C#: Should CS 1 Switch?
by Ira Pohl - August 7, 2003

 WG2.4 IFIP Conference, Santa Cruz

ABSTRACT

This talk looks at how Computer Science departments pick programming languages for their introductory courses (CS1 and CS2), and why there is a strong possibility that a new consensus could be C#.

We will track the programming languages that were used at critical junctures for teaching academic computer science in the years 1965 to date. We will discuss why shifts were made and will end up discussing the current state of affairs and discuss the relative merits of C, C++, Java, and C#.
My point of view is strongly influenced by my own experience starting as a teaching assistant in Stanford CS in 1965 through 1967 up through the present at University of California, Santa Cruz. Throughout this period I have taught or written on programming methodology, especially the canonical beginning computer science course CS1. My authoring career has focused on the C language family from 1984 on (Kelley 1984). This has manifested itself in the Dissection series (Kelley 2001, Pohl 1999, 2002, 2003), and I will use examples as appropriate from these texts.

Academic computer science is affected by both programming language and software methodology. Historically we teach CS1 and programming methodology with our current toolset. This paper starts with academic computer science in the 60’s largely using Algol 60 and traces how languages were adopted in different eras concluding with the current situation where Java dominates.
At different times, such as the early 1970’s there were language upheavals. For example the 70’s found most CS departments switching to Pascal. In the mid-80’s there was also much switching, but then it was not consensual. In the end of the 90’s the switching became consensual again, mostly a migration to Java. It is our contention that this will shortly change to C#.
Introduction

This talk looks at how Computer Science departments pick programming languages for their introductory courses (CS1 and CS2), and why there is a strong possibility that a new consensus could be C#.

We will track the programming languages that were used at critical junctures for teaching academic computer science in the years 1965 to date. We will discuss why shifts were made and will end up discussing the current state of affairs and discuss the relative merits of C, C++, Java, and C#.
My point of view is strongly influenced by my own experience starting as a teaching assistant in Stanford CS in 1965 through 1967 up through the present at University of California, Santa Cruz. Throughout this period I have taught or written on programming methodology, especially the canonical beginning computer science course CS1. My authoring career has focused on the C language family from 1984 on (Kelley 1984). This has manifested itself in the Dissection series (Kelley 2001, Pohl 1999, 2002, 2003), and I will use examples as appropriate from these texts.

Academic computer science is affected by both programming language and software methodology. Historically we teach CS1 and programming methodology with our current toolset. This paper starts with academic computer science in the 60’s largely using Algol 60 and traces how languages were adopted in different eras concluding with the current situation where Java dominates.

The Period 1965-1970

At the start of academic computer science in the 60’s we had two main choices: FORTRAN and Algol 60. Algol 60 and structured programming dominated at the beginning of academic computer science. Algol 60 was the anti-FORTRAN, having been conceived of as an international standard programming language. Most computer science departments were off-shoots of mathematics or engineering departments, which concentrated on scientific programming. The two main languages of choice in this start era were FORTRAN or Algol. FORTRAN was a pragmatic choice since it was supported by IBM and was widely available. Algol was the pedagogic choice since it supported many of the incipient new ideas in CS, such as block structure, recursion, strong typing, commenting and publication standards, and BNF.

Here is an Algol 60 program from Knuth’s 1967 Troublespots paper:

begin integer a;

 integer procedure f(x, y); value y, x; integer y, x;

 a := f := x + 1;

 integer procedure g(x); integer x; x := g := a + 2;

 a := 0; outreal(1, a + f(a,g(a))/g(a)) end;

Notice bold is used for reserved words. Algol 60 was intended as a readable publishable language for numerical algorithms. This program uses call-by-name parameters that is abandoned as a parameter mechanism in subsequent languages.

