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Special Issue: Fragile Families Challenge

The Fragile Families Challenge involves social and data 
scientists in identifying at-risk families. The challenge 
data set is derived from 4,242 families, with 12,942 inde-
pendent and 6 dependent variables. To address the diag-
nostic challenge, I pursue a data-driven approach using 
machine learning (ML) for feature engineering and model 
optimization. The methods I use to identify diagnostic pre-
dictors of vulnerability are therefore evidence based rather 
than theoretically motivated. Given the 12,942 indepen-
dent variables in the challenge data set, it is impossible to 
directly evaluate every possible known predictor. Instead, 
by focusing on specific dependent variables (grade point 
average [GPA], grit, material hardship, eviction, layoff, 
and job training), I uncover unexpected associations and 
generate more powerful diagnostic models. In doing so I 
develop novel methods to identify families at risk. My 
approach is also replicable by focusing on building models 
with greater generalizability and predictive performance 
(Breiman 2001b). Nevertheless, the approach has limita-
tions: spurious correlations and data biases may occur, and 
results need further theoretical verification before broader 
conclusions can be drawn.

My method involves the following steps. First, data are pre-
processed to identify missing data and remove “bad features” 
(independent variables adding noise or no additional predictive 
power). Next, feature engineering generates predictive combi-
nations of remaining features. Exploration then optimizes the 
models and features to produce the best performing model 
(assessed using the mean standard error) in a final test. This 
work also applies additional methods to deal with data set 
biases for ML models, one being imbalanced observed events 
(e.g., there are far fewer families experiencing eviction than 
not). I follow this procedure for all dependent variables in the 
Fragile Families Challenge, although performance varies for 
each. Compared with models using all available independent 
variables, I find an improvement in predicting one binary (job 
training) dependent variable but not the remaining (GPA, grit, 
material hardship, eviction, and layoff).
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Abstract
Sociological research typically involves exploring theoretical relationships, but the emergence of “big data” enables 
alternative approaches. This work shows the promise of data-driven machine-learning techniques involving feature 
engineering and predictive model optimization to address a sociological data challenge. The author’s group develops 
improved generalizable models to identify at-risk families. Principal-components analysis and decision tree modeling are 
used to predict six main dependent variables in the Fragile Families Challenge, successfully modeling one binary variable 
but no continuous dependent variables in the diagnostic data set. This indicates that some binary dependent variables 
are more predictable using a reduced set of uncorrelated independent variables, and continuous dependent variables 
demand more complexity.
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Terminology and Metrics

My approach involves ML, so I introduce relevant terminol-
ogy; independent variables are referred to as features and 
dependent variables as targets. Each family measured is 
referred to as an instance in the data set. ML also distin-
guishes different types of target variables. Continuous vari-
ables are referred to as regression targets and categorical 
variables as classification targets. The Fragile Families 
Challenge involves both target types, and appropriate ML 
terminology will be used for each.

Data-driven approaches need an evaluation metric to 
determine the model’s predictive power. I use the evaluation 
function set by the Fragile Families Challenge, mean squared 
error (MSE). It is defined as (Wang and Bovik 2009)
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where Y  is the model prediction made and Y the vector of n 
observed true values. This metric applies to both regression 
(continuous target variables) and classification (categorical 
variables, which in this context take binary values, 0 and 1), 
making MSE a suitable evaluation metric for all challenge 
targets.

I also use standard ML evaluation metrics for categorical 
targets: precision (the number of true positives divided by 
the sum of true and false positives), recall (the number of 
true positives divided by the number of actual positives), and 
an aggregated metric of the prior two called F1 score (an 
aggregated metric of precision and recall) (Powers 2011). 
These metrics evaluate model performance per category, 
allowing adjustments to be made to improve model perfor-
mance across categories. Each Fragile Families Challenge 
target is binary, so there are two categories per target: 1 (the 
event occurred) and 0 (the event did not occur).

