
https://doi.org/10.1177/2378023118818720

Socius: Sociological Research for
a Dynamic World
Volume 5: 1 –7
© The Author(s) 2019
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/2378023118818720
srd.sagepub.com

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction

and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages
(https://us.sagepub.com/en-us/nam/open-access-at-sage).

Special Issue: Fragile Families Challenge

The Fragile Families Challenge involves social and data
scientists in identifying at-risk families. The challenge
data set is derived from 4,242 families, with 12,942 inde-
pendent and 6 dependent variables. To address the diag-
nostic challenge, I pursue a data-driven approach using
machine learning (ML) for feature engineering and model
optimization. The methods I use to identify diagnostic pre-
dictors of vulnerability are therefore evidence based rather
than theoretically motivated. Given the 12,942 indepen-
dent variables in the challenge data set, it is impossible to
directly evaluate every possible known predictor. Instead,
by focusing on specific dependent variables (grade point
average [GPA], grit, material hardship, eviction, layoff,
and job training), I uncover unexpected associations and
generate more powerful diagnostic models. In doing so I
develop novel methods to identify families at risk. My
approach is also replicable by focusing on building models
with greater generalizability and predictive performance
(Breiman 2001b). Nevertheless, the approach has limita-
tions: spurious correlations and data biases may occur, and
results need further theoretical verification before broader
conclusions can be drawn.

My method involves the following steps. First, data are pre-
processed to identify missing data and remove “bad features”
(independent variables adding noise or no additional predictive
power). Next, feature engineering generates predictive combi-
nations of remaining features. Exploration then optimizes the
models and features to produce the best performing model
(assessed using the mean standard error) in a final test. This
work also applies additional methods to deal with data set
biases for ML models, one being imbalanced observed events
(e.g., there are far fewer families experiencing eviction than
not). I follow this procedure for all dependent variables in the
Fragile Families Challenge, although performance varies for
each. Compared with models using all available independent
variables, I find an improvement in predicting one binary (job
training) dependent variable but not the remaining (GPA, grit,
material hardship, eviction, and layoff).

818720 SRDXXX10.1177/2378023118818720SociusCompton
research-article2019

1University of California, Santa Cruz, CA, USA

Corresponding Author:
Ryan Compton, University of California Santa Cruz, Department of
Computer Science, 1156 High Street, Santa Cruz, CA 95064, USA
Email: rcompton@ucsc.edu

A Data-driven Approach to the
Fragile Families Challenge: Prediction
through Principal-Components
Analysis and Random Forests

Ryan Compton1

Abstract
Sociological research typically involves exploring theoretical relationships, but the emergence of “big data” enables
alternative approaches. This work shows the promise of data-driven machine-learning techniques involving feature
engineering and predictive model optimization to address a sociological data challenge. The author’s group develops
improved generalizable models to identify at-risk families. Principal-components analysis and decision tree modeling are
used to predict six main dependent variables in the Fragile Families Challenge, successfully modeling one binary variable
but no continuous dependent variables in the diagnostic data set. This indicates that some binary dependent variables
are more predictable using a reduced set of uncorrelated independent variables, and continuous dependent variables
demand more complexity.

Keywords
Fragile Families Challenge, diagnostics, machine learning, feature engineering, principal-components analysis, random
forests, data-driven methods

https://us.sagepub.com/en-us/journals-permissions
https://srd.sagepub.com
mailto:rcompton@ucsc.edu

2 Socius: Sociological Research for a Dynamic World

Terminology and Metrics

My approach involves ML, so I introduce relevant terminol-
ogy; independent variables are referred to as features and
dependent variables as targets. Each family measured is
referred to as an instance in the data set. ML also distin-
guishes different types of target variables. Continuous vari-
ables are referred to as regression targets and categorical
variables as classification targets. The Fragile Families
Challenge involves both target types, and appropriate ML
terminology will be used for each.

