
Programming with People: A Literature Survey
Ryan Compton

UC-Santa Cruz

rcompton@ucsc.edu

ABSTRACT

In this paper, the literature on social computing is discussed. First

social computing and its applications will be shown. Then a

survey of existing social computing systems are examined. Finally

a description of the Dog programming language.

Categories and Subject Descriptors

D.3.3 [Programming Languages]

General Terms

Human Factors and Languages.

Keywords

Social/Human Computing, Crowdsourcing, Literature Survey.

1. INTRODUCTION
Human or Social Computing uses humans natural ability to solve

ordinary tasks that are too difficult for computers to solve. This

method of computing has become popular in applications toward

complex problems. The problem is split into micro-tasks and

dispatched to people and finding a common answer among the

crowd.

Human computation has been used in a wide range of goals; one

task is classifying galaxies from images taken by the Hubble

telescope. The Galaxy Zoo project has been using crowdsourcing

to assist in the classification needed of large numbers of galaxies

[4]. The project has been so successful it has moved on to doing

even more complex problems to be solved with its crowdsource

approach. Other possibilities that can arise from using people as

your source of data and data extraction are story generation.

Amazing but True Cat Stories is a novel created from the

collective stories of people [3]

Another working task takes advantage of the large amounts of

effort that people use to solve computer games. Foldit is a

multiplayer online game that encourages gamers to solve hard

predication problems with 3-D protein structures [2]. Locating the

formation of a protein is a heavy computational challenge due to

the vast size of search space. Human computation was

successfully applied to the problem and was more successful with

structure prediction than typical machine computation.

This leads into the first issue of human computation, motivation.

Foldit uses the desire for people to play video games; this

motivational tactic is the foundation for “Games with a purpose”

[1]. These games to be applied to a vast amount of problems

across disciplines to have human computation as a means to solve

them. Gaming was shown to be a strong tool of recruitment for

crowdsourcing, however there still remains issues with the current

system of human computation.

Typical systems that are created to use human computation have a

very simplistic approach; build a system that can answer a

difficult question. However once these systems are built they can

only be applied to that single system, there is no generalization

that allows for a cross over.

In this paper, some current systems of human computation and

crowdsourcing are presented, with a follow up about systems that

address this issue of generalization. The main section of this paper

will introduce the Jabberwocky framework which uses the Dog

Programming Language. The motivation behind this paper is to

encourage further work on human computation system in order to

enhance its applications towards more complex problems as well

as discuss the Dog Programming Language.

2. CURRENT SYSTEMS OF SOCIAL

COMPUTING
There have been a various amount of approaches toward social

computing. Some systems are simply an interface into other

currently existing crowdsourcing software. This interface allows

an extension of other methods of creating crowdsourcing tasks

than the main system itself. Other systems have used the approach

of treating humans as a database, thus using the principles

associated with declarative query languages.

2.1 Programming frameworks for Human

Computation

2.1.1 Crowdforge

Crowdforge is a framework and toolkit for crowdsourcing

complex work [10]. It takes a MapReduce approach to

crowdsourcing, since typical crowdsourcing tasks are of simple

tasks and parallel in nature [6]. People are recruited as “Mappers”

and “Reducers” which correspond to the responsibilities as in the

MapReduce algorithm. Crowdforge attempts to remove the

designer from the system as much as possible. Each person in the

crowd can act as a “Mapper” in which they can break a problem

into sub-problems for other people to solve. Once these sub-

problems are solved, then people recruited as a “Reducer” will

find the best response to the problem.

This framework has specific goals in order to transition

crowdsourcing into MapReduce. One key feature is dynamic

partitioning. It is used so that workers can act as the Mappers and

decide for themselves how a task can be partitioned. Their results

thus will create new subtasks for other workers. This is opposed

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Conference’10, Month 1–2, 2010, City, State, Country.

Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00.

to the typical system of the task designer needing to specify

partitions beforehand which allows for the crowd to decide how a

problem can be broken down. There also exist multi-level

partitions, so a task can be broken up by more than one partition.

Due to this multi-level petitioning, complex flows are a focus of

Crowdforge.

