
Visualization of encoder-decoder structure of Deep Convolutional Neural
Network

Xiaohan Zhang
xzhan272@ucsc.edu

University of California, Santa Cruz
Department of Computer Science and Engineering

ABSTRACT

Deep Convolutional Neural Networks (DCNNs) achieve impressive
results on image Classification, object detection and object tracking
tasks. However, researchers still do not clearly understand what
is the network learned during training phase. Recent works [8]
and [7] shows the state-of-the-art result on visualization of DCNNs.
However, DCNNs are still a ”black-box” for most of beginners and
other field researchers. In order to improve the interpretability and
make the network easy to understand, I propose a manner to easily
visualize the output of each layer. As part of the work, I also plan to
conduct ablation study on how neural net work works and what it
may learned during training.

Index Terms: Visualization—Computer Vision—Deep Learning—
;

1 MOTIVATION

Since the first time LeCun [4] Introduced the Convolutional Neural
Network (CNN) to image classification problem, CNN shows its
great performance in computer vision tasks such as image classifi-
cation, object detection and object tracking. With the increase of
computational power and complexity of tasks, Deep Convolutional
Neural Networks (DCNNs) [3] have been proposed which achieved
impressive result as error rate of 16.4% in ImageNet classification
challenge. Nowadays, researchers are not satisfied regression prob-
lems. Generative models such as [1] shows that DCNNs has the
ability to generate photo-realistic pictures.

Regardless of these significant progress, researchers still treat DC-
NNs as a ”black-box” like architecture. Current researches merely
focus on how and why the DCNNs made mistakes on certain prob-
lems. From a researcher’s point of view, it is needed to show how
this problem effect the DCNNs. Recent research [8] have already
shows the feature vector reconstructed by deconvolution network.
However, the most important concept in DCNNs are weight sharing
and channel fusion which a single kernel can take the whole output
from last layer as input. So a single kernel output can hardly decide
the final output of the network. However, if a certain kernel made
a ”mistake”, this ”mistake” will spread to the next layer due to the
nature of DCNNs. It is also hard for researchers to identify what
this ”mistake” is. To address this issue, I plan to design an interface
which can show the output of difference layers simultaneously. The
combination output of different layers on the original image which
will help users have a more direct understanding on how one or more
kernels effect the result. This method not only allow users to see the
value of a single kernel but take the whole channel into account.

2 RELATED WORKS

Normally in shallow layer (in other words, the first one or two layers)
of DCNNs, the kernel tends to learn gaussian-like or gabor-like fil-

ters which is interpretable and understandable by humans. However,
with the layer go deeper, the outputs of kernels are compressed in
width and length which make them uninterpretable. As I mention in
Motivation, Zeiler and Fergus [8] shows a state-of-the-art result on
visualization of DCNNs. Based on original AlexNet, they undo the
operations of the previous layers of this layer which need to be visu-
alized. That is they reverse the three main operations, convolution,
MaxPooling and ReLU. To reverse the convolutional layers, they
simply take the transpose of the convolutional kernel and use this
convolutional kernel to convolve on the dialated original image. This
operation is called deconvolution. For MaxPooling layers, they first
record the location of the pooled value. In the reverse progress the
pooled value is been placed in the recorded place and the remaining
places are filled by zeros. The last operation is ReLU defined as
f (x) as below:

f (x) = max(0,x) (1)

It is obvious that f (x) keeps the positive value during the feed
forward progress (inference stage). The reverse of f (x) is also
keeping the positive value and ignore the negative value. Zeiler and
Fergus use these three reversed operations can visualize the kernel
output in an original image size. They show different layers’ outputs
with different training epoch and find that with the deeper layers
the kernels focus on the global features but not the local feature.
The network potentially has the ability to separate the background
and foreground to focus on an abstract features in certain space.
They also conduct experiments on analyzing the feature output by
certain kernel when abnormal input (such as cropping part of image,
rotating, rescaling) is fed to the network. From their results, we can
see with these abnormal images make some changes to the output.
But we still do not have an direct understanding on how and why
these features effect the output.