Data-driven approaches need an evaluation metric to
determine the model’s predictive power. I use the evaluation
function set by the Fragile Families Challenge, mean squared
error (MSE). It is defined as (Wang and Bovik 2009)

MSE
n

Y Y
i

n

i i= −()
=
∑1
1

2
 ,

where Y is the model prediction made and Y the vector of n
observed true values. This metric applies to both regression
(continuous target variables) and classification (categorical
variables, which in this context take binary values, 0 and 1),
making MSE a suitable evaluation metric for all challenge
targets.

I also use standard ML evaluation metrics for categorical
targets: precision (the number of true positives divided by
the sum of true and false positives), recall (the number of
true positives divided by the number of actual positives), and
an aggregated metric of the prior two called F1 score (an
aggregated metric of precision and recall) (Powers 2011).
These metrics evaluate model performance per category,
allowing adjustments to be made to improve model perfor-
mance across categories. Each Fragile Families Challenge
target is binary, so there are two categories per target: 1 (the
event occurred) and 0 (the event did not occur).

Data Analysis

Data analysis involved the following steps: data cleaning,
data splitting (creation of training and test sets), feature engi-
neering, and principal-components search.

Data Cleaning

The first cleaning procedure dealt with missing data, as 23.8
percent of features included missing data. Features were
removed if they could not be adjusted for with a mean substi-
tution (Schlomer, Bauman, and Card 2010), leading us to
exclude missing categorical data or where there were no
measures in the training set. I removed only 796 (~7 percent)
of the original set of more than 12,000 features, leaving
many remaining predictor features. I also removed 1,775 fea-
tures with no standard deviation, as a feature with no vari-
ance cannot contribute to the overall model.

That left 10,371 usable features. For these remaining
cases, following a standard procedure (Schlomer et al. 2010),
a mean substitution replaced missing values, preserving
internal data set validity. Mean substitution reduces the num-
ber of dropped instances, which is appealing because there
are only 4,242 family instances. However, using mean sub-
stitution assumes that data are missing completely at random
(Little and Rubin 2014). If this assumption is not met, it can
bias models to the present sample, but because only 4 percent
of features were missing more than 100 values, substitution
was considered appropriate.

Many features are also not normally distributed. Min-max
normalization was therefore used, as it is appropriate for the
current Fragile Families Challenge data set (Jayalakshmi and
Santhakumaran 2011). It was implemented using the follow-
ing formula, which is a standard method with the benefit of
preserving relationships between features in a data set:

′ = −()× −()
−()

+x x x
x x

x x
xnewmax newmin

i min

max min
newmin .

Typically, xnewmax is set to 1 and xnewmin is set to 0 to rescale
a feature to be within the range 0 to 1, and this is the case
here

Data Splitting

The initial Fragile Families Challenge data set consisted of
12,942 features and 4,242 instances. Of these 4,242 instances,
the challenge set preemptively identified 2,121 for training,
530 to calculate a participant leaderboard, and 1,591
instances as a holdout test set. Cleaning reduced the number
of features to 10,371. In my work, I split the training set
(2,121 instances) into three subsets: model training, model
validation, and model test sets. In identifying these subsets,
33 percent of the data were randomly assigned to the model
test set, which meant that no model was trained on these data,
which were used only to evaluate performance. The remain-
ing 66 percent were used for the model training and model
validation sets. Model validation data were assigned through
sixfold cross-validation (Kohavi 1995). This process is
shown in Figure 1. The data are split into six equal sized
folds; for each of the six folds I train a model on the remain-
ing (89 percent) data, producing six different models, and
then evaluate each model’s ability to predict the held-out 11
percent chunk. The highest performing model of the six is
then used on the model test set, for an on-hand generalizabil-
ity test. This best model was then submitted to the Fragile
Families Challenge, in which it was evaluated with the lead-
erboard and holdout test sets.

Feature Engineering

Identifying ML features is complex. Models with more fea-
tures can fit a target with a large amount of variance.

