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ABSTRACT

This paper presents a strategy for seeding streamlines in 3D flow
fields. Its main goal is to capture the essential flow patterns and to
provide sufficient coverage in the field while reducing clutter. First,
critical points of the flow field are extracted to identify regions with
important flow patterns that need to be presented. Different seeding
templates are then used around the vicinity of the different critical
points. Because there is significant variability in the flow pattern
even for the same type of critical point, our template can change
shape depending on how far the critical point is from transitioning
into another type of critical point. To accomplish this, we introduce
the α−β map of 3D critical points. Next, we use Poisson seeding to
populate the empty regions. Finally, we filter the streamlines based
on their geometric and spatial properties. Altogether, this multi-
step strategy reduces clutter and yet captures the important 3D flow
features.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction Techniques;
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1 INTRODUCTION

The most popular flow visualization method in use today is still
streamlines or those derived from streamlines. One of the key is-
sues that affects the quality of streamlines is the seeding strategy as
this can lead to clutter, or possibly, visualization artifacts. For the
case of streamlines over a planar region or even for 2D manifolds
in 3D space, there are two general seeding strategies that offer good
solutions to this problem. The first approach is image guided (e.g.
[4, 19]) which attempts to distribute streamlines evenly in space by
terminating streamlines that are too close to each other, and pick-
ing seed points that are at least some distance away from existing
streamlines. The second approach is flow guided [20] which at-
tempts to guarantee that important flow features such as those near
critical points are clearly shown and seeded first.

For the case of generating streamlines in 3D flow fields, the is-
sue of clutter and occlusion is even more crucial specially when
looking at complex flow patterns. The image guided approach was
recently extended to visualize 3D flows [10] using evenly spaced
illuminated streamlines. To address the issue of clutter, a multi-
resolution approach was used wherein streamlines were generated
using different separation distances. Sparser streamlines with larger
separation distance provided a more global view of the flow field,
while denser streamlines with smaller separation distance provided
more detail in local regions. Other methods have also been pro-
posed or used, such as seeding based on some physical properties
of the flow field, e.g. in regions of high vorticity [13], or level set
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methods relying on proximity to stream boundaries [22]. However,
there is still no systematic study of seeding based on flow charac-
teristics surrounding critical points.

This paper extends and improves upon the flow guided approach
to visualize 3D flows in two ways: (i) the seeding template can
continuously change shape to best match the flow pattern, and (ii)
post process filtering based on geometric and spatial properties of
streamlines to reduce clutter. Compared to the multi-resolution, im-
age guided approach, the strategy proposed in this paper can quali-
tatively capture the important flow features with less streamlines –
hence less clutter and occlusion overall. This is because we guar-
antee that each critical point is represented by a small number of
streamlines.

Our seeding strategy involves several steps. We first locate the
positions and identify the types of critical points, if any. Then a
region of influence is determined around each critical point. Based
on this an appropriately scaled template designed to show the flow
pattern near each critical point is used to seed some key streamlines.
The rest of the volume is seeded using Poisson sphere distributions
to fill up the empty space.

As a post processing step, the streamlines can be filtered down
to preserve only the more interesting ones. Filtering is done by
applying different feature or geometry based criteria successively,
e.g. keeping longer streamlines, keeping those with higher winding
numbers, removing those which are too close to each other, remov-
ing those which are too similar to neighboring ones, etc. Some
of the ideas here are extensions of those commonly found in flow
simplification work, e.g. where simplification usually occurs based
on local flow field properties as opposed to comparison along the
length of streamlines [15]. To further improve the spatial percep-
tion of the streamlines in 3D, we use illuminated streamlines [23]
for rendering. Note that our main goal is to show the important flow
features in the data set while reducing clutter and occlusion. Inter-
activity and speed of generating the seed points and streamlines,
while important, are not high priority in this particular report.

2 RELATED WORK

There are several techniques for visualizing 3D volumetric flow
fields [6, 11]. Two recent methods addressed both the issue of
interactivity and seed placement for streamlines to some degree.
Mattausch et al. [10] enhanced the previous seeding algorithms by
tapering the ends of the streamlines and introducing interactive ha-
los to improve contrast and spatial perception. For creating evenly
spaced streamlines, seeding is also controlled by a minimum dis-
tance separation similar to [4]. Further, by varying the separation
distance, a multi-resolution seeding strategy is produced, where
sparse streamlines are obtained by simply increasing the separa-
tion distance, and denser streamlines are obtained by decreasing
the separation distance. Laramee et al. [5, 7], used multiple reg-
ularly gridded seeding planes that were interactively positioned in
the flow field and allowed one to explore the vector field in a similar
fashion to the earlier work by Bryson and Levit [3].

