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Abstract—Data generated at the network edge can be processed
locally by leveraging the paradigm of edge computing (EC). Aided
by EC, decentralized federated learning (DFL), which overcomes
the single-point-of-failure problem in the parameter server (PS)
based federated learning, is becoming a practical and popular
approach for machine learning over distributed data. However,
DFL faces two critical challenges, i.e., system heterogeneity and
statistical heterogeneity introduced by edge devices. To ensure fast
convergence with the existence of slow edge devices, we present an
efficient DFL method, termed FedHP, which integrates adaptive
control of both local updating frequency and network topology
to better support the heterogeneous participants. We establish
a theoretical relationship between local updating frequency and
network topology regarding model training performance and
obtain a convergence upper bound. Upon this, we propose an
optimization algorithm, that adaptively determines local updating
frequencies and constructs the network topology, so as to speed up
convergence and improve the model accuracy. Evaluation results
show that the proposed FedHP can reduce the completion time
by about 51% and improve model accuracy by at least 5% in
heterogeneous scenarios, compared with the baselines.

Index Terms—Edge Computing, Decentralized Federated
Learning, Peer-to-Peer, Heterogeneity.

I. INTRODUCTION

The past few years have witnessed remarkable advancements
in mobile computing and the Internet of Things. Mobile devices
constantly generate massive data, such as photos and voices,
which are of great value for developing intelligent applications
[1], [2]. Meanwhile, edge computing (EC) systems have been
deployed to store data locally and push more computing
power to the network edge for data analysis [3]–[5]. With the
emergence of EC, federated learning (FL) [6]–[9] has been
developed to perform distributed model training at the network
edge or end devices close to the data source. FL does not only
prevent personal privacy from being exposed but also fully
utilizes plenty of computation resources at the network edge.

Traditional FL requires a parameter server (PS) to com-
municate with the edge nodes (i.e., participants) [7], [10],
[11], and involves model transmission from a certain (possibly
large) number of nodes for model aggregation, which brings
enormous amount of traffic workload to the PS. Consequently,
the PS may become the system bottleneck, leading to the risk
of network congestion and poor scalability. In comparison,
decentralized federated learning (DFL) [6], [12]–[14] is becom-
ing an attractive solution by disseminating information through
peer-to-peer (P2P) communication, to avoid the communication
bottleneck at the centralized server. Moreover, since there is
no need to forward the local models from nodes to the PS, the
potential of single point failure can be avoided and the system

scalability will be significantly improved. This work focuses on
DFL and explores its communication and computation efficient
learning strategies so as to enhance model training at the
network edge.

There are two important features in EC systems making it
difficult to implement efficient DFL. 1) System Heterogeneity.
In EC, the capabilities of edge nodes are usually limited and
heterogeneous [1], [15]. There could be a tenfold difference
in computing capabilities (e.g., CPU frequency) or communi-
cation capabilities (e.g., bandwidth, throughput) among edge
nodes [16]–[18]. Due to system heterogeneity, fast edge nodes
may have to wait for the stragglers in a synchronous manner,
which incurs non-negligible waiting time and deteriorates
training efficiency. 2) Statistical Heterogeneity. The local data
collected by edge nodes usually depends on their functions
and/or locations, resulting in non- independent and identically
distributed (non-IID) local data across all edge nodes. The non-
IID data (known as statistical heterogeneity) will decelerate the
convergence rate and even compromise the accuracy of trained
models [2], [19], [20].

In general, edge nodes always update the models with
their globally-synchronized neighbor models, which is proven
to achieve similar convergence rate (w.r.t. the number of
rounds/iterations) as the parallel mini-batch SGD, and will
converge to satisfied solutions with high test accuracy [13]. Be-
sides, given limited capabilities on edge nodes, a synchronous
DFL method, named LD-SGD [21], has been proposed, which
alternates the frequencies of local updating and global up-
dating to significantly reduce the communication resource
consumption. As for statistical heterogeneity, Onoszko et al.
[22] proposed a synchronous method named performance-
based neighbor selection (PENS), where nodes with similar
data distributions communicate with each other. However, the
synchronization barrier of these methods often leads to idle
time for staying and waiting for the stragglers (i.e., the slow
participants) before model aggregation, especially in the het-
erogeneous system. Moreover, PENS always suffers from more
computing time for neighbor selection (i.e., network topology
construction) and model training at each communication round
due to system heterogeneity. Although the asynchronous DFL
[23]–[26] contributes to addressing the challenge of system
heterogeneity and accelerating the convergence rate w.r.t. time,
each node receives and aggregates the stale models, which
amplifies the negative impact of non-IID data on test accuracy
and even leads to model divergence [17]. Herein, we focus
on the synchronous implementation of DFL to cope with the

INFOCOM 2023 1570827066

1



potential problems, such as delayed convergence time and
compromised model accuracy, caused by system and statistical
heterogeneities.

In this paper, we investigate the benefits of controlling local
updating frequency and network topology, which are jointly
optimized to adequately address the two heterogeneity issues
for synchronous DFL. Unlike the identical local updating
frequency and fixed neighbors (i.e., network topology) for
all edge nodes [12], [21], we explore to adaptively assign
different local updating frequencies for heterogeneous nodes
and adjust network topology to eliminate the idle time incurred
by synchronization. The coupled relationship between local
updating frequency and network topology will be elaborated in
Sec. II-D. According to our theoretical analysis and pretest in
Sec. III, a relatively smaller or larger local updating frequency
will lead to more communication rounds or lower model
accuracy. Therefore, as training progresses, it is necessary yet
challenging to simultaneously determine the appropriate local
updating frequencies and neighbors for different edge nodes
so as to well balance the trade-off between convergence rate
and model accuracy. The main contributions of this paper are
summarized as follows:
• We design an efficient DFL method, called FedHP, which

integrates adaptive control of local updating frequency and
network topology to better overcome the challenges of
system and statistical heterogeneities in EC systems.