Quality control becomes an issue with a system reliant on people

who have little experience with a specific task. To address this

Crowdforge uses voting, verification, or merging items to find the

best response from the crowd, these are the Reducers. One subtask

can be for people to rate the response from another person,

therefore giving that response a vote. Responses with the highest

vote will be used as a result. Other subtasks can be to verify if one

response is a valid response to the task, also the act of merging

more than one response together.

In Summary, Crowdforge breaks the structure of distributed

computing into three types of subtasks. One, the partition tasks,

which is where the Mappers break down the larger tasks into

discrete subtasks. Secondly, the Mappers specify which task is to

be processed by one or more workers. And third, the Reducers

reduce the results of multiple workers’ tasks into a merged single

output.

Currently there are three limitations to Crowdforge. The system

does not support iteration or recursive tasks within the task flow.

This system is also assuming that the complex tasks given can be

broken up into smaller sub-problems. Lastly it is assumed that

each sub-task is assumed to be independent. These limitations are

very specific to the type of problem Crowdforge is tasked to, but

they are issues that occur in many common parallel practices that

must be addressed.

2.1.2 Turkit

Turkit is a toolkit used for prototyping and exploring algorithmic

human computation, while keeping a simple imperative

programming style [11]. Turkit is an extension of JavaScript that

introduces functions for interacting with Amazon’s Mechanical

Turks (MTurk), which is a flexible platform that supports various

kinds of human computation. Within MTurk, requesters post

small intelligence tasks called HITS for workers to conduct. These

workers get paid a small amount of compensation for completing

the HIT of their choice. MTurk currently remains exclusive to the

tasks that the requester posts.

Turkit’s model allows for the exploration of iterative workflows

as well as multi-phase task decomposition, features that would be

difficult for a requester to conduct simply using MTurk. Other

features included address the issue of reliability with conducting

complex tasks. MTurk tasks take time to complete, which makes

programming workflows more difficulty. Turkit uses a Crash and

Rerun Programming style that allows for a script to be re-executed

without re-running costly side-effecting functions. A program in

Turkit has specific calls to when a command should be rerun or

not. Command and data history is stored throughout run time in

order to reduce the necessity for a program to be rerun if it

crashes. The flow of this system is as such: a script is executed

until it crashes, thus a script will be intended to crash once it is

finished. Each successfully executed line will be stored in a

database. Once a crash occurs that was not intended, the program

will automatically rerun from the start. A line can be marked as a

non-rerun line by the programmer, thus skipping lines that have a

cost to rerunning. In this case the result of this line will be looked

up in the database.

There are some issues with determinism using the crash and rerun

programming model, but it does address the issue of high cost

with running programs toward using people as the primary means

of computation, since people cost money.

2.1.3 Soylent

Soylent is a word processing interface between MTurk and

Microsoft Word[12]. This interface enables writers to call on

MTurk workers to shorten, proofread, and conduct further edits

on parts of their document on demand. Soylent’s model to

improve worker quality was to use a Find-Fix-Verify crowd

programming pattern. This will split tasks into a series of stages,

generations and review.

Soylent is comprised of three main components: 1) Shortn, a

shortening service that will reduce the size of a selected text to

85% of the original length. It is able to accomplish this task

without changing the intended meaning of the text and without

creating any new errors. 2) Crowdproof, which uses the crowd to

find spelling and grammatical errors and provide fixes to these

errors. 3) Human Macro is an interface that offloads the tasks of

arbitrary word processing. One example of this is formatting

citations or finding appropriate figures.

 The key importance to Soylent is its interactive user interface.

This embeds paid crowd workers to the interface to allow for them

to be available to solve complex cognitive and manipulation tasks

on demand.

Soylent also addresses another common issue with crowdsourcing

behavior. Roughly 30% of the results to such an open-ended task

are considered to be a poor result. This is where the Find-Fix-

Verify structure comes into play. Find is where the Turkers

identify which part of a user’s work needs more attention. Soylent

will move the parts where at least 20% of the workers agree that it

needs work. Fix is where the work is done of the identified patch.