However, there is still no systematic way of seeding 3D vector
fields. The approach proposed by Mattausch et al. [10] is what
Ward [21] refers to as structure-driven. This paper presents how the
data-driven or flow guided approach can be extended to 3D flows.



Our method differs from the methods above in that we look at the
derived data – the critical points – to determine how the stream-
lines will be seeded. We use a strategy similar to the topological
flow visualization methodology [14] in that we analyze the data set
first before trying to visualize it. In contrast to the topological ap-
proach where the visualizations are in the form of critical points
and separating surfaces [9] or saddle connectors [18], we use the
critical point analyses only to determine the important parts of the
flow field. The visualization itself is still done with streamlines. We
view the methods as complementary. The topological methods pro-
vide a global perspective of the vector field, while one still needs to
examine regional details using streamlines.

One of the key problems with 3D flow visualization is dealing
with occlusion and clutter. Occlusion is inevitable when users are
allowed to interactively change their views. View dependent flow
visualization that tries to address the occlusion issue may be more
distracting than beneficial. A more viable approach is to reduce
the clutter in the display. Among the visualization methods using
streamlines, there are few methods that address this problem via
good streamline seeding strategies – either with minimum distance
separation or with clustering. The seeding strategy proposed in this
paper guarantees that we will not miss any important flow features
derived by local analysis of critical points. And when combined
with filtering, we also reduce the clutter and improve the visual pre-
sentation. In the next two sections, we look at a multi-step strategy
to accomplish these goals.

3 FLOW-GUIDED SEEDING

3.1 Critical Points in 3D

In vector fields, critical points are defined as those points with zero
velocity magnitude. Different types of critical points give rise to
distinguishing flow patterns in each of their vicinity. A critical point
can be classified according to the eigenvalues of its Jacobian matrix
J(p) at location p. The positive or negative real part of an eigen-
value indicates whether a streamline seeded near a critical point will
attract or repel to the associated eigenvector. If the eigenvalue has a
non-zero imaginary part, this streamline may create a spiral struc-
ture in the neighborhood of the critical point [1, 2]. Based on the
eigenvalues, the different types of critical points in 3D vector fields
can be classified into the following basic types shown in Figure 1.

There are ten different types of critical points in 3D flow fields.
With the exception of (e1) and (e2), the other eight are stable.
Sources (a1) and sinks (a2), while not common in incompressible
flows, are accounted for in our study. Aside from these basic criti-
cal points, we surmise that there are other “critical regions” in 3D
flows. For example, vortex cores are “critical curves” with zero ve-
locity components on the plane normal to the core. In this paper,
we do not consider these types of degenerate flow cases but simply
focus on those critical points that are defined at a point rather than
over a curve or surface.

3.2 Mapping of 3D Critical Points

In order to understand how the flow patterns change with different
combinations of eigenvalues, we want to find a mapping that will
allow us to study the transition from one type of critical point into
another. For this, we need to find a continuous and consistent map-
ping that reflects the space of possible transitions among critical
points shown in Figure 2. More importantly, the mapping should
tell us how “close” a critical point is from changing into another
type of critical point. This border proximity forms the basis for
morphing the seeding templates for flow guided seeding described
in the subsequent sections.
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Figure 1: Flows in the vicinity of different types of 3D critical points.
(a1) repelling node, (a2) attracting node, (b1) repelling saddle, (b2)
attracting saddle, (c1) repelling spiral saddle, (c2) attracting spiral
saddle, (d1) repelling spiral, (d2) attracting spiral, (e1) repelling cen-
ter, and (e2) attracting center.

3.2.1 Mapping

As noted, the three eigenvalues of the Jacobian at a critical point
can either be all real numbers, or one is real and the other two are
complex conjugate pairs. For the case where the three eigenvalues
are all real, we sort them such that λ1 >= λ2 >= λ3. For the case
where complex numbers are involved, we let the real eigenvalue be
c and the complex eigenvalues be a±ib. We also denote them by the
signs of their real parts, e.g. the notation 1-,2+ for a repelling spiral
saddle, refers to one negative real, and two complex eigenvalues
with positive real parts. Also note that the set of possible transitions
of 3D critical points is much more complicated when compared to
those of 2D critical points [8, 17].

