updated simu-
lation results (Figure 1). LiveSim can significantly speed up
the ERD loop by reducing compilation and simulation times.
First, LiveSim compiles only the parts of the design that have
changed and patch them into the executable. Then, LiveSim
leverages simulation checkpoints to prevent executing the
whole simulation from the beginning. We set a goal of under
two seconds, which is the threshold considered responsive user
interaction [9].

LiveSim includes the capacity to: (1) hot reload combina-
tional logic and state, and (2) using the lightweight check-
pointer, quickly verify in parallel that the checkpoint’s initial
state is consistent. Item (2) describes a simple algorithm
leveraged by LiveSim’s simulator, allowing it to provide a
quick estimate on the updated state of the system after a hot
patch, but continue to refine that estimate on the backend,
hiding as much of the computation as possible from the user.
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Fig. 1. The proposed workflow for LiveSim is to allow iterations within a
few seconds. This contrasts with the traditional flow where after a change,
there is a lot of latency in each iteration. With the much faster ERD loop,
enabled by LiveSim, productivity is expected to improve.

To support the two-second goal, LiveSim implements a fast
compilation technique, which includes (3) incremental HDL
parsing and hierarchical partial compilation. LiveSim uses
incremental parsing and compilation to compile changes in
the architecture into hot loadable shared libraries, for later
patching into the simulation.

Finally, (4) we develop and prototype a language-neutral
Hot Reload for hardware. Users of hardware simulations
would greatly benefit from being able to hot load source code
changes rather than having to recompile and rerun the entire
program. This paper presents the first hot reload architecture
for digital hardware simulation. We show that the LiveSim
infrastructure is not only able to perform Hot Reload in under
2 seconds, but it is also more scalable than currently available
simulators.

LiveSim is faster in raw simulation speed than Verila-
tor [12], the state-of-the-art open-source simulator for hard-
ware. For instance, when evaluating a 16 node large Partitioned
Global Address Space (PGAS) RISC-V multi-core, Verilator in
single-thread mode has a global speed of 51.4KHz. LiveSim,
with or without checkpoint overheads, has a global speed of
93KHz. Verilator is slightly faster for small designs, but as the
design complexity increases, the generated code footprint does
as well, and it suffers from significant instruction cache misses
in the host machine. LiveSim does not have such scalability
issues. As shown in our evaluation, when using checkpoints,
LiveSim can get to any simulation cycle in under 2 seconds
for a 256 RISC-V core design.

We plan to open-source LiveSim in the near future, once
the paper is accepted. In summary, the main contributions of
this paper are:

• Proposes LiveSim, a live simulation flow for hardware
designs

• Integrates Incremental Compilation, Hot Reload, Check-
pointing, and Improved Binary Replication in a hardware
simulation flow

• Present a methodology to fast verify the consistency of
checkpoints

• Evaluates LiveSim against state-of-the-art open-source
simulators and shows that instruction cache misses is an

issue in current flows

II. RELATED WORK

A. Live Programming and Hot Reloading

There is a variety of research and related work in Live
programming techniques for software development. Tani-
moto [13] defines a hierarchical principle for measuring the
liveness of the live programming loop, from source code
editing toward output evaluation, which is similar to the
evaluation paradigm that we adopt here. DS.js [14] embeds
a JavaScript programming environment in webpages; a live
execution model is proposed to runs the entire code block
when detecting the code statement writing activity and thus
triggering compilation. Pharo [15] is a object-oriented lan-
guage with the same focus as LiveSim on getting live ERD.
Since Pharo IDE updates all its applications at run-time,
including the debugger, the developer can edit the source
and observe the effect on the debugger immediately. LiveSim
primarily draws inspiration from debugger-based live program-
ming environments like Pharo, as the simulation of the system
can be seen as analogous to a debugger.

In hardware, there are no approaches for live program-
ming. However, some existing approaches could be adapted
to provide a live environment. Jupyter Notebook [16] is
an open-source web application that allows users to create
interactive documents and code. Chisel [4] is a hardware
description language that allows for integration in Jupyter as an
educational aid. Chisel also has a simulator called Treadle [17].
This integration has similar motivations to our project, the
main goal being to manipulate a system and get fast feedback,
which aids the user in understanding it. Chisel’s integration
with Jupyter is not optimized for large designs and therefore
limits its application severely. Updating even trivial designs
that involve only a single stage can take many seconds, as the
entire simulation must be rerun from the beginning. Moreover,
Chisel is not intended for incremental compilation, and the
toolchain is currently not targeting turnaround time in the
magnitude proposed here.