Here Turkers produce a fix for the patch. Lastly Verify addresses

the issue of poor results. The Turkers are asked to vote on which

fix was best for the patch. The highest voted will be presented to

the user as a fix to their error.

Overall performance of Soylent was impressive considering some

of the potential issues. Latency is higher for using Soylent than an

automatic grammar and spell checker, however Soylent would

complete a fix in about 2 minutes. When tested against a grammar

checker, Soylent was about to catch 67% of errors it was

presented, while the grammar checker was only able to catch 30%

of those errors. However with both systems combined, they were

able to catch 82%, which supports a combined system to address

errors.

2.2 Declarative query languages for Human

Computation

2.2.1 hQuery

hQuery treats human computation as a database[7]. Through a

declarative command, the programmer is able to specify what

must be accomplished through the crowd. The system will

transparently optimize and manage the evaluation details.

Issues of latency and quality also make this approach sufficiently

complex just as the previously mentioned approaches to

crowdsourcing. Specifically here, this complexity requires a

redesign to the query processor, providing a new ground for

innovation in data management research.

hQuery is also susceptible to the challenges of uncertainty in

answers and monetary costs that come from using a human

computational technique. This motivates for further work into the

hQuery system.

2.2.2 CrowdDB

CrowdDB is another approach similar to that of hQuery, however

is an extension of SQL[8]. CrowdDB simply uses human input

provided by crowdsourcing to process a query that neither a

database nor search engine can satisfy. SQL is used as the

language for posting complex queries and further is used as a way

to model the data return from the queries.

CrowdDB had a major change in the traditional closed-world

assumption for query processing not holding for human input.

Implementation perspectives gives need to solicit, integrate, and

cleanse crowd sourced data, which all are address

Just as previous systems described above, CrowdDB also takes

advantage of the existing crowdsource tool MTurk. CrowdDB

thus acts as a middle man between the user and crowdsourcing,

using a declarative approach.

Figure 1: CrowdDB Architecture

Figure 1 shows the layout of CrowdDB. A request is issues from

an application through the use of the extension of SQL,

CrowdSQL. An application can be built in a normal way and the

handlers for the crowd are kept within CrowdDB. As seen in the

left side of the figure, the traditional query compilation,

optimization, and executors are present. These are extended to

incorporate human generated input provided by the MTurk

system.

2.2.3 Qurk

Qurk is another system that uses MTurk and a declarative query

approach to human computation [9]. Qurk differs in that it uses an

asynchronous query executor, an MTurk-aware optimizer that can

consider monetary costs and result accuracy, and lastly an

adaptive approach to query process to address the not

predictability of operator selection.

Figure 2: System diagram of Qurk.

As seen in this diagram, Qurk is very similar to the CrowdDB

system in the sense that common query executors are used and

further extensions are made to incorporate MTurk as an output

and input.

3. Programming Environments with Focus on

Modularity and Reuse

3.1 HP
Human Processing (HP) is an environment that builds upon

previous environments targeted toward human computation, in

which it accomplishes this through abstraction [13]. The HP

environment works as follows:

1. A Programmer writes a typical program. The

programmer then uses implementations of human

drivers, tasks, marketplace drivers, or recruiters.

a. A Human driver is a program that manages

the interactions with humans, similar to how a

device drivers manages a physical device

within an operating system.

b. A Marketplace driver provides the direct

interaction with a marketplace such as MTurk.

2. The programmer will reuse or define certain structures

which are referred to as human task descriptions. The

task consists of an input, output, human driver, web

form, and other meta data that may be necessary. A

human task description can be instantiated will one or

more instances of a human task.

3. If the programmer wishes to avoid using any type of

marketplace, they can instead program a recruiter to

serve as the interface to one or more marketplace driver.

The point of the HP environment is to maximize the amount of

code reuse. Therefore, limiting the amount of programming

needed for a new problem. That is why the environment includes

a library of algorithms to be implemented by humans to encourage

reuse between different problems.

4. Jabberwocky Programming Environment
To further enhance applications of human computation to more

complex problems, systems need to involve the real identities,

social structure, and expertise modeling that exists within

crowdsourcing. This has been done through the use of question-

answering with Aardvark [5]. To address this issue along with the

issue of stand-alone systems with rigid structure and requirements

in existing crowdsourcing solutions, Jabberwocky was created.