Here is its translation to C#:

///Knuth's Remaining Troublespots

///Ambiguities

using System;

class AlgolAmbiguity{

 static int a = 0;

 static int f(int x, int y){ return a = x + 1;}
 static int g(ref int x){ return x = a + 2;}

 static public void Main()

 {

 Console.WriteLine("Knuth's function in C# "
 + ((a + f(a, g(ref a))/(double)g(ref a)));

 }

}

This program was written in Algol 60 by Don Knuth and can legally have at least 11 possible answers, including 0.333333 which is found by this version in C#. The reader should look at the original paper (Knuth 1967) to understand these ambiguities. When coded as C or C++, many different answers are also possible. However in C# the above is the only correct behavior.

Algol 60 had call-by-name instead of call-by-reference. Algol 60 and C do not specify order-of-evaluation for arguments in procedure calls and so the many side-effects in the above program lead to different answers when coded as Algol 60 or C.

Algol 60 was enormously successful, but as Computer Science turned increasingly to interests that were non-numeric, its shortcomings were apparent. Different official and unofficial successor languages were proposed. By the end of the 60’s CS departments had diverged using Algol W, Basic, PL/1, FORTRAN, Lisp, and APL.

The Period 1970-1980

The 70’s saw a consolidation both in language and approach; namely, structured programming and Pascal. There was a major consensus on approach: Oh Pascal (Clancy 1985) was a huge success. Pascal added some syntactic type extensibility and more support for non-numeric types and data abstraction. Besides Pascal, the contenders for CS1 at this time were PL/1 (especially PL/C from Cornell); Algol W, a Wirth language that added records to Algol (an idea developed with Hoare); Algol 68; and niche languages such as APL.

Pascal won out and dominated the 70's and early 80's. Pascal was seen as incrementally better than Algol W. It was cheaper and more efficient than PL/1 and Algol 68, which had many startup problems and thus became passé despite its remarkable ideas.

Pascal provided non-numerical types and syntactic type extensibility. It continued a tradition of structured programming and type safety promulgated by Algol 60. It quickly developed a rich literature including many books promoting structured programming, step-wise refinement and data abstraction. The importance of first class texts can be seen when comparing the adoption of Pascal vis-à-vis Algol W which did not receive this support.

Here is a simple Pascal program of that era:

{ String search algorithm that looks for a substring and excludes the

 possibility of overlapping substrings. }

program SearchForSubstring (input, output);

 const

 stringlength = 40;

 type

 string = array [1 .. stringlength] of char;

 var

 s, cs, subs : string;

 count, lengthcs, substrlength : integer;

 function substr (str, subs : string; first, last : integer) : boolean;

 forward;

 procedure newcs (var str : string; first, last : integer); forward;

 procedure main;

 begin

 count := 0;

 cs := s; {cs will hold the current string.}

 while lengthcs >= substrlength do

 { Because in Pascal a function can never return a string, we

 will instead have in return a boolean and have the substring

 searched for passed in as a parameter as well as `cs'. }

 if substr (cs, subs, 1, substrlength)

 then

 begin

 count := count + 1;

 newcs (cs, substrlength+1, lengthcs)

 end

 else

 newcs (cs, 2, lengthcs)

 end;

 function substr {(str, subs : string; first, last : integer) : boolean};

 var

 issubstr : boolean;

 i : integer;

 begin

 issubstr := true;

 i := first;

 while issubstr and (i <= last) do

 begin

 if str[i] <> subs[i]

 then

 issubstr := false;

 i := i + 1

 end;

 substr := issubstr

 end;

 procedure newcs {(var str : string; first, last : integer)};

 var

 i : integer;

 begin

 for i := first to last do

 str[i-first+1] := str[i];

 lengthcs := last - (first - 1)

 end;

 procedure readstrings;

 var

 i : integer;

 begin

 writeln('Enter principal string (up to 38 characters):');

 i := 1;

 repeat

 read(s[i]);

 i := i + 1

 until eoln;

 readln;

 lengthcs := i - 1;

 writeln('Enter substring to be searched for:');

 i := 1;

 repeat

 read(subs[i]);

 i := i + 1

 until eoln;

 substrlength := i - 1

 end;

 begin

 writeln('PROGRAM SEARCH_FOR_SUBSTRING');

 readstrings;

 main;

 writeln('The substring was found ', count:1, ' times.')

 end.