Schkufza et. al. proposed a JIT compilation method for Ver-
ilog FPGA designs [18], which runs the design in a software
simulation while it waits for the FPGA compilation process
to finish. This is aimed at addressing the same problems that
motivated LiveSim, but is designed for FPGAs, not ASICs,
and does not support live updates of the simulation after a
code change.

Hot reloading is a common technique used in Live pro-
gramming environments. It is typically implemented as a
specific library for existing languages, like for React [19]
and Java [20]. The primary motivation behind implementing
this feature was to improve the development experience, as it
would allow developers to make changes to the code without
losing the state of the app they are debugging.

B. Checkpointing and Parallel Replay

LiveSim leverages checkpoints in order to provide a live
development experience. There are a variety of projects [21],
[22], [23], [24] which use multi-tiered simulations, a fast
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Fig. 2. During the baseline execution, checkpoints are regularly created. Then,
during the live mode, the code changes are recompiled, reloaded, a checkpoint
is selected, loaded and the execution continues until the cycle before the code
change was inserted. Checkpoints are regularly deleted to avoid too much
overhead.

simulator to create checkpoints and a slow simulator which
can evaluate them in parallel, to speed up HDL simulation.
One key difference between these projects and LiveSim is that
LiveSim uses only one simulator to generate the checkpoints.

A similar technique has been proposed for approximate
computing [25], where a fast approximation of the application
runs and takes checkpoints, while detailed implementations
validate them in parallel. This approach does have similarities
to the item (3), though like the fast HDL simulators listed
above, would have to do considerably more work to validate
the checkpoint deltas.

III. LIVESIM

The goal behind LiveSim is to improve the productivity of
hardware developers by providing fast feedback as changes
are made to the codebase. When LiveSim begins executing a
simulation from the beginning, it takes checkpoints at regular
intervals. When a change is made to the codebase, LiveSim
incrementally compiles and hot reloads the new logic, and
moves the simulation along the checkpoint delta using the
method shown in Figure 2. The key features of LiveSim which
enable this are listed below.

• Incremental Compilation, triggered after a code change
• Hot reload of recompiled objects
• Checkpoint selection and reload
• Execution from the checkpoint to the current cycle
• Checkpoint consistency check (done in parallel in the

background)
In this section, we first discuss how we envision that

LiveSim will be used, then we discuss the high-level archi-
tecture and main components of the simulator. We follow
by giving more details on the compilation infra-structure and
reloading both of the object and of the simulator state. We also

discuss how the consistency of the checkpoints is verified after
a change.

A. Use Cases

We do not expect that LiveSim will replace a full func-
tional verification flow, with long simulation hours that target
extensive coverage of the system. However, we believe that
our technique is extremely valuable during the early phases
of development and bug-fixing, where a large number of very
specific scenarios need to be tested and fixed. LiveSim may
be particularly useful during performance validation, where
designers typically want to make sure a specific number of
cycles is obtained far in the simulation.
Debugging a single simulation: This is the primary use-
case for LiveSim. The developer can benefit by using fast
checkpoint reloading to identify an error, test multiple possible
fixes, and continue debugging without having to fully rebuild
and reload the simulation. For example, as an observed error
usually originates from the prior cycle in most cases, the
designer can use a previous checkpoint to identify where the
condition originated.
Debugging “what if” conditions: Fast reloading can also
be leveraged to check “what if” situations, such as test what
would happen should a branch misprediction be detected on an
arbitrary cycle in a simulation. Some of those conditions may
be hard to trigger from a long simulation due to the complexity
of the state space of a large design, and a lighter framework
such as the proposed LiveSim may help create the “what if”
scenario. Once created, the scenario could be incorporated into
the full set of tests of the system for longer simulations.
Regression System: Instead of viewing the session history
as a linear list of individual checkpoints, a regression system
could be built on top of LiveSim, which could run a set of
testbenches on the system and report their result as a batch.
Regression is particularly useful to test if the system state
progresses as expected, starting from an arbitrary state, not
necessarily from the initial state.
Allow simulations to skip initialization: Restarting a sim-
ulation is universally slow. As an example, starting the
BOOM [26] core from reset is particularly slow because
the processor initializes a debug monitor. Some companies
take great pains to modify their flows to skip some of the
initialization work for their testbenches. With hot reload, par-
allel checkpoint history verification, and deterministic register
transformations (discussed in Section III-E), this behavior can
come for free.

B. The LiveSim Architecture

The LiveSim environment is composed of LiveParser to
parse code changes, LiveCompiler that creates object files
for the code, and LiveSim itself for running the simulation
(Figure 3). Users could interact with the system both by
manipulating the source code of the active project and by
sending commands to the simulator.

As the user manipulates the design, LiveSim tracks where
the changes were made, and sends commands to LiveParser
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Fig. 3. The LiveSim development environment.