• We theoretically analyze the convergence rate and obtain
a convergence upper bound related to local updating
frequency and network topology. Upon this, we propose a
control algorithm, which adaptively determines appropri-
ate local updating frequencies and neighbors for different
edge nodes, so as to speed up training and improve the
model accuracy.

• The performance of our method is evaluated through
extensive simulation experiments. The evaluation results
show that our method can reduce the convergence time
by about 51% and improve model accuracy by at least
5% in heterogeneous scenarios, compared to existing DFL
methods.

The rest of this paper is organized as follows. Sec. II
formalizes the optimization problem in FedHP. Sec. III gives
the convergence analysis of FedHP. Based on the analysis, we
propose an efficient algorithm in Sec. IV. Then in Sec. V, we
report our experimental results. We discuss some related works
in Sec. VI and conclude the paper in Sec. VII.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Network Model

An EC system includes a set of distributed workers (e.g.,
IoT devices or small base stations) V = {v1, v2, . . . , vN}, with
|V| = N > 1. In DFL, the workers collaboratively train deep
learning models on their local datasets, and each worker needs
to exchange models with its neighbors rather than sharing its
original data. A control node (i.e., coordinator) is still needed
to collect the global information about model training statuses
and network conditions in DFL [20], [26]–[28]. However,
unlike the parameter server in FL, the coordinator does not
aggregate the models and hence will not become the bandwidth

bottleneck. Furthermore, any worker can act as the coordinator.
Since the size of these information (e.g., 100-300KB [29]) is
much smaller than that of model parameters, it is reasonable
to ignore the cost (e.g., bandwidth consumption and time cost)
for information collection [30].

The P2P network topology at the h-th communication round
can be expressed as a connected undirected graph Gh =
(V, Eh), where V denotes the worker set and Eh denotes
the set of links connecting workers at communication round
h. Specifically, the P2P network topology at round h can be
expressed as a symmetric adjacency matrix Ah = {ahi,j ∈
{0, 1}, 1 ≤ i, j ≤ N}, where ahi,j = 1 if ehi,j ∈ Eh, otherwise
0. The neighbor set of worker i at round h is represented as
N h
i , whose cardinality is denoted as |N h

i | =
∑
j∈Nh

i
ahi,j . The

degree matrix Dh = {dhi,j , 1 ≤ i, j ≤ N} is defined as a
diagonal matrix, where dhi,i = |N h

i |. Combining the adjacency
matrix and the degree matrix, the Laplacian matrix Lh can be
expressed as follows:

Lh = Dh −Ah. (1)

According to the spectral graph theory [31], λ2(Lh) > 0 if
and only if the topology is connected, where λm(Lh) denotes
the m-th smallest eigenvalue of matrix Lh.

B. Model Training Process

In DFL, worker i updates the local model parameter xi at the
h-th communication round based on a mini-batch ξi sampled
from its local dataset Di. Let fi(xi) and Fi(xi; ξi) (for ease of
description, written as Fi(xi)) denote the local loss function
and the loss function over mini-batch ξi, respectively. Gener-
ally, model training can be formally described as optimizing
the following objective function [32]:

f∗ := min
x∈Rd

[ f(x) :=
1

N

N∑
i=1

fi(xi) ], (2)

where fi(xi) := Eξi∼Di Fi(xi) and x denotes the global model
parameter. This setting covers the important cases of empirical
risk minimization in DFL [32].

The model will be updated by applying the decentralized
stochastic gradient descent (DSGD) algorithm [33], which
provides an effective way to optimize the loss function in a
decentralized manner. For the mini-batch stochastic gradient
descent, a gradient descent step over a mini-batch on each
worker is regarded as a local iteration (or a local update).
After performing one or multiple local iterations, each worker
exchanges local models or gradients with its neighbors and
aggregates these models. Such a training process is regarded
as a communication round. xh,ki denotes the local model of
worker i at the k-th local iteration within communication round
h. At the beginning of communication round h, by setting
xh,0i = xhi , worker i updates its local model by gradient descent
as follows [18], [20]:

xh,k+1
i = xh,ki − η∇Fi(xh,ki ), 0 ≤ k < τ , (3)

where η is the local learning rate, τ is the local updating
frequency, and ∇Fi(xh,ki ) is the gradient. The local updates
of worker i at round h is denoted as ghi =

∑τ−1
k=0∇Fi(x

h,k
i ).

Then the local updating of worker i can be rewritten as:
xh+1
i = xhi − η · ghi . (4)
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After local updating, workers send local models to their
neighbors. Based on the received model parameters, worker
i will aggregate these models from neighbors:

xh+1
i = xhi +

∑
j∈Nh

i

whi,j(x
h
j − xhi ), (5)

where N h
i is the neighbor set of worker i at round h and

whi,j , j ∈ N h
i , is the mixing weight for aggregating the model

of neighbor j. Defining uhmax as the maximum of |N h
i | over

workers at round h, a simple suboptimal choice of whi,j is [34]:

whi,j =
1

uhmax + 1
. (6)

C. Consensus Distance
Unlike the traditional PS architecture, there is no global

model in DFL, and local models hosted by different workers
are not always the same. We introduce the consensus distance
metric to measure the discrepancy among local models [20],
[32], [35]. Firstly, the consensus distance between model of
worker i and model of worker j at the h-th communication
round is defined as:

Dh
i,j =

∥∥xhi − xhj ∥∥ . (7)
Then the consensus distance between local model of worker i
and “global model” (i.e., the average of all workers’ models)
at round h is defined as:

Dh
i =

∥∥xh − xhi ∥∥ , (8)

where xh = 1
N

∑N
i=1 x

h
i denotes the average of all workers’

models at round h. It is worth noting that xh is not available in
practice because there is no PS to collect all workers’ models
in DFL. To this end, we would estimate Dh

i using consensus
distance between the local model of worker i and the models
of its neighbors (i.e., Dh

i,j , j ∈ N h
i ), which will be elaborated

in Sec. IV-A. Accordingly, the average consensus distance of
all workers’ models is:

Dh =
1

N

N∑
i=1

Dh
i . (9)

Similar to the weight divergence [19], [36] in the PS architec-
tures, the consensus distance is correlated to data distribution
and is the key factor that captures the joint effect of decentral-
ization [35], which motivates us to apply consensus distance
for topology construction to overcome the challenge introduced
by non-IID data.