For 3D critical points, we design the following two-step con-
tinuous mapping. In the first step, we map three eigenvalues to
three “physical” parameters (x, y, z). When all three eigenvalues
are real, we use the following mapping:

x = λ1 + λ2 + λ3

y = min(λ1 − λ2, λ2 − λ3)
z = 2 ∗ λ2 − (λ1 + λ3)

(1)

Note that since λ1 >= λ2 >= λ3, y is greater or equal to zero. If
there exists two equal eigenvalues, then y is equal to zero, and z is
equal to λ2 − λ1 or λ2 − λ3.

In cases that involve complex eigenvalues, we define the follow-
ing mapping:

x = 2a + c
y = b
z = a − c

(2)

If b is equal to zero, then all three eigenvalues are real and at
least two of them are equal. when two eigenvalues are equal, then y
is equal to zero, and z is equal to λ2 − λ1 or λ2 − λ3. This results
in a positive or negative number as z continuously transitions from
real to complex eigenvalues. Since the mapping is linear in both
real and complex cases, and the transitions are likewise continuous,
we have a continuous and homogeneous mapping. Therefore, we



Figure 2: Transition paths from one type of critical point into another.
Exterior critical points have eigenvalues with complex conjugates. In-
terior critical points have eigenvalues that are all real numbers.

can normalize the mapping parameters (x, y, z) to a point on a unit

sphere by simply dividing each term by (x2+y2+z2)
1

2 (see Figure
3). Since we are accounting for the eight stable types of critical
points in 3D flow fields, the sphere is subdivided into eight colored
regions.

In the second step, we project the unit sphere to a 2D sheet as
shown in Figure 4 using (α, β) mapping in Equation 3. With this
mapping scheme, every point on this 2D (α, β) space corresponds
to a particular critical point.

α = arcsin(y)
β = arctan( z

x
) + π ∗ u(−x) ∗ sign(z)

(3)

where u(−x) is 1 when x is less than or equal to zero; otherwise,
u(−x) is 0.

This mapping has two sets of degenerate points. Critical points
on the bottom edge are degenerate and correspond to the two cir-
cular flows in Figure 1. Since these points are unstable in 3D flow
fields, we do not consider them further in this paper. Critical points
on the top edge are degenerate and reduce to 2D saddles.

The edges separating one region of critical point from another
also represent possible transitions between different types of criti-
cal points. For example, transitions between repelling saddles and
repelling spiral saddles are possible because they share a common
edge. Conversely, if two critical points do not share a common
edge on these maps, then they cannot transition between these two
types directly. For example, repelling saddles cannot change into
repelling spirals directly. It needs to change into a repelling node
first, then transition into a repelling spiral. The areas correspond-
ing to each type of critical points approximately describe how often
they will take place in flow fields.

Figure 3: Two viewpoints of the spherical mapping of the three eigen-
values of a critical point to a point on a unit sphere.

Figure 4: The projection of the unit sphere to a 2D sheet using Equa-
tion 3. The ordinate shows values of α, while the abscissa shows
values of β.

3.2.2 Inverse Mapping

Given the (α,β) coordinates of a critical point, how can we find
the corresponding set of eigenvalues? First, we compute the 3D
coordinates of the sphere as following:

x = cos(α) ∗ cos(β)
y = sin(α)
z = cos(α) ∗ sin(β)

(4)

Where α goes from −π

2
to π

2
, and β goes from −π to π. If y is less

than zero, then it is a critical point with complex eigenvalues, and
‖ y ‖ is the magnitude of the imaginary part of the complex eigen-
values. From Equation 2, the equations to solve the eigenvalues
are:

a = x+z

3

b = ‖ y ‖
c = x−2∗z

3

(5)

For the case when a critical point has all real eigenvalues, we use
Equation 1 to get the the following relationships. If z is less than or
equal to zero, the inverse mapping is:

λ1 = x−2∗z

3
+ y

λ2 = x+z

3

λ3 = x+z

3
− y

(6)

When z is greater than zero, we get the following inverse mapping:

λ1 = x+z

3
+ y

λ2 = x+z

3

λ3 = x−2∗z

3
− y

(7)



3.3 Seeding Templates

Since the flow pattern in the vicinity of a critical point is largely de-
fined by the type of critical point, we propose different seeding pat-
terns for different types of critical points. We refer to these seeding
patterns as templates. They are designed so that streamlines traced
from them can effectively capture the local flow patterns around the
critical points. Figure 5 illustrates the seeding templates for the four
types of flow patterns: node, saddle, spiral saddle, and spiral.