Data Analysis

Data analysis involved the following steps: data cleaning, 
data splitting (creation of training and test sets), feature engi-
neering, and principal-components search.

Data Cleaning

The first cleaning procedure dealt with missing data, as 23.8 
percent of features included missing data. Features were 
removed if they could not be adjusted for with a mean substi-
tution (Schlomer, Bauman, and Card 2010), leading us to 
exclude missing categorical data or where there were no 
measures in the training set. I removed only 796 (~7 percent) 
of the original set of more than 12,000 features, leaving 
many remaining predictor features. I also removed 1,775 fea-
tures with no standard deviation, as a feature with no vari-
ance cannot contribute to the overall model.

That left 10,371 usable features. For these remaining 
cases, following a standard procedure (Schlomer et al. 2010), 
a mean substitution replaced missing values, preserving 
internal data set validity. Mean substitution reduces the num-
ber of dropped instances, which is appealing because there 
are only 4,242 family instances. However, using mean sub-
stitution assumes that data are missing completely at random 
(Little and Rubin 2014). If this assumption is not met, it can 
bias models to the present sample, but because only 4 percent 
of features were missing more than 100 values, substitution 
was considered appropriate.

Many features are also not normally distributed. Min-max 
normalization was therefore used, as it is appropriate for the 
current Fragile Families Challenge data set (Jayalakshmi and 
Santhakumaran 2011). It was implemented using the follow-
ing formula, which is a standard method with the benefit of 
preserving relationships between features in a data set:
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Typically, xnewmax  is set to 1 and xnewmin  is set to 0 to rescale 
a feature to be within the range 0 to 1, and this is the case 
here

Data Splitting

The initial Fragile Families Challenge data set consisted of 
12,942 features and 4,242 instances. Of these 4,242 instances, 
the challenge set preemptively identified 2,121 for training, 
530 to calculate a participant leaderboard, and 1,591 
instances as a holdout test set. Cleaning reduced the number 
of features to 10,371. In my work, I split the training set 
(2,121 instances) into three subsets: model training, model 
validation, and model test sets. In identifying these subsets, 
33 percent of the data were randomly assigned to the model 
test set, which meant that no model was trained on these data, 
which were used only to evaluate performance. The remain-
ing 66 percent were used for the model training and model 
validation sets. Model validation data were assigned through 
sixfold cross-validation (Kohavi 1995). This process is 
shown in Figure 1. The data are split into six equal sized 
folds; for each of the six folds I train a model on the remain-
ing (89 percent) data, producing six different models, and 
then evaluate each model’s ability to predict the held-out 11 
percent chunk. The highest performing model of the six is 
then used on the model test set, for an on-hand generalizabil-
ity test. This best model was then submitted to the Fragile 
Families Challenge, in which it was evaluated with the lead-
erboard and holdout test sets.

Feature Engineering

Identifying ML features is complex. Models with more fea-
tures can fit a target with a large amount of variance. 
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However, having many features reduces a model’s ability to 
generalize beyond the original data set. A complex model 
may overfit a training data set, fitting data noise rather than 
genuine relationships between features and target, making it 
ungeneralizable (Dietterich 1995). A model must therefore 
be simple enough to generalize to new data but complex 
enough to handle observed target variance in the data set. 
This heavily studied ML problem is called the bias-variance 
trade-off (Breiman 1996).

The set of 10,371 features remaining after data cleaning 
was large, requiring reduction to enhance generalizability 
(Breiman 2001b; Keogh and Mueen 2011). However, I did 
not want to remove features containing key information, so a 
feature engineering approach, principal-components analy-
sis (PCA), was chosen as opposed to filtering (i.e., removing 
features that do not provide much predictive power). PCA 
reduces the number of features and potentially removes 
redundant information by converting the observed, possibly 
correlated features, into an aggregated set of uncorrelated 
variables called principal components (Wold, Esbensen, and 
Geladi 1987).