D. Relationship between Local Updating Frequency and Net-
work Topology

In this section, we explain the coupled relationship between
local updating frequencies and network topologies. On the
one hand, the computing time of one local iteration and the
transmission time of one model among workers are highly
different due to system heterogeneity. However, in traditional
synchronous schemes, local updating frequencies among work-
ers are usually identical or fixed at each communication round.
Accordingly, fast workers have to wait for slow ones, incurring
non-negligible idle time and significantly reducing the training
efficiency [15], [16]. Considering the heterogeneous computing
capabilities of workers, before aggregation, the workers with
higher computing capabilities will perform more local itera-
tions while the workers with lower computing capabilities only

perform fewer local iterations. On the other hand, data samples
across all workers may be non-IID, which seriously affects the
convergence rate and even compromises the accuracy of trained
model [2], [19]. To deal with the statistical heterogeneity, the
workers with significantly different data distributions (i.e., with
large consensus distance) can be connected preferentially and
frequently. After that, the training performance over non-IID
data can be guaranteed meanwhile the waiting time and training
time among workers would be significantly reduced.

Furthermore, the local models trained with different local
updating frequencies are discrepant, which requires to select
suitable neighbors for model aggregation to achieve satisfied
model accuracy. Meanwhile, the completion time of each
communication round (including computing time and commu-
nication time) varies with dynamic network topology, which re-
quires to assign appropriate local updating frequencies for het-
erogeneous workers to reduce the waiting time. Accordingly,
we propose to jointly optimize the local updating frequency
and network topology to address the system heterogeneity and
statistical heterogeneity in DFL.

E. Problem Formulation

This section defines the problem of efficient DFL with
adaptive local updating and network topology: minimizing the
training time while requiring workers to achieve a satisfied
accuracy for their models. Given a DFL task in the EC
system, we need to determine the local updating frequencies
and average consensus distance of all workers to minimize the
training time. First, the local updating frequency and the com-
puting time of one local iteration at the h-th communication
round on worker i are denoted as τhi and µhi , respectively.
Let Bh = {βhi,j , 1 ≤ i, j ≤ N} denote the communicating
time matrix at round h, where βhi,j is the communicating time
between worker i and worker j. Therefore, the local updating
time (including computing time and communication time) of
worker i at round h is formulated as:

thi = τhi · µhi +max{βhi,j} ∀i ∈ [N ],∀j ∈ N h
i . (10)

In addition, the waiting time of worker i can be expressed as
th − thi , where th = max{thi } (∀i ∈ [N ]) denotes the local
updating time of the slowest worker at round h. th also denotes
the completion time of round h. Then the average waiting time
of all workers at round h can be formulated as:

Wh =
1

N

N∑
i=1

(th − thi ). (11)

Accordingly, we formulate the problem as follows:

min
H∑
h=1

th

s.t.


Dh+1 ≤ Dh

max,

λ2(L
h) > 0,

thi = τhi · µhi +max{βhi,j},∀i ∈ [N ],∀j ∈ N h
i

Wh = 1
N

∑N
i=1(t

h − thi ) ≤ ε

(12)

The first inequality expresses that the average consensus dis-
tance should not exceed the predefined threshold Dh

max. We
set Dh

max as the same in [35] and the details are described in
Sec. IV. The second inequality ensures a connected topology in
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each communication round, which is essential to guarantee the
training convergence [37]. The third set of equalities denotes
the formulation of the local updating completion time and
communication time on worker i at the h-th communication
round, where βi,j denotes the communication time between
worker i and worker j. The fourth set of inequalities essentially
guarantees that the average waiting time of all workers at each
communication round is sufficiently small, where ε > 0 is the
time threshold, so as to mitigate the effects of the synchro-
nization barrier. Our objective is to minimize the training time
under the constraints.

III. CONVERGENCE ANALYSIS

In this section, we analyze the model convergence rate of
our method in theory and obtain a convergence upper bound
related to local updating frequency and network topology. We
first make the following assumptions, which are widely used
in previous works [20], [37]–[39]:

Assumption 1. (L-smooth) Each local objective function fi :
Rd → R on workers is L-smooth:

‖∇fi(y)−∇fi(x)‖2 ≤ L ‖y − x‖2 ,∀x, y ∈ Rd. (13)

Assumption 2. (Unbiased Local Gradient Estimator) Let ξhi
be a random local data sample at the h-th communication
round on worker i. The local gradient estimator is unbiased
as follows:

E
[
∇Fi

(
xhi , ξ

h
i

)]
= ∇fi

(
xhi
)
. (14)

Assumption 3. (Bounded gradient variance) The variance of
stochastic gradients at each worker is bounded:

E ‖∇Fi(xi, ξi)−∇fi(xi)‖22 ≤ σ
2,∀x ∈ Rd,∀i ∈ [N ], (15)

1

N

N∑
i=1

‖∇fi(xi)−∇f(x)‖22 ≤ ζ
2,∀x ∈ Rd,∀i ∈ [N ]. (16)

The variance in Eq. (15) denotes how far the estimated
gradient over mini-batch ξi deviates from the true gradient
of fi(xi). In addition, ζ in Eq. (16) indicates the degree of
difference between local functions on workers and the global
function f(x), indicating the heterogeneity of the non-IID
datasets among different workers. In particular, if the data
distributions across workers are IID, all functions are identical
(i.e., fi(xi) = fj(xj), ∀i, j ∈ [N ]), thus ζ = 0.

Assumption 4. (Spectral gap) The weight matrix W is
symmetric doubly stochastic. We define ρ = max{|λ2(W )|,
|λN (W )|} and assume ρ < 1.