Compton 3

However, having many features reduces a model’s ability to
generalize beyond the original data set. A complex model
may overfit a training data set, fitting data noise rather than
genuine relationships between features and target, making it
ungeneralizable (Dietterich 1995). A model must therefore
be simple enough to generalize to new data but complex
enough to handle observed target variance in the data set.
This heavily studied ML problem is called the bias-variance
trade-off (Breiman 1996).

The set of 10,371 features remaining after data cleaning
was large, requiring reduction to enhance generalizability
(Breiman 2001b; Keogh and Mueen 2011). However, I did
not want to remove features containing key information, so a
feature engineering approach, principal-components analy-
sis (PCA), was chosen as opposed to filtering (i.e., removing
features that do not provide much predictive power). PCA
reduces the number of features and potentially removes
redundant information by converting the observed, possibly
correlated features, into an aggregated set of uncorrelated
variables called principal components (Wold, Esbensen, and
Geladi 1987).

However, PCA has limitations. It is an unsupervised
approach, meaning that it does not systematically determine
the optimal number of components but instead requires this
number to be set manually. Setting the number is achieved by
exploring model performance across a range of component
values (100 to 2,000 principal components), evaluating how

much variance is explained for each target. The number of
principal components producing the best model is typically
selected as the number of components. Another issue is that
PCA can potentially reduce the amount of information in the
feature set (i.e., low complexity and variance), as target vari-
ables sometimes call for complex models (Breiman 2001b).
This can be addressed by comparing the performance of dif-
ferent models; here a model using the optimal number of
principal components was compared with a baseline model
that does not use these principal components. Another issue
with PCA is that models are hard to interpret, as features
developed are combinations of perhaps tens or hundreds of
original features, making it unclear which original features
are important. However, that disadvantage is offset by an
improved ability to predict new instances of each target and
scalability. Finally, PCA is susceptible to outliers and non-
normal data, which I already addressed in preprocessing
through min-max normalization. The PCA implementation
from the Python module scikit-learn (Pedregosa et al. 2011)
was used, which implements the standard approach of
Tipping and Bishop (1999).

Principal-components Search

A parameter search approach was used to find the number of
components from a space of 100 to 2,000 components iterat-
ing at 100 intervals; these bounds were found from initial

Figure 1. Visual representation of a sixfold cross-validation procedure.

4 Socius: Sociological Research for a Dynamic World

exploration in which fewer than 100 was too much informa-
tion lost (the model was a poor predictor) and more than
2,000 was not enough dimension reduction (representing
more features than instances). For each iteration, I produced
a PCA transformation, and then a random forest (procedure
described below) was fit to the transformed features. This
was conducted for each target measure. Each target’s MSE
plotted against the number of components is shown in Figure

2, demonstrating the bias-variance balance needed to find the
best model. However, it is not guaranteed that model predic-
tions will change as components increase; eviction predic-
tions are constant for all components. The component
number producing the lowest MSE was used for further
modeling.

The number of components producing the best model is
not identical for each target, which needed to be accounted
for in each final model. Although the number of features
remained high, it was reduced from about 10,000 features,
making modeling much simpler. Similar analyses were con-
ducted for all targets, and the best components found for
each target are listed in Table 1.

Modeling

I built models in Python 3.5 using the scikit-learn library
(Pedregosa et al. 2011). For modeling, the ensemble tech-
nique random forests was chosen. Random forests is a tech-
nique that takes a large number of decision trees assembled
on random subsets of features and instances and aggregates
all predictions into a single prediction. Decision trees typi-
cally perform well with data sets with properties like those of
the Fragile Families Challenge (categorical and continuous
features, linear and nonlinear relationships, a small number
of instances) and can produce both continuous and categori-
cal outputs (Breiman 2001a).