However, PCA has limitations. It is an unsupervised 
approach, meaning that it does not systematically determine 
the optimal number of components but instead requires this 
number to be set manually. Setting the number is achieved by 
exploring model performance across a range of component 
values (100 to 2,000 principal components), evaluating how 

much variance is explained for each target. The number of 
principal components producing the best model is typically 
selected as the number of components. Another issue is that 
PCA can potentially reduce the amount of information in the 
feature set (i.e., low complexity and variance), as target vari-
ables sometimes call for complex models (Breiman 2001b). 
This can be addressed by comparing the performance of dif-
ferent models; here a model using the optimal number of 
principal components was compared with a baseline model 
that does not use these principal components. Another issue 
with PCA is that models are hard to interpret, as features 
developed are combinations of perhaps tens or hundreds of 
original features, making it unclear which original features 
are important. However, that disadvantage is offset by an 
improved ability to predict new instances of each target and 
scalability. Finally, PCA is susceptible to outliers and non-
normal data, which I already addressed in preprocessing 
through min-max normalization. The PCA implementation 
from the Python module scikit-learn (Pedregosa et al. 2011) 
was used, which implements the standard approach of 
Tipping and Bishop (1999).

Principal-components Search

A parameter search approach was used to find the number of 
components from a space of 100 to 2,000 components iterat-
ing at 100 intervals; these bounds were found from initial 

Figure 1. Visual representation of a sixfold cross-validation procedure.
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exploration in which fewer than 100 was too much informa-
tion lost (the model was a poor predictor) and more than 
2,000 was not enough dimension reduction (representing 
more features than instances). For each iteration, I produced 
a PCA transformation, and then a random forest (procedure 
described below) was fit to the transformed features. This 
was conducted for each target measure. Each target’s MSE 
plotted against the number of components is shown in Figure 

2, demonstrating the bias-variance balance needed to find the 
best model. However, it is not guaranteed that model predic-
tions will change as components increase; eviction predic-
tions are constant for all components. The component 
number producing the lowest MSE was used for further 
modeling.

The number of components producing the best model is 
not identical for each target, which needed to be accounted 
for in each final model. Although the number of features 
remained high, it was reduced from about 10,000 features, 
making modeling much simpler. Similar analyses were con-
ducted for all targets, and the best components found for 
each target are listed in Table 1.

Modeling

I built models in Python 3.5 using the scikit-learn library 
(Pedregosa et al. 2011). For modeling, the ensemble tech-
nique random forests was chosen. Random forests is a tech-
nique that takes a large number of decision trees assembled 
on random subsets of features and instances and aggregates 
all predictions into a single prediction. Decision trees typi-
cally perform well with data sets with properties like those of 
the Fragile Families Challenge (categorical and continuous 
features, linear and nonlinear relationships, a small number 
of instances) and can produce both continuous and categori-
cal outputs (Breiman 2001a).

The package XGBoost (Chen and Guestrin 2016) was 
used to build this model. XGBoost conducts an efficient tree 
boosting algorithm to increase model performance. XGBoost 
also has settable parameters: number of trees, learning rate, 
and a maximum depth for trees. The number of trees deter-
mines how many decision trees are used in the forest, learn-
ing rate is a boosting parameter to improve model learning, 
and maximum depth restricts the depth of each individual 
decision tree. The parameter values 250 trees, a learning rate 
of 0.05, and a maximum depth of 6 were used because they 
are the default parameters for such a model. More specific 
parameters can optimize performance on an individual target 
through parameter search (Bergstra and Bengio 2012), but 
this approach was not adopted here, because PCA feature 
engineering is my main focus. Therefore, parameters were 
set to be identical across all targets, and I can observe how 
engineered features affect performance. MSE is generally 
the set evaluation function for these models, but for classifi-
cation targets (binary variables: eviction, layoff, and job 
training), additional ML metrics were used, namely, preci-
sion, recall, and F1 score (Powers 2011), as defined above in 
the section on terminology and metrics.