Lemma 1. Under the above assumptions with η ≤ 1
4Lτ , we

have the following expression:

Ef(xh+1) ≤ f(xh)− ητ

4

∥∥∇f(xh)∥∥2
2

+
ηL2τ

N

N∑
i=1

∥∥xh − xhi ∥∥22 + σ2η2τ2L

N
, (17)

where τ = max{τhi }.
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Fig. 1: Model training on different local updating frequency τ of
CIFAR-10.

Remark 1. Summing up for all H communication rounds and
rearranging the terms in Eq. (17), we get:

1

H

H∑
h=1

∥∥∇f(xh)∥∥2
2
≤ 4 ∗ (f(x1)− f(x∗))

ητH

+
4L2

NH

H∑
h=1

N∑
i=1

∥∥xh − xhi ∥∥22 + 4Lητσ2

N
. (18)

Lemma 2. Under the above assumptions with 27Lη2

(1−ρ)2 < 1, we
have the following formulation:

H∑
h=1

N∑
i=1

E
∥∥xh − xhi ∥∥22 ≤ 2Nη2(σ2 + 3ζ2)H

(1− ρ)2 − 3η2L2

+
6Nη2

(1− ρ)2 − 3η2L2

H∑
h=1

E
∥∥∇f(xh)∥∥2

2
. (19)

Due to space limitations, we omit the proofs of Lemmas 1
and 2. The detail proofs are presented in [40].

Remark 2. Inserting Eq. (19) into Eq. (18), we obtain the
following convergence bound:

1

H

H∑
h=1

∥∥∇f(xh)∥∥2
2
≤ 4 ∗ (f(x1)−f(x∗))((1−ρ)2−3η2L2)

ητH((1−ρ)2−27η2L2)

+
8L2η2(σ2 + 3ζ2)

(1− ρ)2 − 27η2L2
+

(1− ρ)2 − 3η2L2

(1− ρ)2 − 27η2L2

4Lητσ2

N
. (20)

The communication topology weight matrix W (reflected by
ρ), local updating frequency τ and data distribution (reflected
by ζ) all have impacts on the convergence rate with Eq. (20).
The sparser the topology is, the larger ρ is. For example, ρ
is 0 for the fully-connected topology while ρ is 0.99 for the
ring topology with 36 workers. Thus, with the increasing of
topology sparsity, the above convergence bound will increase.
When τ ≤

√
N(f(x1)−f(x∗))

LHη2σ2 , the above convergence bound
will decrease as local updating frequency τ increases. On the
contrary, when τ >

√
N(f(x1)−f(x∗))

LHη2σ2 , the trend of convergence
bound and local updating frequency is opposite. As the degree
of non-IID data distribution increases (i.e., larger ζ), the upper
bound of Remark 2 will get looser and looser.

According to the above analysis, a very large local updating
frequency may make the decentralized models converge to the
local optimal solutions rather than the global optimum. How-
ever, a relatively smaller local updating frequency will lead
to more communication rounds until convergence, incurring
more computing time and communication time. To observe
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the impact of local updating frequency on model training,
we conduct a pre-experiment for training AlexNet on CIFAR-
10 and record the model accuracy and completion time with
different local updating frequencies. As shown in Fig. 1(a), the
model accuracy decreases with increasing of local updating
frequency when τ > 27. Besides, Fig. 1(b) shows that the
completion time of model training decreases with increasing
of local updating frequency when τ < 30. These results are
consistent with our analysis in Eq. (20). Therefore, it is critical
to determine the appropriate local updating frequencies for
different workers to accelerate model training.

Corollary 1. Let the local learning rate η satisfy the following
constraint:

η = (
6L√

(1− ρ)2
+ σN−

1
2 τH

1
2 + ζ

2
3H

1
3 )−1. (21)

The convergence upper bound can be transformed as:

1

H

H∑
h=1

E‖∇f(xh)‖22 ≤
σ√
NH

+
1

(1− ρ)2
(
ζ

H
)

2
3 +

1

Hτ2(1− ρ)2
. (22)

With Corollary 1, our method can achieve a linear speedup
of convergence rate O( 1√

HN
) as stated in many previous works

[12], [32], indicating that our method will contribute to speed-
ing up the training without loss of convergence performance.

IV. ALGORITHM DESIGN

A. Consensus Distance Estimation

We first analyze how the network topology and local updat-
ing frequency affect the consensus distance between the model
of worker i and the average of all workers’ models. According
to the update rule in Eq. (5) and the definition in Eq. (8), the
consensus distance ‖xh+1 − xh+1

i ‖2 at round h + 1 can be
formulate as:

Dh+1
i = ‖xh+1 − xh+1

i ‖2

=

∥∥∥∥∥∥ 1

N

N∑
j=1

x
h,τh

j

j − (x
h,τh

i
i + whi,j

N∑
j=1

ahi,j(x
h,τh

j

j − xh,τ
h
i

i ))

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
N∑
j=1

(
x
h,τh

j

j − xh,τ
h
i

i

N
− whi,jahi,j(x

h,τh
j

j − xh,τ
h
i

i ))

∥∥∥∥∥∥
2

. (23)

According to whi,j =
1

uh
max+1

in Eq. (6), we set uhmax = N −1
for simplicity, which is the possible maximum value [34]. Thus,
it follows:

EDh+1
i =

∥∥∥∥∥∥
N∑
j=1

(1− ahi,j)(x
h,τh

j

j − xh,τ
h
i

i )

N

∥∥∥∥∥∥
2

≤ 1

N

N∑
j=1

(1− ahi,j)Dh
i,j , (24)

where Dh
i,j = ‖x

h,τh
i

i − xh,τ
h
j

j ‖2 (∀i, j ∈ [N ]) is the consensus
distance between two models of worker i and worker j. The
last step of Eq. (24) follows the triangle inequality. After
receiving local models of neighbors, worker i can locally

calculate the consensus distance Dh
i,j , ∀j ∈ N h

i . As a result,
the upper bound of the average consensus distance in Eq. (9)
can be expressed as:

EDh+1 ≤ 1

N2

N∑
i=1

N∑
j=1

(1− ahi,j)Dh
i,j . (25)

Note that when we set ahi,j = 1, ∀i, j ∈ [N ], the upper bound
of average consensus distance Dh+1 is 0, i.e., if each worker
receives local models from all others, the updated models
among workers are identical.