Pascal was readable. It was structured functionally. It had both functions and procedures. It had call-by-variable (reference) and call-by-value arguments. It had a strict declaration order for elements of the programs. It included the array size as part of the array type. All these rigidities were to discipline the beginning programmer.

Pascal had many shortcomings. The Kernighan analysis (Kernighan 84) as well as others pointed at many of Pascal’s flaws in comparison to C as an acceptable industrial language. Flaws included too much rigidity, single module programs, weak libraries, size as part of the array-type, and still the goto.

The Period 1980-1990:

The beginning of the 80’s saw divergence in CS1 programming language choice again. In my view a main reason for this was Wirth continuing to invent “new” languages rather than endorsing changes to Pascal. Wirth went on to invent Modula, a data-abstraction language that included monitors. At the same time, the software-industry extended Pascal; for example, there was Borland Pascal with many of Kernighan’s criticisms remedied.

The Department of Defense had approved a competition for a language that was based on Pascal, which led to Ada. This language ended up being very complex (Hoare 1981) and not easily implemented in cost-effective terms for its eras computers.

Pascal (variants), Modula, Ada, Scheme, C, and later, C++, are contenders for replacing Pascal. The themes in this period are the increasing importance of libraries as found under UNIX, the need to have data abstraction facilities, such as the opaque type of Modula 2, and finally the need to build large scale software as independent modules.

Also in this decade there is an increasing awareness of the idea of object-orientation. The SmallTalk group, at Xerox Parc,(Goldberg 1983) are highly visible. They are excellent propagandists for these ideas. The ideas as originally invented in Simula 67(Dahl 1966) had not had much reach in the non-Scandinavian CS universe.

What changes is the invention of C-based versions of object-oriented languages, namely objective C and C++. Both of these could run reasonably efficiently on standard minicomputers. This was in distinction to needing special and expensive hardware that was often required for serious use of SmallTalk or Ada.

Data abstraction and modularization are the key methodologies for the early 1980’s. Then in the late 1980’s object-orientation symbolized by inheritance and pure-polymorphism (Cardelli 1985) enter their ascendancy. The language environment becomes fractured. C, C++, Modula 2, Pascal, Scheme and Ada are all part of the CS1 mix. None reach majority status.

In the late 1980’s C and C++ continue to capture market share. Initial resistance to the complexity of C++ is overcome by an increasingly sophisticated literature. The idea of design patterns (Gamma 95) takes hold and is an important explanatory tool. C and C++ dominate industry and this to leads to acceptance and pressure on curriculums to abandon “better” academic languages such as Scheme and ML in favor of C/C++.

Some characteristics of C++ are featured in the next program taken from Pohl(2002):

/***

* C++ by Dissection By Ira Pohl Addison Wesley

***/

#include <iostream>

using namespace std;

// OOP = type-extensibility + polymorphism
// See also Andrew Koenig JOOP August 1988

#include <iostream>

using namespace std;

class Node {

 friend class Tree;

 friend ostream& operator<<(ostream&, const Tree&);

protected:

 Node(){ use = 1; }

 virtual ~Node() { }

 virtual void print(ostream&) const = 0;

 virtual int eval() const = 0;

private:

 int use;
// reference count

};

class Tree {

public:

 Tree(int);
// constant

 Tree(char);
// variable

 Tree(char, Tree, Tree);
// binary operator

 Tree(const Tree& t) { p = t.p; ++p -> use; }

 ~Tree() { if (--p ->use == 0) delete p; }

 void operator=(const Tree& t);

 int eval() const { return p->eval(); }

private:

 friend ostream& operator<<(ostream&, const Tree&);

 Node* p;
// polymorphic hierarchy

};

void Tree:: operator=(const Tree& t)

{

 if (this != &t) {

 ++t.p -> use;

 if (--p -> use == 0)

 delete p;

 p = t.p;

 }

}

ostream& operator<<(ostream& o, const Tree& t)

{

 t.p -> print(o);

 return (o);