(Section III-C). LiveParser determines if the code changes im-
pact behavior. In cases it does, only the modified sections are
sent to LiveCompiler (Section III-C), which will compile those
blocks into hot-loadable shared object files. LiveCompiler will
also update LiveSim with metadata that describes the updated
parts of the simulation. LiveSim can then retrieve those newly
hot-loadable objects.

Internally, LiveSim maintains a session to track the history
of target testbenches, to record the simulated cycles, and to
creates checkpoints regularly. To prevent checkpoint creation
from being in the simulation critical path, the process forks,
the child process creates the checkpoint and halts. Thus we
keep the very minimal interference within the baseline process
(Figure 2). Should the simulation be patched, the history will
be used to update the results more quickly (Section III-D).

Prior art, like Verilator [12], tries to inline small blocks
to allow for better optimizations across modules. Even when
inlining is not done, each module is replicated for each
instance and set of parameters. The main goal is to allow for
better quality in the generated code, which could, at least in
theory, increase the simulation speed (Figure 4). On the other
hand, LiveSim leverages the modularity of hardware designs to
break up the work that needs to be done. Each module is only
compiled once, which drastically reduces the amount of code
that needs to be compiled, in particular for large multicore
systems. On top of that, LiveSim also uses multiple shared
object libraries to allow for swapping out parts of the binary
in flight.

1) Internal Objects: “Live” refers to the fact that the
system is running as it is being developed. For this reason we
don’t view a simulation as a procedure with an entry and exit
point, but as an interaction between objects. At a high-level,
LiveSim works with two types of objects, which are all hot
reloadable at runtime from shared libraries:

Stage: A block of logic. A stage has external IO, and could
also have internal registers and memory depending on the
source code. A stage can also create and connect to other
stages.
Testbench: An operation that can be performed on a stage.

The Unit Under Test (UUT) is the simulation entry-level
entity of the design and is composed of multiple stages. In
this paper, we use pipe, pipeline or UUT interchangeably. Each
stage is transformed from RTL into a runtime-linkable shared
object library and may instantiate additional stages from the
same or other shared object libraries. The testbench is also
loaded from a shared object library, which contains procedures
that can be run on the UUT for any given number of cycles.
Doing so changes the design’s internal state. Such changes are
viewed by LiveSim as operations on the UUT, whose history
is tracked and checkpointed as part of the simulation session.
This allows those same operations to be applied again, should
the design be updated due to a change in source code.

When the user makes changes to the source code, the
changed code are compiled into new shared object libraries.
These new shared libraries can be hot reloaded into the
simulation and instantiate new parts of the UUT, which can
be swapped piecemeal into the executable. This mechanism
allows the simulation to be quickly patched without needing
to be fully recompiled or even needing to fully copy the
simulation state.

2) Internal Tables: The Object Library Table (Table II) are
internal tables to keep track of stages and testbenches objects
being simulated. To manage stage and testbench objects,
LiveSim keeps track of the path where object files are stored.
At the beginning of a session, LiveSim will use a standard
shared libray interface to retrieve the stages and testbenches
in the tables.

The Object Library Table lists all of the objects that the
current session of LiveSim is aware of. Each stage and
testbench object found is given an arbitrary name. The name
is mapped to its source-path: its location in the source, and
its object-path. Using the API described in Table I, which is
bound to a globally available LiveSim context, threads within
the LiveSim environment can create and manipulate these
objects.

The Pipeline Table (Table III) lists the instantiated pipeline
objects and the corresponding name in the session. Objects
get added to this table through the instP ipe and copyP ipe
commands. When a pipe is created, it will also call instStage
to create stages. The newly created stages are then saved in the
Stage Table (Table IV). Function calls to swapStage cause
changes to the Pipeline Table as well; swapStage usually
happens when changes to the source code have prompted
LiveCompiler to create new shared object files.

3) A Note on Implementation: LiveSim support could
also be added to newer HDLs like Chisel, PyMTL, and
PyRTL [27], though it would require tooling in their com-
pilation and simulation infrastructure. The JVM in Chisel and
Python interpreter in PyMTL could be leveraged to provide
hot reloading, though that would require the simulations to
be run with non-native code, which the developers of the
respective projects do not recommend. In another perspective,
Chisel and PyMTL do compile their source code to Verilog,
and could leverage the Verilog output to integrate into the
LiveSim system. PyRTL uses its own simulator, so we leave
that discussion to future work.
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TABLE I
LIVESIM COMMANDS. (STAGE/TB)-HANDLE VARIABLES REFER TO THE HANDLE COLUMN ON TABLE II. STAGE-NAME VARIABLES REFER TO THE

CORRESPONDING COLUMNS IN TABLES III AND IV.