The package XGBoost (Chen and Guestrin 2016) was
used to build this model. XGBoost conducts an efficient tree
boosting algorithm to increase model performance. XGBoost
also has settable parameters: number of trees, learning rate,
and a maximum depth for trees. The number of trees deter-
mines how many decision trees are used in the forest, learn-
ing rate is a boosting parameter to improve model learning,
and maximum depth restricts the depth of each individual
decision tree. The parameter values 250 trees, a learning rate
of 0.05, and a maximum depth of 6 were used because they
are the default parameters for such a model. More specific
parameters can optimize performance on an individual target
through parameter search (Bergstra and Bengio 2012), but
this approach was not adopted here, because PCA feature
engineering is my main focus. Therefore, parameters were
set to be identical across all targets, and I can observe how
engineered features affect performance. MSE is generally
the set evaluation function for these models, but for classifi-
cation targets (binary variables: eviction, layoff, and job
training), additional ML metrics were used, namely, preci-
sion, recall, and F1 score (Powers 2011), as defined above in
the section on terminology and metrics.

Classification Balancing

Results for an initial modeling test of the binary classifica-
tion targets over the model training and model validation
sets are shown in Table 2. On the left side of Table 2, the

Figure 2. Model performance over number of principal
components for each target.
Note: GPA = grade point average; MSE = mean squared error;
PCA = principal-components analysis.

Compton 5

classification targets show low F1 scores for positive
instances (instances in which eviction, layoffs, or job train-
ing took place). This is most likely due to the small number
of positive instances for each target (87 positive instances for
eviction out of 1,459, 267 positive instances for layoff out of
1,277, and 343 positive instances for training out of 1,461).
Small numbers of positive instances create a modeling issue
because there are not enough to properly train the model,
leading it to fit to only the negative instances. For example,
for eviction, if the model predicts a negative instance every
time, it is still correct 94 percent of the time.

To counter this, I oversampled positive instances to bal-
ance the ratio of positive to negative instances (Chawla et al.
2002). Oversampling increases instances of a low-frequency
class by sampling from the available instances of that class
and duplicating them within the data set. The oversampling
procedure I used involved random sampling with replace-
ment, and the modeling results are shown on the right side of
Table 2. Performance increased for job training and layoff,
with no change for eviction. This may be because the posi-
tive instances in the training set do not accurately represent
those in the validation set. However, the small number of
positive instances may make it impossible to identify repre-
sentative training samples for positive instances.

Cross-validation

Next, cross-validation was conducted to find the best perfor-
mance on the validation set within the sixfold cross-validation
procedure. The results in Figure 3 show model performance
variance for each validation fold. MSE from the folds is simi-
lar, suggesting that results are not driven by outliers.

The best model from cross-validation for each target was
evaluated on the model test set, and the results are shown in
Table 3. To quantify the performance impact of using prin-
cipal components, I constructed baseline random forest
models using all features (the original set of 10,371 features)
following the same procedures as outlined above (filtering
zero standard deviation features, mean substitution, and
oversampling), minus the feature engineering stage; results
are also shown in Table 3.

Results

The models showing higher improvement using PCA fea-
tures surprisingly involved only one binary classification tar-
get (job training). Baseline models performed better for
regression targets (GPA, grit, and material hardship) on aver-
age, with baseline grit improved most, by about 28 percent.

Table 1. Number of Principal Components Found for Each Target and Their Explained Variance Found through PCA Modeling within
scikit-learn.

Target Variable GPA Grit Material Hardship Eviction Layoff Job Training

Number of components 400 1,100 500 100 600 300
Percentage variance explained ~92 ~99 ~95 ~80 ~95 ~90

Note: GPA = grade point average; PCA = principal-components analysis.

Table 2. Evaluation Scores for Binary Classification Targets.

Classification Support for Binary Targets

 Untouched Training Data Resampled Training Data

 Precision Recall F1 Score Precision Recall F1 Score

Eviction
 No eviction 0.94 1.00 0.97 0.94 0.99 0.96
 Eviction 0.00 0.00 0.00 0.00 0.00 0.00
 Average/total 0.89 0.94 0.92 0.89 0.93 0.91
Layoff
 No layoff 0.78 0.99 0.87 0.78 0.98 0.87
 Layoff 0.25 0.01 0.02 0.38 0.05 0.09
 Average/total 0.66 0.77 0.68 0.69 0.77 0.70
Job training
 No job training 0.78 1.00 0.87 0.78 0.99 0.87
 Job training 0.00 0.00 0.00 0.38 0.03 0.05
 Average/total 0.60 0.78 0.68 0.69 0.77 0.69

Note: The results of training on unchanged target distributions are on the left, and the results of training with oversampling positive targets are on the
right.