}

class IntNode : public Node {

public:

 friend class Tree;

 int eval() const { return n; }

private:

 const int n;

 void print(ostream& o) const { o << n; }

 IntNode(int k): n (k) { }

};

class IdNode : public Node {

public:

 friend class Tree;

 int eval() const { return val; }

private:

 const char name;

 int val;

 void print(ostream& o) const { o << name; }

 IdNode(char id): name (id)

 { cout << "Enter value of " << name << ": ";

 cin >> val; }

};

class BinaryNode : public Node {

public:

 friend class Tree;

 int eval() const;

private:

 const char op;

 Tree left;

 Tree right;

 BinaryNode(char a, Tree b, Tree c):

 op(a), left(b), right(c) { }

 void print (ostream& o) const

 { o << "(" << left << op << right << ")"; }

};

int BinaryNode::eval() const

{

 int ans = 0;

 switch (op) {

 case '-': ans = (left.eval() - right.eval()); break;

 case '+': ans = (left.eval() + right.eval()); break;

 case '*': ans = (left.eval() * right.eval()); break;

 default:

 cerr << op << " not implemented" << endl; break;

 }

 return ans;

}

}

Tree::Tree(int n) { p = new IntNode(n); }

Tree::Tree(char id) { p = new IdNode(id); }

Tree::Tree(char op, Tree left, Tree right)

 { p = new BinaryNode(op, left, right);

 left.p -> use++; right.p -> use++; }

int main()

{

 Tree t1 = Tree('*', Tree(5), Tree('+', 'A', 4));

 Tree t2 = Tree('+', Tree('-', 'A', 1), Tree('+', t1, 'B'));

 cout << "t1 = " << t1 << " ; t2 = " << t2 << endl;

 cout << "t1:" << t1.eval() << " t2:" << t2.eval() << endl;

}

In following Koenig, we use the polymorphism to derive a related set of nodes that are allowed in the expression tree. The virtual function mechanism takes care of calling the proper evaluation routine at runtime. This formulation is readily extensible. It is clever but utilizes very subtle mechanisms that are easily overlooked, such as the virtual destructor, or operator overloading that has difficult rules.

The period 1995-2000: Java as the Next Pascal

C++ exhibited creeping complexity. This was in contradistinction to stated goals for its standardization process. From its first commercial implementations in 1985 the language grew in size and complexity annually for about the next 7 years. This culminated with the large addition of the Standard Template Library.

Java (Arnold 1996), an internal project of Sun Microsystems in the early 1990’s, was promoted by its alpha release featuring the “killer ap” the browser applet. This coincided with the exponential growth in the commercial development of the Web. The language was C-based but heavily influenced by SmallTalk. It provided a built-in garbage collector to manage memory. It dispensed with the direct memory management by pointers. It made all non-native types reference types derivable from object. It had a non-system dependent semantics based on the reference implementation of the JVM (java virtual machine).

Java was an immediate success. Within a few years of its release there were over 1000 books describing its use. It was free and portable. It was modern. Its supported the contemporary main software methodology, namely objects. It avoided many difficulties found in C++, such as pointer manipulation and memory management. It had extensive libraries and features that enabled beginning programmers to write contemporary applications, such as using sockets, constructing GUI I/O and writing threaded applications.

Each year after each introduction it captured more and more of the CS1 market. For example UCSC shifted to Java as its basic language in 1999 after using C in the earlier part of this decade. While I have no concrete data, one is left with the impression that Java has achieved majority status. This is confirmed by the AP classes as tested by ETS of Princeton shifting to Java from C++.

Lessons and Predictions: C# is Coming–The Showdown and Why C# Will Win

The CS1 course needs a language that is modern, in widespread use, and supports the dominant programming methodology. It must be multi-platform, with excellent and cost-effective compilers, and with good textbook availability. Algol 60, Pascal, C, C++ and Java all measured up to these criteria in their time. Cobol, PL/1, Algol68, ADA, Prolog, and Smalltalk failed in some of these criteria in their time.