Recall that the type of the critical point depends on the eigenval-
ues of the Jacobian matrix J at the critical point. While the sign and
magnitude of the eigenvalues determine the divergence or conver-
gence rate of the flow, the related eigenvectors tell us the directions
of the streamlines. We use both the eigenvalues and eigenvectors as
guides in developing the seeding templates.

1. Nodes: We distribute seed points around a circle on two par-
allel planes on each side of plane P as illustrated in Figure 5
(a). Since the node type critical point is the source or sink of
streamlines, the streamlines tend to get cluttered around the
critical point. In contrast, the streamlines for saddles don’t
have this problem near the critical point. They do cluster to-
gether along the eigenvectors further away from the critical
point.

2. Saddles: For the case of saddles, we do not need to place any
seeds on plane P . The saddle pattern is brought out by seed-
ing on two parallel planes on opposite sides of plane P . The
seeding pattern on these two planes lie on concentric circles
whose centers are along V . The number of circles depends on
the seeding distance and influence region of the critical point.
On each circle, we place eight evenly distributed seed points
by default. If the influence region of the critical point is very
small, we can reduce the seed points correspondingly. Figure5
(b) shows the seeding template for this type of critical point.

3. Spiral Saddles: The spiral flow pattern can be captured by
a seeding template where seeds are placed along a line on
plane P . The line can be any line other than the eigenvec-
tors spanning P , and is similar to a rake where multiple seeds
are placed along its length. This rake is replicated on other
planes parallel to P by going some negative and positive dis-
tance along V . Figure 5 (c) shows the seed template for spiral
saddles. The spacing of the seed points on the rake, the num-
ber of planes and spacing of the planes will be discussed in
more detail later.

4. Spiral: For the typical flow of spiral with large rotations, the
streamlines will either wind outward or inward to the critical
point. Similar to source and sink nodes, streamlines will con-
gregate near the critical point. Therefore, we use a similar
seeding template for spiral saddle as in Figure 5 (d), but with
only one seed point on each rake.

The seeding templates described above work for the case where
the entire flow field has only one critical point. However, a flow
field may also have more than one or no critical points at all. For
the case of multiple critical points, the flow pattern associated with
a critical point is well defined in its vicinity and weakens as one
goes farther away. We discuss how to estimate the influence region
for critical points and how to choose the size of the template section
3.5. For the case where there are no critical points, Poisson sphere
random seeding with minimum distance separation and/or filtering
(see Section 4) seem to be sufficient.

3.4 Variable Templates

The previous section described the four basic seeding templates for
the typical flow patterns around different types of critical points.

Figure 5: Seeding templates for various critical points. The seeds are
placed along the solid lines. The dots represent the seed locations
in the templates for: (a) repelling and attracting node (b) repelling
and attracting saddle (c) repelling and attracting spiral saddle (d) re-
pelling and attracting spiral The density of the dots can be varied and
spaced out differently. The spacing of the planes is also adjusted as
a function of the size of the influence region.

Referring to Figure 4, we note that for node and saddle types, the
critical points are located on the upper half. Meanwhile, for the
spiral and spiral saddle types, the critical points are located on the
lower half where α < 0. When a critical point is located in the
spiral saddle region, but close to saddle region, the flow looks more
like a saddle while still possessing winding features. If we use the
seeding template for spiral saddle as in Figure 5 (c), we cannot
capture the saddle features adequately (see Figure 6 for illustration).
In order to overcome this phenomenon, we allow the templates to
morph continuously from one type to another.

If we consider the possible transitions of critical points shown in
Figure 2 and the corresponding seeding template for each type as
shown in Figure 5, then we need to consider four possible morphs
amongst the seeding templates. These are:

1. between Figure 5 (a) and (b),

2. between Figure 5 (b) and (c),

3. between Figure 5 (c) and (d), and

4. between Figure 5 (a) and (d),

Due to vertical symmetry along β = −4π/15 in Figure 4, we only
consider the repelling types of critical points. This symmetry also
allows us to use the same seeding template for an attracting and its
corresponding repelling type of critical points.