6 Socius: Sociological Research for a Dynamic World

Baseline models for eviction and layoff did perform better
than PCA but not to the extent of regression targets. This sug-
gests that more features provide better predictive power for
these targets and that the only target to benefit from the
reduction in noise in the reduced principal components was
job training.

The better performing model when comparing baseline
with PCA was submitted to the Fragile Families Challenge.
Examining the righthand column, most models performed at

a level expected on the challenge holdout test set,1 with a
slightly higher error than in the model test set, indicating a
good generalizable model. Interestingly, the layoff and GPA
models performed better for the challenge holdout set than
the modeling test set. It may be that instances harder to pre-
dict were present in the challenge training set compared with
the challenge holdout set.

Eviction seems a harder classification problem than antic-
ipated. Eviction initially showed high performance, but this
was due to a bias in the number of nonevictions to evictions
(1372 nonevictions vs. 87 evictions in the training set); even
oversampling of evictions could not correct the model. Bias
may also explain the lack of a relationship between number
of components and performance. This may represent differ-
ences in train-test split created in the modeling stage, or a
larger range of components (100–10,000) might reveal a
relationship. Further work is needed to test such hypotheses,
and further examination of the differences in positive
instances between the Fragile Families Challenge train and
holdout sets could help produce stronger generalizable
results.

Overall, the job training target in the Fragile Families
Challenge seems to benefit from PCA feature engineering,
while the remaining targets were best fitted using original
(but cleaned) features and balanced classes. Classification
involved binary (0 or 1) targets, whereas regression involved
continuous targets, allowing more possible noise, giving one
possible reason why more features present in the model pro-
vided on average better performance. Regression targets may
therefore demand more complex models, and this may be the
case for the classification targets eviction and layoff as well.
As seen in Figure 2, eviction showed no change with compo-
nent exploration for PCA, and the higher numbered compo-
nents (>1,200) for layoff showed just as good performance as
the minimum chosen.

Limitations

My work has various potential limitations. First, it is heavily
data driven and so does not reflect known theoretical rela-
tionships between features and targets. Future work could
include theoretical feature filters or combinations to search
for statistically significant predictors. Second, bias involving
negative instances for specific classification targets might be
better handled to increase performance using other methods
than sampling with replacement. Third, the mean substitu-
tion method for missing data has known biases in causing
overfitting; less biased methods should be explored (e.g.,
multiple imputation).

Figure 3. Cross-validation performance for all targets.
Note: CV = cross-validation; GPA = grade point average; MSE = mean
squared error; PCA = principal-components analysis.

1Performance reported varies from challenge scores. The results
here represent reworking for reliable models to be attached with
this article.

Compton 7

Conclusions

My work used one type of ML feature engineering procedure
to find generalizable models for a complex social science
data set. My data-driven approach took advantage of rela-
tionships with the data, ignoring potential theoretical
approaches to feature selection. Such models might be used
to better identify certain aspects of families at risk.
Furthermore, I highlight differences in predictive power
reflecting the data set imbalance across classification
instances, demonstrating a need for more observed cases of
classification targets.

References

Bergstra, James, and Yoshua Bengio. 2012. “Random Search for
Hyper-parameter Optimization.” Journal of Machine Learning
Research 13:281–305.

Breiman, Leo. 1996. “Bias, Variance, and Arcing Classifiers.”
Technical Report No. 460. Berkeley: University of California.

Breiman, Leo. 2001a. “Random Forests.” Machine Learning
45(1):5–32.

Breiman, Leo. 2001b. “Statistical Modeling: The Two Cultures
(with Comments and a Rejoinder by the Author).” Statistical
Science 16(3):199–231.