Syntax Description

ldLib name, path Load shared library. Add entries to Table II for all object-paths found
instPipe name, pipe-handle Instantiate a pipe and bind it to “name”
instStage pipe-name, stage-name, stage-handle Instantiate a stage from stage-handle, bind it to pipe-name and stage-name
copyPipe new-name, old-name Copy a pipeline, including its state
run tb-handle, pipe-name, cycles Run a testbench on a pipe for a given number of cycles
chkp pipe-name, path Take a checkpoint of pipe-name and save the state to path
ldch pipe-name, path Load the state from a checkpoint into a pipeline
swapStage pipe-name, stage-name, stage-handle Replace a stage in a given pipeline with a new instance

TABLE II
THE OBJECT LIBRARY TABLE CONTAINS A LISTING OF ALL THE OBJECTS LIVESIM COULD FIND IN THE SHARED OBJECT LIBRARIES ON ITS PATH.

Handle Type Code-Path Object-Path

pipe0 Pipe /projects/src/toplevel.v#core /livesim/objs/.../libc0.so#core
stage0 Stage /projects/src/adder.v#adder /livesim/objs/.../libc0.so#adder
stage1 Stage /projects/src/sadder.v#sadder /livesim/objs/.../libc0.so#sadder
tb0 Testbench /projects/tests/tb1.cpp /livesim/objs/.../libtb0.so#tb1

TABLE III
THE PIPELINE TABLE. CONTAINS A NAME TO POINTER REFERENCE FOR

EACH PIPELINE OBJECT ACTIVE IN THE SESSION.

Name Handle Pointer

p0 pipe0 0x...
p1 pipe0 0x...

TABLE IV
THE STAGE TABLE. CONTAINS A POINTER REFERENCE FOR EACH STAGE

OF EACH PIPELINE.

Pipe Name Stage Name Handle Pointer

p0 s0 stage0 0x...
p0 s1 stage1 0x...
p1 s1 stage1 0x...

C. LiveParser and LiveCompiler

Being able to quickly translate changes in code to up-
dated simulation results is the primary function of a live
programming backend. The first step in this flow for LiveSim
is the LiveParser. The LiveParser identifies which stage the
change in code took place in, and confirm that actual behavior
was changed, not just comments or spacing. LiveParser then
extracts those sections of the codebase and sends only those
to LiveCompiler for re-compilation.

Since in Verilog, parameters are decided for each instance at

compile time, to fully determine whether a module changed, it
is necessary to check whether each instance of that module has
a different set of parameters. Pre-processor directives also need
to be checked. Other newer HDLs like CHISEL and Pyrope,
which do type resolution, also allow programmers to make
local changes which affect the global state.

LiveParser divides the code into regions based on the
module structure, and the locations of pre-processor directives.
Once it has confirmed a behavioral change in a code region,
it must identify every region of the codebase which may have
been affected by those changes. For Verilog, if it is just a
change within a module, the affected parts of the system are
all the module instantiations. For pre-processor directives, this
could affect any code “below” the affected lines in the source
code, thus much more will have to be recompiled.

When deployed LiveSim, compilation should happen on
a different execution thread than the simulation and editor
interface, or even in different servers. If not doing so, the
compiler may end up re-compiling code only to determine
that many of those modules were ultimately not changed.
Whenever it compiles a new version of a stage, pipeline, or
testbench, it compares the output against a cached copy to
determine if this new version needs to be swapped into the
simulation. These decisions must take place off of the editor
and simulation execution threads. The process of detecting a
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code change, recompiling modules that need re-compilation,
and swapping the binaries is illustrated in Figure 5.

Some newer HDLs, like Chisel and Pyrope, employ type
resolution. Compilation can be sped up by keeping the old type
state in memory, but allowing it to be updated based on new
code. This can significantly reduce the number of resolution
cycles needed on subsequent compilations.

D. Fast Reloading

Once the simulation has been patched with the latest
changes, the results to the user must be updated. The algorithm
LiveSim uses is designed to provide a fast estimate of the
updated simulation, and check/refine that estimate in the
background, updating if necessary. The reloading mechanism
is also tuned for the ERD loop, where the developer edits a
line of code, runs the simulation, and debugs the result. In
other words, the reload algorithm is tuned to the use case of
fixing an error observed in a simulation.

LiveSim first reloads the checkpoint that is closest to 10K
cycles before the stopping point (this parameter is tunable).
From the literature we have found on the topic of hardware
debugging [28] and talking with experts in the area, this
distance in cycles between bug and detection is often not that
large, rarely more than a few thousand cycles. LiveSim reloads
the state from that checkpoint and reruns the simulation. This
result is reported immediately to the user as an estimate of the
correct, updated simulation result.