To solve the problem in Eq. (12) with Eq. (25), we still
need to know the consensus distances among models of all
workers. However, if worker i and worker j are not connected
at round h, it is infeasible to obtain their consensus distance
directly since each worker only receives local models from its
neighbors. Thus, we need to estimate the consensus distance
between unconnected workers with the help of those of the
connected workers. Firstly, when the coordinator has collected
consensus distance Dh

i,p and Dh
p,j , ∀p ∈ N \ {i, j}, Dh

i,j can
be estimated as:

Dh
i,j =

∥∥∥∥xh,τh
i

i − xh,τ
h
p

p + x
h,τh

p
p − xh,τ

h
j

j

∥∥∥∥
2

≤
∥∥∥∥xh,τh

i
i − xh,τ

h
p

p

∥∥∥∥
2

+

∥∥∥∥xh,τh
p

p − xh,τ
h
j

j

∥∥∥∥
2

= Dh
i,p +Dh

p,j , (26)

where the second step follows the triangle inequality. Thus we
can estimate Dh

i,j as D̂h
i,j :

D̂h
i,j = min

p∈[N ]\{i,j}
(Dh

i,p +Dh
p,j). (27)

Secondly, if there is no common neighbor between worker i
and worker j at round h (i.e., N h

i ∩N h
j = ∅), we can use Eq.

(26) and Eq. (27) iteratively to obtain D̂h
i,j . Since the network

topology is a connected graph, the above problem is equivalent
to the shortest path problem, which can be solved efficiently
by the Floyd-Warshall algorithm [41] at the coordinator. As
the triangle inequality may amplify consensus distance among
workers, the historical consensus distance is used to make our
estimation more stable and accurate. Specifically, we use the
exponential moving average to smooth the consensus distance,
with β1 ∈ [0, 1], as follows:

Dh
i,j = (1− β1)Dh−1

i,j + β1D̂
h
i,j , if ahi,j = 0. (28)

B. Algorithm Description

Firstly, to minimize the average waiting time of all workers,
we let the thi among workers be approximately equal. Then we
can have the following formulation:

b
τhl · µhl +max{βhl,j}
τhi · µhi +max{βhi,j}

c = 1, (29)

where l denotes the index of the fastest worker with the largest
local updating frequency at round h. Thus, τ = τhl . Then the
total training time can be formulated as follows:

T (H, τ) =

H∑
h=1

(τ · µhl +max{βhl,j}). (30)

Secondly, the problem in Eq. (12) is a non-linear mixed
integer programming problem, which is hard to solve [42],
[43]. However, given a specific network topology, we can take
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Algorithm 1 Procedure at worker i
1: for h = 1 to H do
2: Receive N h

i and τhi from the coordinator;
3: Perform local updating of τhi times by Eq. (3);
4: Estimate Li ←

‖∇fi(xh+1
i )−∇fi(xh

i )‖
‖xh+1

i −xh
i ‖

;

5: Estimate σi ← E
[
‖∇Fi(xhi , ξhi )−∇fi(xhi )‖2

]
;

6: Send local model to workers in N h
i ;

7: Receive models from workers in N h
i ;

8: Aggregate models by Eq. (5) and obtain xh+1
i ;

9: Record computing time µhi and communication time
βhi,j , ∀j ∈ N h

i ;
10: Compute consensus distance Dh

i,j , ∀j ∈ N h
i ;

11: Send µhi , βhi,j , D
h
i,j , Li, σi to the coordinator;

Output: xHi .

the upper bound of Dh+1 in Eq. (25) as the estimation and
transform Eq. (12) into a linear programming problem as:

minT (H, τ)

s.t.


1
N2

∑N
i=1

∑N
j=1(1− ahi,j)Dh

i,j ≤ Dh
max

b τ
h
l ·µ

h
l +max{βh

l,j}
τh
i ·µh

i +max{βh
i,j}
c = 1

(31)

In terms of Eq. (31), we propose an efficient algorithm, that
adaptively determines local updating frequency for each worker
and constructs the network topology. And the coordinator is
responsible for monitoring the network condition and recording
the model training status.

We present the procedure for workers (Alg. 1) and the
coordinator (Alg. 2) while the proposed algorithm is formally
described in Alg. 3. In Alg. 1, at the beginning of round h,
each worker i requests the information about its neighbor set
N h
i and local updating frequency τhi from the coordinator.

Then worker i performs local updating of τhi times by Eq. (3)
and estimates the parameters Li and σi. After local updating
is finished, worker i sends the local model to its neighbors
and waits for receiving the models from its neighbors for
aggregation. The local updating frequency of each worker is
associated with its computing and communicating capabilities.
For instance, the workers with high performance are assigned
with larger local updating frequencies, so that each worker
does not need to waste too much waiting time. After receiving
models from the neighbors, worker i computes consensus
distance Dh

i,j , ∀j ∈ N h
i . Finally, worker i sends network

conditions, model training statuses, and other parameters to
the coordinator and starts the next communication round.

In Alg. 2, the coordinator waits for receiving the parameters
(i.e., Li and σi), consensus distance (i.e., Dh

i,j), computing time
(i.e., µhi ) and communication time (i.e., βhi,j) from workers,
and takes average of parameters Li and σi to get L and
σ. Then the coordinator calls Alg. 3 to get local updating
frequencies and network topology of different workers for the
next communication round.

As indicated in Eq. (30), the completion time of model
training depends on the slowest link and the slowest worker.
Thus we mainly use the greedy algorithm to remove the slow

Algorithm 2 Procedure at coordinator
1: for h = 1 to H do
2: Send N h

i and τhi to worker i, ∀i ∈ [N ];
3: Receive µhi , βhi,j , D

h
i,j , Li, σi from worker i, ∀i ∈ [N ];

4: L← 1
N

∑N
i Li;

5: σ ← 1
N

∑N
i σi;

6: Determine the local updating frequency and network
topology for each worker by the proposed algorithm in
Alg. 3;

Algorithm 3 Adaptive control algorithm of FedHP
Input: µhi , Dh

i,j , β
h
i,j , ∀i, j ∈ [N ]; L, σ; Dh

max; Ab.