Figure 3: Overview of Jabberwocky

Jabberwocky is a social computing stack that takes advantage of

both human and machine computation [14]. It has three

components: Dormouse, ManReduce, and Dog. Dormouse is the

“virtual machine” for Jabberwocky. It is at the lowest level of

software libraries that interact with both people and traditional

computing machines. Dormouse is what maintains the real

identities, user profiles, and social structure that are within the

cowdsourcing solutions. Finally programmers can naturally

interact with both control flows of human and machine

computation through the communication protocols within

Dormouse.

ManReduce is an extension of MapReduce, a parallel

programming framework that not only uses machine computation

(MapReduce), but extends this framework to human computation

as well. This is achieved through crowdsourcing’s natural parallel

nature. ManReduce sits on top of Dormouse in the Jabberwocky

stack.

Dog is a high level scripting language on top of ManReduce. Dog

was designed with three goals in mind. First make Dog a highly

expressive language, in that a person with little knowledge of

programming could understand and write a Dog program. This is

a good design goal since the fundamentals of human computation

is speaking to people. The second goal is reusability, similar to

previous system’s goal, to take advantage of previously used

programs using human computation and apply them to new ones.

And third, to keep the power and flexibility of ManReduce, while

obtaining these two previous goals.

The first two goals were achieved by defining a number of library

functions that conduct common human and machine functions.

Such human functions are Vote, Label, Compare, Extract, and

Answer. Such machine functions are Histogram, Filter, Median,

and Sort. These functions are specific to which form of

computation would perform best at it.

The last goal was achieved by allowing programmers to write

their own libraries of functions for humans and machines inside of

ManReduce.

4.1 Dog Language Specifications

Dog uses a compiler that has a recursive descent parser, in which

parses Dog programs and then creates ManReduce code. Dog

functions are wrappers around the existing functions inside

ManReduce, which contains mappers and reducers.

Dog has four high-level primitives, PEOPLE, ASK, FIND,

COMPUTE.

PEOPLE - a command that returns a specification of people in

which can be used inside the ASK and FIND commands. This

command requires a FROM clause that gives the Dormouse

community or other crowdsourcing service where the people will

be selected, such as the command below.

This command specifies that the predicate “workers” are people

from the community “facebook”. Furthermore people can be

specified to have certain features. This can be conducted with a

WHERE clause.

Here, the workers are now people from the community “gates”

where their expertise contains “theory” and their advisor is “don

knuth”. This also gives a good example how easy it is to translate

a line of Dog code into an English sentence.

ASK – a command that executes a human function that takes in a

specification of people as an argument.

The command above is asking the workers to perform an action of

labeling on the data. Each human function has some default

parameters which can be changed if the programmer wishes to.

This is done with adding the USING clause.

The workers were now asked to label on the data using a specified

layout ‘game’. Other human functions that can be used are: Vote,

Label, Compare, and Answer, as well as programmers own

created functions.

FIND – a command that will instantiate a specification of people

outside of the ASK function. If a programmer wants to examine

features of a community, they can begin by instantiating the

community using this command and use additional clauses.

This Dog program will instantiate those workers that are specified

in the first line. Furthermore FIND can be used to return people

who have successfully performed a task.

COMPUTE – a command that executes a machine function. This

command will take in a machine function for an argument as well

as a set of data to perform the function on. This is conducted in

the same manner as with the ASK function however with a

different set of library functions.

4.2 Data Model

Dog is intended to be used on large-scale data and support

sequential transformations on such data. Human or machine

functions in parallel will conduct the transformations. Dog has

two data types: people specifications and data maps. A people

specification, created by the PEOPLE command and stored within

the predicate to a line using this command. A data map is

essentially a key-value store typically used in parallel frameworks.

Key-value stores work well inside sequential and parallel

frameworks and thus become almost natural to use inside a

crowdsourcing framework, due to the parallel work of many

people and the sequential work of an individual person. Lastly

this model supports the tracking of who is producing which

segment of data.