The estimate may be inaccurate because the changes to the
pipeline or testbench behavior which caused the update may
also cause the system state to diverge at an earlier point in the
simulation. To check for this, we duplicate the newly patched
pipeline and/or testbench and rerun the earlier checkpoints in
parallel, to see if the states diverge at an earlier point in the
session history. If so, update the final results as necessary. This
allows LiveSim to provide fast updates to the user and hide as
much of the computational effort on the backend as possible.

E. Reloading Rules

A checkpoint consists of the entire state of the pipeline
object. In some cases, when the user makes changes to the
system, they may add, remove, or rename registers, making it
impossible to blindly transfer checkpoints between iterations
of the same system.

LiveSim uses standardized rules to enable patched pipelines
to deterministically load checkpoints from previous versions of

the system, shown in Table V. Since updates should happen
frequently, ideally once per second as the user types, these
cases can handle a large percent of the update batches without
user intervention. Take register renaming for example, if there
have been too many changes for LiveSim to unambiguously
determine the register mapping between two checkpoint ver-
sions, then it will make its best guess based on the similarities
of names and types. The user can manually edit the Register
Transform History if the mapping is incorrect.

The Register Transform History maps the transformations
applied to the architecture’s registers in order to translate the
checkpoints of one version into those of another. An example
of such a history is shown in Table VI. The table is designed
to support branching so that developers are not limited to a
linear sequence of changes when exploring the design space.

F. Checkpoint Consistency Verification

One thing to note is that after a code change, it is possible
that the checkpoints generated with the old code may be
invalid. That could be caused by a divergence in the execution,
i.e., a different condition was triggered somewhere throughout
the simulation, or simply because the logic of the architecture
was reworked. In any case, since LiveSim starts the simulation
from a saved checkpoint, it is necessary to make sure that
the checkpoint is a valid state for the given input set of the
simulation. This requires re-running the simulation from the
beginning, which is the opposite of what we are trying to
achieve.

Instead, this consistency verification can be done from
checkpoint to checkpoint, seeing if the change in state between
two checkpoints with simulation post code change matches
the change in state with the prior version. LiveSim can restart
the simulation once we find the earliest point of divergence
between the checkpoint deltas.

Since each checkpoint is now independent of other results,
this operation can be easily made parallel and can scale to
a large number of cores (as many as checkpoints before the
current cycle). In general, if n cores will be used, the best
strategy would be to divide the whole simulation into up to
n − 1 parts with roughly the same number of checkpoints
in each. The last core is assigned the reload from the last
checkpoint and executes up to the current simulation cycle.
For instance, for 1B cycles in a 4 core, 3 cores will execute
roughly 333M cycles, while the remaining core will execute
the cycles from the last checkpoint up to the last cycle,
feeding those results back into the debugging process. Figure 6
illustrates how the consistency verification works. In cases
where the checkpoints are not consistent, this approach allows
for identifying at which checkpoint the divergence occurred,
which may also be useful for debugging.

G. A Final Note on Usage

This section describes the internal design of LiveSim,
specifically how it internally optimizes the structure of the sim-
ulation, and allows for fast checkpointing and hot reloading.
This requires significant infrastructure, and a mechanism to
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TABLE V
IF THE REGISTER NAMES DO NOT COMPLETELY MATCH FROM VERSION TO VERSION, TRANSFORMATION RULES ARE APPLIED TO PROVIDE A

DETERMINISTIC WAY TO LOAD CHECKPOINTS FROM THE OLD VERSION TO THE NEW ONE.

Scenario Action

Register created Initialize to 0 (or other value)
Register deleted Ignore data from checkpoint
Single Register renamed Map old-name to new-name in the checkpoint

TABLE VI
THE Register Transform History Table LISTS THE CHANGES TO AN

ARCHITECTURE’S REGISTER TOPOLOGY REQUIRE TO TRANSLATE THE
SYSTEM’S STATE FROM ONE VERSION TO THE NEXT. IT IS STRUCTURED

TO ALLOW FOR BRANCHING.

Version Operations Parent

1.1 create newR null

1.2 create newR1
rename someR, newR 1.1

1.3 delete otherR
rename newR1, myR1 1.2

1.3a delete newR 1.2

Core 0

Checkpoints

Reloaded
Checkpoint

Core 1 Core 2 Core 3

(a) Multicore scheduling

Core n: (3) Halt and verify

(2) Execute(1) Load Initial
State

(b) Consistemcy Verification Flow

Fig. 6. After a code change, it is important to verify the consistency across
the checkpoints. This can be done in parallel and is easily scalable to a large
number of cores.

load both changes in code and changes in state in a completely
modular way.