C# (Pohl 2003) is a variant of Java or C++ developed at Microsoft in 2000 by a team led by Anders Hejlsberg. It is a chief language to be used for developing their middle-ware architecture .NET. As such it augments or replaces Visual Basic, C, Java, and C++. To my eye it is a variant of Java, in that with little modification, mostly cosmetic, Java programs can be easily converted to C#. To Microsoft corporately, it derives from C++ in that it retains many C++ features abandoned by Java, such as operator overloading, and the use of struct and pointer (in unsafe mode).

C#, C++ and Java are the chief contenders using these criteria. C# is now in widespread use on Microsoft platforms. There are Unix implementations as well.

C# has the Java types plus struct, multi-dimensional arrays, and enums. All these types derive from Object. This is in distinction to Java that bifurcates value and reference types. Certain simple concepts, such as swapping two int values, are more readily taught using the C# constructs.

C# has machine independent types like Java but in distinction to the platform dependence of C or C++. This avoids numerous difficulties when teaching the basics.

C# allows unsafe use of pointers in order to teach C-like management of memory. Unlike Java and JNI, C# integrates low-level ideas in the language. However they are an advanced topic and need not be covered until CS2 or later. The .NET architecture also allows easy integration of modules built in multiple languages. The SUN vision is more Java as a universal solution. This is not consistent with CS curriculums or with history.

Built-In iterator statement “foreach” avoids off-by-one range errors; teaches an important abstraction in a modern context. In conjunction with the use of the IEnumerable interface it promotes very modern techniques in a uniform easily understood manner. This should be contrasted with the sophistication and complexity of iterators in C++ STL.

As a language C# dominates Java. It has what Java has plus it has critical improvements without becoming overly complex. The improvements are compartmentalized and so do not have to be taught at once. An example is the improvements to operator overloading that is very complex in C++ and omitted in Java. A further example is the better concurrency scheme used by C# that is closer to traditional monitors with its lock primitive as opposed to Java with its non-prioritized synchronized threaded methods. Some improvements are very important pedagogically. The foreach statement is important for teaching iterator use and construction. The set/get property constructs are important for teaching how to properly build-in data hiding to a user-defined type.

Bottom line is that C# is Java with some significant improvements. When two languages are very close, such as Algol-W and Pascal, or Lisp and Scheme the choice is to use the one with even slight pedagogical improvements. My prediction is that within 5 years C# will be dominant in CS curriculums because it will be on Unix and heavily supported by third party vendors as well as the lingua franca of Microsoft.

References

Arnold, K. and Gosling, J. (1996) The Java Programming Language, 1st Edition Addison-Wesley
Cardelli, L., and Wegner, P. (1985) On Understanding Types, Data Abstractions and Polymorphism, ACM Computing Surveys 17(4), pp472-522.

Cooper, D., and Clancy, M., (1985) Oh! Pascal!, 2nd Edition, Norton

Dahl, O-j, Nygaard, K.(1966) Simula—An Aalgol Based Ssimulation Language. CACM v9 pp671-678

Gamma, E., Helm, R., Johnson, R., and Vlissides, J (1995) Design Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley

Goldberg, A., and Robson D.(1983) Smalltalk-80: The Language and Its Implementation, Addison-Wesley

Hoare, A.(1981), The Emperor’s Old Clothes, CACM v24, pp75-83 (uring Award Lecture 1980)

Kelley, A., and Pohl, I.,(1984) A Book on C, Benjamin/Cummings

Kelley, A. and Pohl, I.,(2001) C by Dissection: The essentials of C Programming, 4th edition Addison-Wesley

Kernighan, B.(1984), Why Pascal is not my Favorite Language, in Comparing and Assessing Programming Languages, Feuer, A., Gehani, N. Prentice Hall 1984

Knuth, D. (1967), The Remaining Troublespots in Algol 60, CACM v10, 10 pp611-617

Koenig, A.(1988), Journal Object Oriented Programming, C++ column, August 1988
Pohl, I., and McDowell, C., (1999), Java By Dissection: The Essentials of Java Programming, Addison-Wesley

Pohl, I.(2002), C++ By Dissection: The Essentials of C++ Programming, Addison-Wesley

Pohl, I.(2003), C# By Dissection: The Essentials of C# Programming, Addison-Wesley