1: Initialize adjacent matrix Ah = Ab, search step s = N
and Flag = True;

2: Minimize Ti(H, τhi ) =
∑H
h=1(τ

h
i · µhi + max{βhi,j}) and

abtain Ti and τhi of worker i, ∀i ∈ [N ];
3: l← argmini(Ti), T ← Tl and τ ← τl;
4: while True do
5: if Flag then
6: s = b

√∑
i,j a

h
i,jc;

7: else
8: s = bs/2c;
9: Select s slowest links under the threshold of Eq. (31)

into E;
10: Initialize A′ ← Ah;
11: for each link ei,j ∈ E do
12: Set ai,j ∈ A′ as 0;
13: if A′ is not connected then
14: Set ai,j ∈ A′ as 1;
15: Minimize Ti(H, τ

h
i ) =

∑H
h=1(τ

h
i · µhi + max{βhi,j})

and abtain Ti and τhi of worker i, ∀i ∈ [N ];
16: l′ ← argmini(Ti), T ′ ← Tl′ and τ ← τl′ ;
17: if T ′ < T then
18: l, T , τ , Ah, Flag ← l′,T ′, τl′ , A′ ,True;
19: else
20: Flag ← False;
21: if not Flag and s == 1 then
22: Break;
23: Calculate τhi for each worker by Eq. (29), where τhl = τ ;

Output: τhi , ∀i ∈ [N ], Ah.

links in the current network topology to reduce the completion
time under the threshold of consensus distance in Eq. (31). The
procedure executes iteratively until the completion time cannot
be reduced after removing any slow links. Specifically, we take
the network conditions, model training statuses of workers,
and other parameters as the algorithm input. Firstly, we start
from the base topology (i.e., Ab) which includes all available
links for P2P communication. Then we set τhi =

√
Nf(x1)
LHη2σ2

and minimize Ti(H, τhi ) by using an LP solver to obtain Ti
and τhi for worker i, ∀i ∈ [N ]. We obtain the minimum of
completion time Tl in the base topology and get the local
updating frequency τhl of worker l at round h (Line 1-3), where
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l = argmini(Ti). In order to search the optimal topology
and local updating frequencies efficiently, we first take a large
search step. Concretely, we set the search step s as the square
root of the number of links in the current topology (Line 5-
6). At round h, since the slow links may become the system
bottleneck in terms of time, we use a greedy algorithm to
remove s slowest links and obtain the new network topology
A′ (Line 10-14). Then we minimize Ti(H, τhi ) again to obtain
the new minimum of completion time Tl′ in the new topology
and get the new local updating frequency τl′ (Line 15-16).
If a better solution (i.e., shorter completion time) is found,
the current network topology and local updating frequency are
updated (Line 17-18). If we cannot find a better solution at the
current search step, the search step is reduced by half. If the
completion time T cannot be further reduced by removing any
link, we stop searching and obtain the final network topology
as well as local updating frequency of worker l. It is worth
noting that we only remove the links that will not affect the
connectivity of the network topology and exceed the constraint
of consensus distance Dh

max in Eq. (31). In our algorithm,
we follow [35] to set the threshold of Dh

max adaptively.
Specifically, Dh

max is the exponential moving average of the
gradient norm:

Dh
max = (1− β2)Dh−1

max +
β2
N

N∑
i=1

∥∥ghi ∥∥2 , (32)

where 1
N

∑N
i=1

∥∥ghi ∥∥2 denotes the average norm of local
updates at round h among all workers and β2 ∈ [0, 1].

Herein, we analyze the time complexity of Alg. 3. As
described above, the proposed algorithm reduces the search
step s by half if a better solution cannot be found at the current
search step. As a result, there are at most dlogNe iterations,
where N is the number of workers. In each iteration, the linear
programming can be solved in polynomial time according
to [44]. Actually, since the base topology in real world is
usually sparse, the practical time cost for Alg. 3 will be further
reduced at the coordinator, which is usually deployed in cloud
or cloudlet with high computing power. Therefore, the time
for solving the joint optimization problem can be negligible,
compared with that for model training and transmission.

V. EXPERIMENTATION AND EVALUATION

A. Datasets and Models

Datasets: We conduct extensive experiments on three real-
world datasets: (i) EMNIST, (ii) CIFAR-10, and (iii) ImageNet.
Specifically, EMNIST [45] is a handwritten character dataset
that contains 731,668 training samples and 82,587 test samples
from 62 categories (10 digits, 52 characters with lowercase
and uppercase). CIFAR-10 is an image dataset composed of
60,000 32×32 colour images (50,000 for training and 10,000
for test) in 10 categories. ImageNet [46] is a dataset for
visual recognition which consists of 1,281,167 training images,
50,000 validation images and 100,000 test images from 1,000
categories. To cope with the constrained resource of edge
devices, we create IMAGE-100, a subset of ImageNet that
contains 100 out of 1,000 categories, and each sample is resized
with the shape of 64×64×3.

To simulate the non-IID setting, we propose to create synthe-
sized non-IID datasets with different class distribution skews

as in [2], [19], e.g., a single user can possess more data for one
class or a couple of classes than others. Concretely, p (e.g., 0.1,
0.2, 0.4, 0.6 and 0.8) of a unique class is divided equally for
every three workers and the remaining samples of each class
are partitioned to other workers uniformly. Accordingly, the
non-IID levels of the above datasets are denoted as 0.1, 0.2,
0.4, 0.6 and 0.8, respectively. Note that p = 0.1 is a special
case, where the distribution of training dataset is IID for 30
workers. For fair comparisons, the full test datasets are used
across all workers.