The primary goal of this project is to provide developers
with more flexibility and faster feedback to allow them to
explore and evaluate different design choices, there is no way
around the fact that developing with LiveSim will require
some consideration from the developer as well. Like all tool
developers, we can only hope that the advantages of using our
system outweigh the challenges.

The register renaming mechanic discussed in Section III-E
is necessary to allow fully-modular checkpoint reloading, a
key component of how LiveSim can reflect code changes
in seconds rather than having to rerun the entire simulation
from the beginning. It means changes in register names and
sizes need to be more deliberate, and that it is possible that
the developer may need to manually manipulate the history
table to reflect the changes in state properly. We are aware of
this downside, but still hope that the advantages of LiveSim
outweigh it.

When LiveSim is fully deployed, it runs as a multi-process
distributed system with packets moving back and forth con-

taining code changes, compiled modules, and metadata (Fig-
ure 3). Depending on the network and computing resources
of the underlying system, introducing a huge amount of code
changes all at once has the potential to saturate the system and
significantly degrade performance. We imagine that developers
using LiveSim will adjust to making more incremental changes
to the design, this is reflective of many developers workflow,
especially when hunting for bugs.

As of this writing, we have not had the opportunity to
run extensive user tests with full deployments of LiveSim.
When we are able to, we will have more insights on the
user experience, and what sort of interface will best allow
a developer to leverage LiveSim.

IV. SETUP

In this section, we discuss the evaluation setup for LiveSim,
the benchmarks used in the evaluation, and the infrastructure
used for both LiveSim and Verilator [29]. We also discuss
optimization options and how they were selected, since this
ended up having an important impact on the results observed.

All evaluations were performed in an Archlinux 4.3.3-3
server, with a Intel i7-6700K, 32GB of ram. We used Verilator
version 3.9 [29], and g++ 7.3 for all the simulations.

As benchmark, we use a partitioned global address space
(PGAS) of RISC-V cores, in sizes: 1x1, 2x2, 4x4, 8x8, and
16x16. Each PGAS node is a 5-stage RISC-V RV64i core
with 32K internal memory. The nodes are arranged in a mesh,
with each core having a memory address mapped section
of the global address space. The address decides whether
the memory operation is local or remote. This architecture
resembles Parallella [30] and Celerity [31] which are also
a multicores that don’t employ cache coherence. We looked
for code changes in the core GitHub repository to replicate
changes actually made in the core and apply them to the code.

The way this architecture was designed, each of the five
stages of the RISC-V cores is placed in a module, which
is instantiated by a single top-level parent, which is also its
own module. LiveSim places each of these modules in its
own shared library. Thus, all of the PGASs simulations are
made up of seven shared libraries: 5 for the stages, 1 of the
top-level which instantiates them, and 1 for the testbench.
These libraries are used to create instances of the objects they
contain, so for the 16x16 PGAS, there will be 6 instances for
each of the 256 nodes in the mesh.

Both LiveSim and Verilator generate C++, all testbenches
were compiled with g++ using the same O2 optimization flag.

Verilator was unable to produce a C++ implementation for
the 16x16 PGAS even after 24 hours of compilation time. We
tried many Verilator options like trying to reduce optimization,
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“output-split” and “inline-mult” manual selection, and even
clang instead of g++. In all the cases, we could not finish
the compilation in less than 24 hours. With regards to the
“–inline-mult” option, we found there was no difference in
the generated code regardless of the value we set it to. The
documentation states that this option is ignored for “very small
modules”, though these modules are approximately 500 lines
of Verilog, and we clearly show in Table VII that the I-cache
is being thrashed by this simulation, indicating that the inline
is being performed.

V. EVALUATION

We start our evaluation presenting the overall results, i.e.,
the simulation speed when all the LiveSim features are active.
Then, we dissect how the speed-ups were obtained and look
into the overheads of Hot Reload and checkpointing to the
overall simulation.

A. Simulation Efficiency

Figure 7 shows the overall compilation and simulation speed
(ERD loop) of LiveSim and Verilator. The plot shows a few
different scenarios, first complete simulation (from cycle 0 to
x) for Verilator and LiveSim for different PGAS sizes (1x1
to 16x16), we normalized the cycle count by the number of
cores in the simulation. The y-axis shows the time to reach that
point in the simulation. Verilator and LiveSim start at different
y coordinates depending on the compilation time (Table VIII).
The slope of the lines comes from the simulation speed. The
faster the simulation, the lower the slope. In the best case for
LiveSim, Hot reload is used and the simulation starts from a
checkpoint. In this case, the ERD loop is of ≈ 2s from code
change to reach virtually any simulation cycle count.