Classification Balancing

Results for an initial modeling test of the binary classifica-
tion targets over the model training and model validation 
sets are shown in Table 2. On the left side of Table 2, the 

Figure 2. Model performance over number of principal 
components for each target.
Note: GPA = grade point average; MSE = mean squared error;  
PCA = principal-components analysis.
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classification targets show low F1 scores for positive 
instances (instances in which eviction, layoffs, or job train-
ing took place). This is most likely due to the small number 
of positive instances for each target (87 positive instances for 
eviction out of 1,459, 267 positive instances for layoff out of 
1,277, and 343 positive instances for training out of 1,461). 
Small numbers of positive instances create a modeling issue 
because there are not enough to properly train the model, 
leading it to fit to only the negative instances. For example, 
for eviction, if the model predicts a negative instance every 
time, it is still correct 94 percent of the time.

To counter this, I oversampled positive instances to bal-
ance the ratio of positive to negative instances (Chawla et al. 
2002). Oversampling increases instances of a low-frequency 
class by sampling from the available instances of that class 
and duplicating them within the data set. The oversampling 
procedure I used involved random sampling with replace-
ment, and the modeling results are shown on the right side of 
Table 2. Performance increased for job training and layoff, 
with no change for eviction. This may be because the posi-
tive instances in the training set do not accurately represent 
those in the validation set. However, the small number of 
positive instances may make it impossible to identify repre-
sentative training samples for positive instances.

Cross-validation

Next, cross-validation was conducted to find the best perfor-
mance on the validation set within the sixfold cross-validation 
procedure. The results in Figure 3 show model performance 
variance for each validation fold. MSE from the folds is simi-
lar, suggesting that results are not driven by outliers.

The best model from cross-validation for each target was 
evaluated on the model test set, and the results are shown in 
Table 3. To quantify the performance impact of using prin-
cipal components, I constructed baseline random forest 
models using all features (the original set of 10,371 features) 
following the same procedures as outlined above (filtering 
zero standard deviation features, mean substitution, and 
oversampling), minus the feature engineering stage; results 
are also shown in Table 3.

Results

The models showing higher improvement using PCA fea-
tures surprisingly involved only one binary classification tar-
get (job training). Baseline models performed better for 
regression targets (GPA, grit, and material hardship) on aver-
age, with baseline grit improved most, by about 28 percent. 

Table 1. Number of Principal Components Found for Each Target and Their Explained Variance Found through PCA Modeling within 
scikit-learn.

Target Variable GPA Grit Material Hardship Eviction Layoff Job Training

Number of components 400 1,100 500 100 600 300
Percentage variance explained ~92 ~99 ~95 ~80 ~95 ~90

Note: GPA = grade point average; PCA = principal-components analysis.

Table 2. Evaluation Scores for Binary Classification Targets.

Classification Support for Binary Targets

 Untouched Training Data Resampled Training Data

 Precision Recall F1 Score Precision Recall F1 Score

Eviction  
 No eviction 0.94 1.00 0.97 0.94 0.99 0.96
 Eviction 0.00 0.00 0.00 0.00 0.00 0.00
 Average/total 0.89 0.94 0.92 0.89 0.93 0.91
Layoff  
 No layoff 0.78 0.99 0.87 0.78 0.98 0.87
 Layoff 0.25 0.01 0.02 0.38 0.05 0.09
 Average/total 0.66 0.77 0.68 0.69 0.77 0.70
Job training  
 No job training 0.78 1.00 0.87 0.78 0.99 0.87
 Job training 0.00 0.00 0.00 0.38 0.03 0.05
 Average/total 0.60 0.78 0.68 0.69 0.77 0.69

Note: The results of training on unchanged target distributions are on the left, and the results of training with oversampling positive targets are on the 
right.
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Baseline models for eviction and layoff did perform better 
than PCA but not to the extent of regression targets. This sug-
gests that more features provide better predictive power for 
these targets and that the only target to benefit from the 
reduction in noise in the reduced principal components was 
job training.