Models: Three models with different types and structures
are implemented on the above three real-world datasets for
performance evaluation: (i) CNN on EMNIST, (ii) AlexNet on
CIFAR-10, (iii) VGG-16 on IMAGE-100. Firstly, The plain
CNN model [7] specialized for the EMNIST dataset has two
5×5 convolutional layers, a fully-connected layer with 512
units, and a softmax output layer with 62 units. Secondly,
An 8-layer AlexNet [47], which is composed of three 3×3
convolutional layers, one 7×7 convolutional layer, one 11×11
convolutional layer, two fully-connected hidden layers, and one
fully-connected output layer, is adopted for CIFAR-10. Thirdly,
a famous model VGG-16 [48], that consists of 13 convolution
layers with kernel of 3×3, two dense layers and a softmax
output layer, is utilized to classify the images in IMAGE-100.

B. Baselines and Metrics

Baselines: We choose four classical algorithms as baselines
for performance comparison, which are summarized as follows.
(i) D-PSGD [12] is a synchronous DFL algorithm using a
ring network topology and the same local updating frequency
for workers. (ii) AD-PSGD [23] is an asynchronous DFL
algorithm, where workers randomly send local models to one
of their neighbors immediately after performing local updating
to speed up the training process. (iii) LD-SGD [21] alternates
the frequencies of local updating and global updating for
efficient decentralized communication. (iv) PENS [22] with
adaptive network topology allows workers with similar data
distributions to communicate with each other to deal with
statistical heterogeneity.

Metrics: The following metrics are adopted to evaluate the
performance of FedHP and the baselines. (i) Test accuracy is
measured by the proportion between the amount of the right
data predicted by the model and that of all data. Specifically,
at each communication round, we evaluate the average test ac-
curacy of all workers’ models trained with different algorithms
on the test datasets. (ii) Completion time is defined as the total
training time until the average model of all workers converges
to the target accuracy. Concretely, we record the completion
time of each communication round and sum up to get the total
training time. (iii) Average waiting time is introduced to reflect
the training efficiency of different algorithms. Specifically, the
waiting time of worker i at round h can be represented by
th − thi , then the average waiting time of all workers at round
h is expressed as 1

N

∑N
i=1(t

h − thi ).

C. Experiments

1) Experimental Setup: We evaluate the performance of
FedHP through extensive simulation experiments, which are
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Fig. 2: Test accuracy of five algorithms on the three IID datasets.
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Fig. 3: Completion time of five algorithms when achieving different
target accuracy

conducted on an AMAX deep learning workstation equipped
with an Intel(R) Xeon(R) Gold 5218R CPU, 8 NVIDIA
GeForce RTX 3090 GPUs and 256 GB RAM. On the worksta-
tion, we simulate a heterogeneous EC system with 30 workers
and one coordinator (each is implemented as a process in the
system) for DFL. The implementation for model training on
each worker is based on the PyTorch framework [49], and we
use the socket library of Python to build up the communication
among workers and between workers and the coordinator.

We consider the common situation where each worker com-
municates with its neighbors and coordinator through either
LANs or WANs. To reflect the heterogeneity and dynamics
of networks in our simulations, we let the bandwidth of each
worker fluctuate between 1Mb/s and 10Mb/s. In addition, for
simulating the computing heterogeneity, we assume that the
computing time of one local iteration on a certain simulated
worker is subject to the Gaussian distribution. Different simu-
lated workers are randomly assigned with a specific Gaussian
function whose mean and variance are derived from the time
records of performing one local iteration on a commercial
device (e.g., laptop, Jetson TX, Xavier NX).

Each experiment will by default run 200, 500, and 500
communication rounds for EMNIST, CIFAR-10 and IMAGE-
100, respectively, which will guarantee the convergence of the
models. For CNN on EMNIST, the learning rate is initialized as
0.1 and the corresponding decay rate is specified as 0.98, while
for AlexNet on CIFAR-10 and VGG-16 on IMAGE-100, the
learning rates and the corresponding decay rates of them are
identical, separately initialized as 0.1 and 0.993 [18]. Besides,
the batch size is set as 32 for all three models.

2) Overall Effectiveness: Firstly, we implement a set of
experiments of these algorithms on the IID datasets. The
training processes of FedHP and the baselines are presented in
Fig. 2. In addition, we show the completion time of different
algorithms when they achieve different target accuracy in Fig.
3. The results demonstrate that all the algorithms achieve the
similar test accuracy eventually. FedHP achieves the fastest
convergence, followed by AD-PSGD on all the three datasets,
and they are much faster than the other methods. For example,
by Figs. 2(a) and 3(a), FedHP takes 1,064s to achieve 85%
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Fig. 4: Test accuracy of five algorithms on the three datasets with
non-IID level p=0.6.
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Fig. 5: Test accuracy of five algorithms on the three datasets with
non-IID level p=0.8.

accuracy for CNN on EMNIST, while PENS, LD-SGD, AD-
PSGD, D-PSGD, takes 2,725s, 1,680s, 1,129s, 2,254s, respec-
tively. Besides, by Figs. 2(b) and 3(b), FedHP reduces the
completion time of training AlexNet by about 56%, 41%, 3%
and 51%, compared with PENS, LD-SGD, AD-PSGD and D-
PSGD. Moreover, for VGG-16 on IMAGE-100 as shown in
Figs. 2(c) and 3(c), FedHP can separately speed up training by
about 2.17×, 1.65×, 1.06× and 2.07×, compared with PENS,
LD-SGD, AD-PSGD and D-PSGD. These results demonstrate
the advantage of FedHP in accelerating model training.

Secondly, we implement two sets of experiments of these
algorithms on non-IID datasets. The results of non-IID scenar-
ios with p=0.6 and p=0.8 are presented in Fig. 4 and Fig. 5,
respectively. We observe that FedHP can achieve the same con-
vergence rate as that in the IID scenario while achieving higher
accuracy than the other methods. For example, by Fig. 4(b),
FedHP takes 5,015s to achieve 76.77% accuracy for AlexNet
on CIFAR-10, while PENS, LD-SGD, AD-PSGD and D-PSGD
takes 11,953s, 8,926s, 5,539s and 10,634s to achieve 73.52%,
70.54%, 69.29% and 70.35% accuracy, respectively. By Fig.
5(b), FedHP can improve the test accuracy by about 4.83%,
13.37%, 14.26% and 13.52% on CIFAR-10 with non-IID level
of p=0.8, compared with PENS, LD-SGD, AD-PSGD and D-
PSGD. The above results indicate the effectiveness of FedHP
by adaptively assigning appropriate local updating frequencies
and constructing network topology for heterogeneous workers.