The number of seed points on a ring for the seeding template of
a saddle or node is 8. From α = 0 to α = ± π

2
, we exponentially

reduce the number of seeds with the following formula:

seedNum = 8 ∗ pow(e,− ‖ α ‖) (8)

This is for the vertical transition between two types of critical points
in Figure 4, such as saddle to spiral saddle, and node to spiral. This
equation allows us to vary the number of seeds used in the templates
between Figure 5 (a) and (d), and between Figure 5 (b) and (c).

For the horizontal transition, such as saddle to node, or spiral
saddle to spiral, we linearly increase/decrease the seeding distance
of the seed points on each line of the seeding template. This allows
us to vary the number of seed used in the templates between Figure
5 (a) and (b), and between Figure 5 (c) and (d). Figures 6 and 7
show the improvement of variable templates in capturing the actual
flow patterns of critical points straddling different flow regimes.

Figure 6: Flow with/without variation in seeding template. The critical
point is a repelling spiral saddle, but quite close to a repelling saddle.
(a) Seeding with fixed spiral saddle template with 4 seed points. (b)
Seeding with variable template with 14 seed points. (c) Location of
the critical point marked by X.

Figure 7: Flow with/without variation in seeding template. The critical
point is a repelling spiral saddle, but quite close to an attracting spiral.
(a) Seeding with fixed spiral template with 8 seed points (one on each
rake). (b) Seeding with variable template with 16 seed points (two on
each rake). (c) Location of the critical point marked by X.

3.5 Influence Regions of Critical Points

The main criterion for placing seed points is that we do not miss
any important flow features. A conflicting goal is that streamlines
do not clutter the display. As such, we want to minimize the amount
of seeds yet still show the flow patterns. Since each critical point
has a local region of influence where its flow pattern is dominant,
we first estimate the region of influence in order to appropriately
scale the seeding templates.

For this purpose, the influence region does not have to be ac-
curately computed. Thus, a very simple method would be to take

the dimensions of the volume and divide by the number of criti-
cal points to get a rough idea of the average size of each influence
region. However, in general, critical points are not uniformly dis-
tributed in space. Hence, using average sizes will result in over-
lapping regions. A more accurate method is to do a full topological
analyses and calculate the separating regions [9, 18] for each critical
point. However, this is quite expensive and is not really necessary
for our purpose.

Therefore, for this task, we do not calculate the separating sur-
faces. Instead, we carry out the following simple procedure for each
critical point: (a) find the shortest length from the critical point to
the other critical points; let this be Lmin, (b) set the size of the
seeding template for that critical point to Lmin/4. This procedure
is quite inexpensive and produces the desired scale factors. Es-
sentially, what we are doing is subdividing the flow domain into
sub-domains with one critical point per region. The tessellation is
constructed by finding the critical point closest to a given critical
point and connecting them with a line. A plane is then constructed
at the midpoint and perpendicular to this line. If this is done for
every critical point, then the process divides the space into regions.
The shortest distance from a critical point to its bounding planes is
the “radius” of a region. The size of the seeding template is then
set to half of the radius. While this procedure is not fool proof, we
have found it quite satisfactory for its intended use.

3.6 Poisson Sphere Seeds

The seeding templates capture the important flow features in the
data but do not provide coverage in other areas of the flow. We have
to be careful in seeding these other areas because of the potential for
clutter. In 3D, clutter is caused by two factors: (a) streamlines get-
ting too close to each other, and (b) viewpoints where streamlines
appear to get close to or cross each other. The latter problem can-
not be dealt with in a general way other than to reduce their severity
either by changing viewpoint or using less streamlines. The former
problem can be addressed effectively by enforcing a minimum dis-
tance separation between streamlines. This can be done both during
the seeding process as well as while the streamline is being traced.
For the seeding process, we use a Poisson sphere with radius δs for
distributing additional seeds beyond those in the seeding templates.
These points are placed in the regions outside the influence region
of critical points. Note that δs is also used as the minimum distance
separation for streamline tracing.

4 FEATURE-BASED FILTERING

The main goal of feature based filtering is to reduce clutter. It is car-
ried out by using successive filtering of streamlines based on their
geometric and spatial properties. We first define these properties
and discuss how they can be applied.

4.1 Geometric Properties of Streamlines

1. Length: Before filtering, each streamline is traced completely
forward and backward until it is out of the boundary of the
flow domain or close enough to a critical point. Associated
with each streamline is an accumulated length. The longer
a streamline, the more of the flow domain it traverses and the
more information or representative it is of the flow. Hence, the
length of a streamline is directly proportional to its importance
in representing the flow field.