As an example, LiveSim has a faster starting point for the
4x4 PGAS, Verilator needs 63 seconds to start (vs 2 seconds
for LiveSim). LiveSim also has a smaller slope because it is
faster. While Verilator achieves 718 KHz, LiveSim runs at
1223 KHz. This is over 1.7x speedup. As a result, to run
something 10 million cycles, Verilator needs 257 seconds, and
LiveSim needs 109 seconds. The Verilator simulation seems
faster on small designs but at larger compile time. For the 1x1
PGAS, Verilator only passes LiveSim after running 76 million
cycles. As the design gets more complex, LiveSim gets faster
even when no checkpoints are available.

To understand the simulation speed difference between
Verilator and LiveSim we gathered performance counter statis-
tics. Table VII shows a breakdown of performance statistics
for each PGAS size. Here we can see the source of the
performance divergence observed in Figure 7. Verilator’s cache
performance, particularly for the I-cache, degrades signifi-
cantly for the PGAS 4x4 and larger, causing a drop in IPC. For
small designs, the Verilator design fits in the host instruction
cache, but as more cores are added, the I$ pressure makes the
simulator very slow. The difference can be explained by the
fact that LiveSim does not replicate code for multiple instances
of the same block, reducing code bloat. Inlining the entire
system is more efficient for small designs because of superior
data locality and better cross module optimization, but once

the simulation is large enough to saturate the caches, then that
quickly becomes a bottleneck.

LiveSim also has a better data cache. The LiveSim C++
code generator employs a simple algorithm which groups
muxes with the same condition into if − else block wherever
possible. The result is an increase in branches (reflected in
the “BR MPKI” row) and a decrease on cache conflicts, the
latter only being present on large designs. This optimization
does not yield benefits for designs that fit in the data cache.
As the design gets larger, however, the branch miss prediction
rate increases, but the rate of increase of data cache Misses
Per Thousand Instructions (MPKI) is slower than in Verilator,
which ultimately has a greater impact. This optimization does
seem to have a limited impact because with a large enough
design under simulation the data set will not fit in the cache
regardless.

Though LiveSim underperforms Verilator on smaller de-
signs, its internals provide better scalability. The result is
that going from 1 core to 256 (16x16) LiveSim has just a
40% performance degradation. We were unable to compile the
16x16 PGAS at all with Verilator, but going from 1 to 64 PGAs
has 70% performance degration. As a reference, LiveSim has
just a 25% degradation for this data point.

B. Hot Reloading and Checkpointing Overhead

Figure 8 shows the main latency of the ERD loop for each
size of the PGAS. 1x1 is a mesh with a single PGAS core,
the 16x16 is a mesh with 256 PGAS. Each runtime includes
compilation after a code change and the time it took for the
simulation to reach a specific number of cycles denoted in the
x-axis. The code changes were taken from actual bug fixes
made during the development of the PGAS CPU cores, taken
from the git logs.

LiveSim provides an ERD loop of less than 2 seconds in
all the cases, even for the 256 core case (256 PGAS). This is
because the PGASs are made by replicating the same RISC-
V core, making a change to one core necessitates doing a
swap on every core in the mesh. Moreover, replacing one or
more pipeline stages has a small impact in the ERD loop,
despite the fact that the number of stages being swapped is
growing exponentially. This is due to the fact that the latency
of the ERD loop is dominated by other parts of the flow,
specifically LiveParser and LiveCompiler, which only happen
once regardless of the size of the mesh.

Also, there is very little variation independent of the bug or
pipeline stage being handled. All these bugs affected a single
pipeline stage. Not shown in the figure, but if two pipeline
stages are affected, the time increase is linear. Since LiveParser
only has to do a minimal amount of work, its execution time
was negligible for all benchmarks, less than 20ms. This is
not so surprising considering the process of hot patching a
stage in detail. Once we have the shared library compiled and
loaded into memory, a process which only has to be done
once, LiveSim calls a method from the library which creates
the new stage object, and copies the register values from the
old one to the new one (taking into account any which have
been added, removed, or renamed). For a single core, the size
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LiveSim 16x16 (full simulation)
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LiveSim 16x16 (from checkpoint)

Fig. 7. LiveSim has a faster compile time and, for large designs, simulation time than Verilator, reducing the ERD loop. When restarting from checkpoints,
the advantages is even greater.

TABLE VII
THE SPEEDUP OF LIVESIM COMPARED TO VERILATOR COMES MOSTLY FROM THE INSTRUCTION CACHE EFFICIENCY. THE SMALLER CODE FOOTPRINT

ACHIEVED DUE TO REUSE OF CODE GIVES ORDERS OF MAGNITUDE REDUCTION IN CACHE MISSES FOR DESIGNS WITH A LARGE NUMBER OF INSTANCES.