3) Effect of Statistical Heterogeneity: To demonstrate the
robustness of FedHP to non-IID data, we show the test accu-
racies of these algorithms at different non-IID levels in Fig.
6, where the horizontal axis denotes the non-IID level of the
datasets. By Fig.6, we observe that the test accuracies of mod-
els trained by the five algorithms on all datasets decrease with
the increasing of non-IID level. However, FedHP can always
achieve the highest model accuracy in comparison with the
other algorithms. In addition, PENS with performance-based
neighbor selection can achieve higher model accuracy than
the algorithms without considering the challenge of statistical
heterogeneity. For instance, by Fig. 6(c), FedHP and PENS
achieve 50.63% and 47.81% accuracy on IMAGE-100 with
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Fig. 6: Test accuracy varies with different non-IID levels.
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Fig. 7: Average waiting time of five algorithms on the three datasets.

non-IID level of p=0.8, while LD-SGD, AD-PSGD and D-
PSGD achieve 45.69%, 45.12% and 45.83%, respectively. In
AD-PSGD, each worker probably receives the stale models
for aggregation, which amplifies the negative impact of non-
IID data on model performance, leading to the lowest test
accuracy. Both D-PSGD and LD-SGD adopt static network
topologies without considering the challenge of statistical het-
erogeneity on model training, thus they suffer from severe loss
of accuracy. Although PENS allows workers with similar data
distributions to communicate with each other in order to deal
with the statistical heterogeneity, it still achieves a lower test
accuracy than FedHP. More specifically, by Fig. 6(c), FedHP
can achieve improvement of test accuracy by about 5.90%,
10.81%, 12.22%, 10.47% for VGG-16 on IMAGE-100 with
non-IID level of p=0.8, compared with the baselines (i.e.,
AD-PSGD, LD-SGD, D-PSGD, PENS). Collectively, these
results demonstrate the advantage of FedHP in addressing the
challenge of statistical heterogeneity.

4) Effect of System Heterogeneity: To further illustrate the
efficiency of FedHP, the average waiting time of five algorithms
on the three datasets is illustrated in Fig. 7, where we find that
FedHP takes much less waiting time than both D-PSGD and
PENS. For instance, by Fig. 7(b), the average waiting time of
FedHP is 1.7s while PENS and D-PSGD incur average waiting
time of 12.1s and 10.6s, respectively. That is because both D-
PSGD and PENS assign identical local updating frequencies
for workers without considering system heterogeneity, resulting
in non-negligible waiting time. In addition, PENS always
suffers from more computing time for neighbor selection and
model training, incurring the highest average waiting time
among five algorithms. As shown in Fig. 7, the average waiting
time of AD-PSGD is the lowest among these algorithms,
because in the asynchronous scenario, workers update their
local models as soon as they receive any models from their
neighbors. Besides, LD-SGD, implemented to alternate the
frequencies of local updating and global updating, reduces the
variance of waiting time to some extent. Concretely, by Fig.
7(c), FedHP and AD-PSGD only incur average waiting time
of 3.2s and 2.9s, while LD-SGD, D-PSGD and PENS incur
average waiting time of 19.2s, 21.5 and 24.7s, respectively. The
above results explain why FedHP and AD-PSGD can achieve

much faster converge rate than D-PSGD and PENS while LD-
SGD takes less completion time than D-PSGD in Figs. 2, 4
and 5.

VI. RELATED WORK

The concept of FL was first introduced in [7], which has
demonstrated the effectiveness of performing distributed model
training over distributed and isolated datasets. In order to re-
duce the communication resource consumption, the early works
explored to optimize the local updating frequency [11], [18],
[21]. As the local updating frequency increases, the frequency
for global aggregation can relatively get decreased, therefore,
the communication resource for model transmission can be
saved to a great extent. However, these related researches
mainly focus on PS-based FL [11], [18], which suffers from
the single point of failure problem [12], [13]. Herein, we focus
on the more attractive DFL, where Li et al. [21] proposed LD-
SGD to alternate the frequencies of local updating and global
updating to deal with the resource-constrained issue, but they
could not address the challenge of system heterogeneity.

As for network topology construction in DFL, there have
been many related studies [20], [22], [26]–[28]. Wang et al.
[27] proposed MATCHA, which uses matching decomposition
sampling of the base topology to parallelize inter-worker infor-
mation exchange so as to significantly reduce communication
delay. Besides, Xu et al. [28] dynamically constructed an
efficient P2P topology to address the challenge of resource
limitation and network dynamics. However, the above works
all suffered from a drop in model accuracy without considering
the negative effect of statistical heterogeneity. In order to
overcome statistical heterogeneity, Wang et al. [20] proposed
CoCo to preferentially select neighbors with large differences
in data distribution, while Onoszko et al. [22] proposed PENS,
where workers with similar data distributions communicate
with each other. However, CoCo and PENS did not overcome
the challenge of system heterogeneity, often resulting in idle
time for staying and waiting for the stragglers before model
aggregation. On the contrary, FedHP investigates the benefits
of controlling local updating frequency and network topology,
which are jointly optimized to adequately address the issues of
system and statistical heterogeneities.

VII. CONCLUSION

This work focuses on system heterogeneity and statistical
heterogeneity for DFL. To overcome these challenges, we
have proposed FedHP to achieve fast convergence by jointly
optimizing both the local updating frequency and network
topology in DFL. We have analyzed the convergence rate of
FedHP and proposed an efficient algorithm. We have evaluated
the performance of FedHP through extensive simulations and
the results have demonstrated the efficiency of FedHP.
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