2. Angle: In addition to length, every streamline has an accumu-
lated angle, which shows the amount of winding of a stream-
line. The higher the winding angle, the more interesting the
streamline. On the other hand, the winding angle needs to
be balanced with the length of the streamline. For example,



a longer streamline may have a larger winding angle than a
shorter one, although the shorter streamline may appear to be
visually more winding than a longer streamline. The wind-
ing angle is calculated as the sum of the angles between two
adjacent segments along a streamline.

3. Proximity to other streamlines: This is not strictly a property
of a streamline per se, but rather gives an indication of the
density of streamlines in a local region. An efficient way of
storing this information is by maintaining a count of stream-
lines that pass through a cell or come within a certain distance
of a cell. Because flow fields are usually defined on grids, we
define a cell count for every cell in the physical space of the
flow domain. By looking up the cell count, one can quickly
determine the local density of streamlines which also corre-
sponds directly to the degree of clutter in the display.

4.2 Filtering

Filtering can be performed on the basic geometric properties of
length and winding angle individually, but can also be based on
both criteria at the same time. Different filtering order with the
same filtering operations can also produce different results.

In our implementation, streamline filtering is performed in three
successive passes. In the first filtering pass, short streamlines with
small winding angles are eliminated. These streamlines generally
do not contain much information about the flow and tend to produce
short discontinuous streamlines that distract the user from the flow
pattern.

In the second filtering pass, the output from the first pass is used
as the starting point. Here, the streamlines are grouped based on
their centroids and endpoints. Those that are similar to each other
are removed and only a few representative streamlines are kept. To
do this, the streamlines are first sorted by winding angle. If the
winding angles of two streamlines are similar, we compare the dis-
tance of their endpoints and centroids. If their maximum distance
is less than a predefined threshold, one of them is filtered out.

In the third filtering pass, we deal with streamlines with very
high winding angles because these streamlines tend to cause vi-
sual cluttering in the resultant image. For this pass, we select those
cells with both high cell count and streamlines with high winding
angles passing through those cells. From this candidate set, we
compute the range of the winding angles for these streamlines and
group them into different bins. For streamlines in the same bin,
we compare the distance between their endpoints, and filter them if
the distances are too close to each other. Otherwise, we keep the
streamline.

To recapitulate, our multi-step seeding strategy involves the fol-
lowing steps:

1. User specifies a minimum distance separation δs.

2. Find the locations and types of critical points.

3. Compute the influence region of the critical points and deter-
mine the size of the seeding templates.

4. Scale and morph the seeding templates prior to seeding and
tracing streamlines around each critical point.

5. Fill the rest of the space with random seed points that are Pois-
son sphere distributed.

6. Run successive streamline filtering to reduce clutter.

5 RESULTS AND ANALYSIS

We use both analytical and computational data sets to test our seed-
ing strategy. Analytical data serve to validate as well as stress test
our methods since we can vary the number and types of critical
points.

Our first analytical test data has five critical points consisting of
two spirals, two saddles and one source. This data set is used in two
validating tests: (i) compare random seeding against flow guided
seeding, (ii) compare dense seeding against filtering.

Figure 8 shows the results of the first test. Note that we kept the
number of streamlines the same for fair comparison. Figure 8(a)
shows streamlines from randomly placed seeds with Poisson sphere
spacing. Figure 8(c) shows streamlines from template seeding fol-
lowed by Poisson sphere seeding of 22 additional streamlines for
an even comparison. Between these two images, the latter image is
better because: (i) it shows the saddle structures (lower left and up-
per right) better, and (ii) the streamlines are spaced out more evenly
and there is more uniform coverage over the domain.

Figure 9 shows the results of the second test. We start with a
dense seeding of the test data shown in Figure 9(a). We then suc-
cessively filter the streamlines by removing short streamlines with
small winding angles shown in Figure 9(b), then removing similar
streamlines shown in Figure 9(c), and finally removing streamlines
with very high winding angles shown in Figure 9(d). Obviously,
Figure 9(d) is much more revealing than Figure 9(a). We also note
that we ended up with 54 streamlines in Figure 9(d), roughly the
same number as in Figure 8(c). While the results look comparable,
we note that filtering alone does not guarantee that we will not miss
any of the critical points.