PGAS 1x1 PGAS 2x2 PGAS 4x4 PGAS 8x8 PGAS 16x16
LiveSim Verilator LiveSim Verilator LiveSim Verilator LiveSim Verilator LiveSim Verilator

KHz 1974 2378 1957 2351 1492 823 1223 718 1172 NA
IPC 2.50 2.86 2.47 2.71 1.94 0.96 1.62 0.80 1.24 NA
I$ MPKI 0.25 0.01 0.02 8.45 0.01 20.57 0.01 24.37 0.01 NA
D$ MPKI 0.96 0.01 10.78 0.01 36.42 84.04 39.09 42.99 48.08 NA
BR MPKI 1.54 0.01 1.33 0.01 2.83 0.01 3.62 0.29 4.27 NA
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Fig. 8. The time required to hot reload and update the simulation remains
under 2 seconds, even for a large mesh with 256 PGAS multicore (16x16).
Swapping latency is dominated by the parsing and compilation costs which
remain constant with respect to the number of instances of the modified
module.

of all their internal memories (2x32 KB) and the register file
(32x64 bits) comes to under 100 KB. The cost of copying
that, even 256 times, is still eclipsed by other parts of the
incremental compilation process.

TABLE VIII
COMPILATION TIME FOR LIVESIM AND VERILATOR. HOT RELOAD CAN

SWAP A MODULE IN UNDER 2 SECONDS. EVEN FULL COMPILATION WITH
LIVESIM IS FASTER THAN WITH VERILATOR.

1x1 2x2 4x4 8x8 16x16

LiveSim Hot Reload 1.5 1.5 1.5 1.6 2
LiveSim Full 4.9 4.7 4.8 15.6 176
Verilator 8 14 63 327 NA

We compare the incremental compilation with Hot Reload
in LiveSim with a full compilation flow in Verilator, since that
would be the standard mode of work in the later simulator.
Table VIII shows the compilation times for LiveSim and
Verilator. As previously stated, LiveSim Hot Reload achieves

a ERD of less than 2 seconds. A clean full compilation with
LiveSim is slower. It goes from 4.9 seconds in a trivial single
core to 176 seconds for a 256 PGAS. Verilator is always slower
compiling, and we were not able to compile the 256 PGAS
in Verilator in under 24 hours even though we tried clang,
different verilator options, and even removed compile opti-
mizations. The summary is that for full compilation LiveSim
has a higher starting overhead to partition the design, but it
scales better because it shares code between pipeline stages.

To evaluate the overhead of checkpointing, we measured the
simulation speed of LiveSim with and without checkpointing
enabled. The process of taking checkpoints, as discussed in
Section III-D, requires stopping the simulation, copying the
internal state, which for the 256-core PGAS is ¡3MB, and
continuing. The overhead depends on the design under test
and in our experiments varied from 10 to 20%. Although high,
checkpoints allow LiveSim to quickly get back to a specific
point of the simulation without the need to go back from
cycle 0. Disabling checkpoints is possible for long runs in
full system verification, i.e., outside of the ERD loop.

VI. CONCLUSION

Hardware development is plagued by notoriously long
compile and simulation times which forms a bottleneck to
productivity as developers spend much of their time waiting
for feedback. There are a variety of software design tools and
libraries which have embraced the idea that faster feedback
is better for developers and have implemented a variety of
features aimed at providing it. We believe its time for hardware
design tools to do so as well.

LiveSim is the first work that tries to address the gap
in productivity in hardware simulation. LiveSim pushes the
state of the art to allow under two seconds turnaround time
for compilation and simulation of complex designs are a
large number of cycles. On compilation, LiveSim relies on
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efficiently partitioning the design to allow for incremental
compilation. Whereas during simulation, LiveSim relies on
reuse of code across instances to reduce code bloat and
checkpointing to reduce simulation time.

The evaluation shows that LiveSim compiles faster than
Verilator, and it also has a faster simulation time for larger
designs. Perhaps even more significant, we demonstrate a 2
second edit-run-debug (ERD) loop for even large scale SoCs
and a large number of cycles.

LiveSim hot reload is a new way to interact with hardware
simulators. While current flows are slow and require the user
to be very careful about the code changes when debugging,
hot reload opens the opportunity to create new ways of
thinking. For example, since hot reload is fast, the designer
can insert “printfs” and replay from any given point with very
low overhead. Similarly, the designer can explore very fast
“what ifs”. Another interesting feature for traditional flows,
hot reload allows for hiding costly initialization. If there is a
slow reset and program load in a design, hot reload can start
afterwards.
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