The better performing model when comparing baseline 
with PCA was submitted to the Fragile Families Challenge. 
Examining the righthand column, most models performed at 

a level expected on the challenge holdout test set,1 with a 
slightly higher error than in the model test set, indicating a 
good generalizable model. Interestingly, the layoff and GPA 
models performed better for the challenge holdout set than 
the modeling test set. It may be that instances harder to pre-
dict were present in the challenge training set compared with 
the challenge holdout set.

Eviction seems a harder classification problem than antic-
ipated. Eviction initially showed high performance, but this 
was due to a bias in the number of nonevictions to evictions 
(1372 nonevictions vs. 87 evictions in the training set); even 
oversampling of evictions could not correct the model. Bias 
may also explain the lack of a relationship between number 
of components and performance. This may represent differ-
ences in train-test split created in the modeling stage, or a 
larger range of components (100–10,000) might reveal a 
relationship. Further work is needed to test such hypotheses, 
and further examination of the differences in positive 
instances between the Fragile Families Challenge train and 
holdout sets could help produce stronger generalizable 
results.

Overall, the job training target in the Fragile Families 
Challenge seems to benefit from PCA feature engineering, 
while the remaining targets were best fitted using original 
(but cleaned) features and balanced classes. Classification 
involved binary (0 or 1) targets, whereas regression involved 
continuous targets, allowing more possible noise, giving one 
possible reason why more features present in the model pro-
vided on average better performance. Regression targets may 
therefore demand more complex models, and this may be the 
case for the classification targets eviction and layoff as well. 
As seen in Figure 2, eviction showed no change with compo-
nent exploration for PCA, and the higher numbered compo-
nents (>1,200) for layoff showed just as good performance as 
the minimum chosen.

Limitations

My work has various potential limitations. First, it is heavily 
data driven and so does not reflect known theoretical rela-
tionships between features and targets. Future work could 
include theoretical feature filters or combinations to search 
for statistically significant predictors. Second, bias involving 
negative instances for specific classification targets might be 
better handled to increase performance using other methods 
than sampling with replacement. Third, the mean substitu-
tion method for missing data has known biases in causing 
overfitting; less biased methods should be explored (e.g., 
multiple imputation).

Figure 3. Cross-validation performance for all targets.
Note: CV = cross-validation; GPA = grade point average; MSE = mean 
squared error; PCA = principal-components analysis.

1Performance reported varies from challenge scores. The results 
here represent reworking for reliable models to be attached with 
this article.
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Conclusions

My work used one type of ML feature engineering procedure 
to find generalizable models for a complex social science 
data set. My data-driven approach took advantage of rela-
tionships with the data, ignoring potential theoretical 
approaches to feature selection. Such models might be used 
to better identify certain aspects of families at risk. 
Furthermore, I highlight differences in predictive power 
reflecting the data set imbalance across classification 
instances, demonstrating a need for more observed cases of 
classification targets.
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Table 3. Evaluation Scores for Targets in the Baseline Models, PCA Feature Models on the Modeling Test Set, and Final Performance 
on the Fragile Families Held-out Test set.

Baseline Performance  
(MSE)

PCA Feature Performance  
(Number of Components) (MSE)

Final Performance on  
Fragile Families Test Set (MSE)

GPA 0.4197 0.4581 (400) 0.3708
Grit 0.2293 0.2955 (1100) 0.2601
Material hardship 0.0192 0.0225 (500) 0.0203
Eviction 0.0539 0.0684 (100) 0.0616
Layoff 0.2322 0.2417 (600) 0.2233
Job training 0.2443 0.2318 (300) 0.2617

Note: Best models comparing baseline and PCA are in boldface type. GPA = grade point average; MSE = mean squared error; PCA = principal-components 
analysis.