Using a laptop with a Pentium 1.7Ghz CPU and 1GB of ram, The
template seeding in Figure 8 took roughly 0.39 seconds to compute,
while the filtering operation in Figure 9 took about 18 seconds. The
images with denser lines were rendered with illuminated stream-
lines, while the sparser images were rendered with tubes.

Our second analytical test data is used to stress test our seeding
strategy. This time the data set has 108 critical points consisting
of 31 spirals, 28 saddles, and 49 spiral saddles. This data set is
used to show results of flow guided seeding followed by filtering.
For very complex flows such as this data set, the amount of seed
points from seeding templates may be too high. Theoretically, one
can vary the number of seed points according to the importance of a
critical point over the entire flow domain, or alternatively according
to the size of its region of influence. However, there would still be a
minimum number of seed points per critical point and if indeed the
flow is very complex, it may be impossible to avoid over cluttering
the display with this seeding strategy alone. We therefore filter the
results of flow guided seeding to reduce the visual clutter. Figure 10
compares the results using Poisson seeding alone and our seeding
strategy. This clearly demonstrates the benefit of our seeding strat-
egy as it reduced the overall clutter, and yet one can still discern the
flows around individual critical points. The combined computation
time for template seeding and filtering of this data set took 15.47
seconds on the same laptop.

Our computational data set is the flow past a cylinder with
a hemispherical cap. Most the 45 critical points and interest-
ing flows of this data set are near the cylindrical surface. There
are 17 spiral saddles, 20 saddles and 5 spirals, and 3 nodes, in
this data set. It took about 6.42 seconds to calculate the bot-
tom image of Figure 11. This figure clearly illustrates the ben-
efit of our seeding strategy. For larger images and animations,
as well as additional results using other data sets, please visit
www.cse.ucsc.edu/research/avis/seed3d.html



(a) Poisson seeding with 50 streamlines. (b) Template seeding with 28 streamlines. (c) Template then Poisson seeding.

Figure 8: Dataset with five critical points. Colors are mapped to velocity magnitude.

(a) Before any filtering
operation; 3168 streamlines.

(b) After first filtering pass;
2687 streamlines left.

(c) After second filtering pass;
72 streamlines left.

(d) After third filtering pass; 54
streamlines left.

Figure 9: Same dataset with five critical points. Colors are mapped to velocity magnitude.

6 DISCUSSION AND FUTURE WORK

In this paper, we presented a multi-step strategy for seeding stream-
lines in 3D flow fields. Our goal is to highlight the important
flow features and reduce clutter. To accomplish this, our strat-
egy involves flow guided seeding followed by successive filtering
based on geometric and spatial properties of streamlines. The main
strength of flow guided seeding is its ability to capture important
flow features in the data set. Its main weakness is its inability to
scale up with the complexity (i.e. number of critical points) in the
flow data. Filtering does not require prior flow analysis, but can
be used either alone or in conjunction with the flow guided seed-
ing strategy. Its main advantage is its ability to deal with large
number of streamlines in complex flows, while its main weakness
is that there is no guarantee that important flow features are pre-
served. We combined these two steps in our strategy for seeding
3D streamlines. One of the novel contributions in this work is the
mapping of critical points into distinct regions, and using this map
to morph our seeding templates to best capture the flow patterns.

There are obviously many directions for improvements. Some of
them are: (i) Investigate other forms of data driven seed placement
strategies. For example, seeds could be placed in regions of high
vorticity, helicity, or pressure gradients, although one may miss
other important flow features. In this regard, vector field decom-
position, e.g. [12], if extended to 3D, can provide some hints on
other types of flow patterns. (ii) Critical point analysis looks at lo-
cal flow patterns, and may therefore miss global flow patterns such
as closed streamlines. Include global flow features in deciding seed
placements. (iii) Take advantage of the work on tracking how crit-
ical points move and change over time [16], as they provide a rela-
tively smooth way of seeding streamlines in time varying 3D vector
fields. (iv) The mapping of three eigenvalues of a critical point is
not unique. Investigate other mappings particularly those that are
(a) sensitive to the probability of the type of critical point occurring,
and (b) where the Euclidean distance from the region boundary is
proportional to the “pureness” of the type of critical point for that

region. (v) Improve the efficiency of these different automatic flow
based seeding methods. The work presented here are just some
modest yet useful steps that can be taken right now to reduce the
clutter in displays of 3D streamlines.
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