4.3 Routing Tasks

A SUCH THAT clause is used to enable routing tasks based on

expertise, demographic, or social structure.

In the example above, advisors will only validate on reviews

where the reviewer was the advisor.

4.4 Other Features

Dog as function libraries as a default, this gives a start to a Dog

programmer instead of having to create them their self. If they

wish to create their own library, they can do so using a directory

with the .doghouse extension. Within that directory there must be

the appropriate Dormouse and ManReduce files which define the

new human and machine functions. Importing these libraries only

takes one line.

Importing existing data sets is also possible, using the same

syntax as REQUIRE however replacing the command to be

IMPORT.

There are a number of commands currently implemented in Dog.

MERGE, SHIFT, UNSHIFT, and CROSS are all commands that

involve the act of joining or manipulating communities or data

sets. There are also PARAMETERS clause that can be used inside

of ASK to encapsulate the parameters returned from ASK.

Dog also has the feature of composable primitives. This allows

more compact and sometimes readable code.

5. DISCUSSION
Interfacing with current crowdsourcing systems is a good way to

take advantage of what has been done before. There is no need to

recreate an already working system that has been shown to

produce quality results. These interfaces are good steps forward to

implementing social computing toward higher complexity

problem sets.

Declarative query approaches are also good since they are using a

paradigm that has already been in use for some time. It was only

natural to treat a new data source as such.

Jabberwocky provides an interesting approach to not only

crowdsourcing generalization, modularity, and reuse, but also

provides a more human approach to writing a crowdsourcing

solution. This allows for further use of such tools outside of the

programming community and could even serve as a good

introductory tool for programming.

Dog’s programming style provides a step in a more human

readable direction that has been lacking from a field that has been

focus on human solutions. Programming languages such as Dog

were the next step in taking advantage of social computing

systems. Even when the problem of being able to generalize

common social computing themes, being able to generalize a line

of code into a language outside of the niche for a programmer

expert provides a good alternative to a niche of expertise plagued

skill sets.

6. REFERENCES
[1] L. von Ahn. Games with a Purpose. Computer, June 2006.

[2] S Cooper, F. Khatib, A. Treuille, J. Barbero, J. Lee, M.

Beenen, A. Leaver-Fay, D. Baker, and Z. Popovic.

Predicting protein structures with a multiplayer online

game. Nature, June 2010.

[3] B. Hartmann. Amazing but True Cat Stories.

http://bjoern.org/projects/catbook/, April 2009.

[4] S Bamford and et al. Galaxy Zoo

[5] D. Horowitz and S.D. Kamvar. The anatomy of a large-scale

social search engine. In Proc. WWW (2010).

[6] J. Dean and S. Ghemawat. MapReduce: simplified data

processing on large clusters. Communications ACM,

January 2008.

[7] A. Parameswaran and N Polyzotis. Answering Queries using

Humans, Algorithms and Databases. Technical report.

[8] Michael J. Franklin, Donald Kossmann, Tim Kraska, Sukriti

Ramesh, and Reynold Xin. CrowdDB: answering queries

with crowdsourcing. In Proc. SIGMOD (2011), pages 61–72.

[9] A. Marcus, E. Wu, S. Madden, and R. C. Miller.

Crowdsourced Databases: Query Processing with People. In

Proc. CIDR (2011).

[10] A. Kittur, B. Smus, and R. E. Kraut. CrowdForge:

Crowdsourcing Complex Work.

[11] G. Little, L. Chilton, M. Goldman, and R. Miller. TurKit:

Human computation Algorithms on MTurk.

[12] M. Bernstein, G. Little, R.. Miller, B. Hartmann, M.

Ackerman, D. Karger, D. Crowell, and K. Panovich. Soylent:

a word processor with a crowd inside. In Proc. UIST (2010).

[13] P. Heymann and H. Garcia-Molina. Human processing.

Technical report.

[14] S. Ahmad, A. Battle, Z. Malkani, and S. Kamvar. The

Jabberwocky Programming Environment for Structured

Social Computing. Proceedings of the Twenty-Fourth

Symposium on User Interface Software and Technology,

October, 2011.