Chawla, Nitesh V., Kevin W. Bowyer, Lawrence O. Hall, and
W. Philip Kegelmeyer. 2002. “SMOTE: Synthetic Minority
Over-sampling Technique.” Journal of Artificial Intelligence
Research 16:321–57.

Chen, Tianqi, and Carlos Guestrin. 2016. “Xgboost: A Scalable
Tree Boosting System.” Pp. 785–94 in Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. New York: Association for
Computing Machinery.

Dietterich, Tom. 1995. “Overfitting and Undercomputing in
Machine Learning.” ACM Computing Surveys 27(3):326–27.

Jayalakshmi, T., and A. Santhakumaran. 2011. “Statistical Normalization
and Back Propagation for Classification.” International Journal of
Computer Theory and Engineering 3(1):89–93.

Keogh, Eamonn, and Abdullah Mueen. 2011. “Curse of
Dimensionality.” Pp. 257–58 in Encyclopedia of Machine
Learning. New York: Springer.

Kohavi, Ron. 1995. “A Study of Cross-validation and Bootstrap
for Accuracy Estimation and Model Selection.” Pp. 1137–45
in IJCAI ’95: Proceedings of the 14th International Joint
Conference on Artificial Intelligence, Vol. 2. San Francisco,
CA: Morgan Kaufmann.

Little, Roderick J. A., and Donald B. Rubin. 2014. Statistical
Analysis with Missing Data. Hoboken, NJ: John Wiley.

Pedregosa, Fabian, Gaël Varoquaux, Alexandre Gramfort,
Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu
Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg,
Jake Vanderplas, Alexandre Passos, David Cournapeau,
Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay.
2011. “scikit-learn: Machine Learning in Python.” Journal of
Machine Learning Research 12:2825–30.

Powers, David Martin. 2011. “Evaluation: From Precision, Recall
and F-measure to ROC, Informedness, Markedness and
Correlation.” International Journal of Machine Learning
Technologies 2(1):37–63.

Schlomer, Gabriel L., Sheri Bauman, and Noel A. Card. 2010.
“Best Practices for Missing Data Management in Counseling
Psychology.” Journal of Counseling Psychology 57(1):
1–10.

Tipping, Michael E., and Christopher M. Bishop. 1999. “Probabilistic
Principal Component Analysis.” Journal of the Royal Statistical
Society: Series B (Statistical Methodology) 61(3):611–22.

Wang, Zhou, and Alan C. Bovik. 2009. “Mean Squared Error: Love
It or Leave It? A New Look at Signal Fidelity Measures.” IEEE
Signal Processing Magazine 26(1):98–117.

Wold, Svante, Kim Esbensen, and Paul Geladi. 1987. “Principal
Component Analysis.” Chemometrics and Intelligent
Laboratory Systems 2(1–3):37–52.

Author Biography

Ryan Compton is a PhD candidate at UC Santa Cruz and is
interested in how individual and social behavior can be explained
by large scale data analysis. His work primarily focuses on how
and why individuals’ social roles change over time in online
communities. His research creates design implications that
improve the success for people involved in online communities.
He aims to build systems that improve the well-being and suc-
cess of groups through research and data-driven design.

Table 3. Evaluation Scores for Targets in the Baseline Models, PCA Feature Models on the Modeling Test Set, and Final Performance
on the Fragile Families Held-out Test set.

Baseline Performance
(MSE)

PCA Feature Performance
(Number of Components) (MSE)

Final Performance on
Fragile Families Test Set (MSE)

GPA 0.4197 0.4581 (400) 0.3708
Grit 0.2293 0.2955 (1100) 0.2601
Material hardship 0.0192 0.0225 (500) 0.0203
Eviction 0.0539 0.0684 (100) 0.0616
Layoff 0.2322 0.2417 (600) 0.2233
Job training 0.2443 0.2318 (300) 0.2617

Note: Best models comparing baseline and PCA are in boldface type. GPA = grade point average; MSE = mean squared error; PCA = principal-components
analysis.