Another outstanding paper about the visualization of DCNNs
presented by by Zhou [11] shows DCNNs has the ability to learn
the position information with related to the label even the label do
not contain the position information. And also, this ability can be
used in transferring learning and other field. This paper proposed
Class Activation Mapping (CAM) to visualize the focusing map of
the entire DCNNs. Assume fk(x,y) is the value on kth feature map
with position (x,y). CAM is calculated by Global Average Pooling
(GAP) which define as below:

Fk = ∑
x,y

fk(x,y) (2)

Now a single value Fk can represent a feature map k. To obtain
the classification probability, We can use SoftMax output Sclass to
calculate Pclass where Sclass and Pclass are defined below:

Sclass = ∑
k

wclass
k Fk (3)

Pclass =
exp(Sclass)

∑class exp(Sclass)
(4)



Finally, combine (3) and (2) Sclass can be written as:

Sclass = ∑
x,y

∑
k

wclass
k fk(x,y) (5)

Because, the Sclass has a one-by-one relationship to Pclass, they
define the CAM Mclass(x,y) by taking the summation of all feature
maps which is shown following:

Mclass(x,y) = ∑
k

wclass
k fk(x,y) (6)

To visualize Mclass(x,y), the author resize Mclass(x,y) to the orig-
inal image size and overlay on it. The author conduct several experi-
ment on different DCNNs to show their CAMs and prove that DCNN
has outstanding ability in localization object. However, they did not
conduct experiment on misclassification test. I think it is needed to
show some failure cases of DCNNs which will help researchers to
have a better understanding on DCNNs working.

3 PROPOSED METHOD

Inspired by [11] and [7], I propose a new manner to visualize the
encoder-decoder struct of DCNNs. Encoder-decoder structure are
widely used in computer vision research field such as [1] and [12].
However, it is hardly to visualize what is the network encoding dur-
ing the training phase. Firstly, I plan to start with a pre-trained and
fine-tuned ResNet-18 [2] network. He [2] shows this DCNN has out-
standing performance in image classification task. The pre-trained
ResNet-18 has achieve top-1 error rate 30.24% and top-5 error rate
10.92% on ImageNet challenge. The dataset used to train and test
are tiny ImageNet which is a subset of ImageNet [3]. I will remove
the last two layers of the ResNet-18 which are the fully connect
layer and the average pooling layer. The output of the network now
is a (2,2,512) tensor. Due to the tiny ImageNet has 200 categories,
firstly, expand the output to (2,2,200) by two hundred 1×1 convo-
lutional kernels. This is denote as the encoded feature map of the
network which is the most compressed data in the network. The
above is the encoder part of the network. Then the decoder part is
composed of 3 convolution layer with batch normalization and usign
Rectified Liner Unit as the activation function. The details of the
network will be discussed in the later part.

3.1 Dataset
Due to lack of computational power, I originally would like to
train my proposed network on whole ImageNet [3] which contains
1000 categories of object and 456567 images. Considering I only
have one Nvidia Tesla K80 graphic card to train the network, it is
impossible to train the whole ImageNet on it which takes about 2
to 3 days to finish training. So I use the compressed version of
ImageNet, the tiny ImageNet. The tiny ImageNet is a subset of
ImageNet which contains 200 classes. Each class has 500 images
for training, 50 validation images and 50 testing images. For all
images in the tiny ImageNet is resized to 64×64 pixels images
which will greatly increasing the training time. Obviously, the
small images will significantly effect the performance ResNet-18
pre-trained model and the whole network. But this is a trade-off
between time and efficiency. For futher research, if there is enough
computational power, it is necessary to get rid of this compressed
version of ImageNet and use the original version of ImageNet dataset
instead.

3.2 Encoder
As discussed in previous, the encoder part of the proposed model
is a modified version of ResNet-18 proposed by [2]. The encoder
would finally compressed the image into a (2,2,200) tensor. This
we usually called high dimensional feature of an image. The high
dimensional feature of an image is hard to visualize. Each sub (2,2)

tensor in this high dimensional feature space has a large field of view
corresponds to the original image.

C(s, t) =
Mr−1

∑
m=0

Mc−1

∑
n=0

A(m,n) ·B(s−m, t−n) (7)

Equation (7) shows how convolution works in 2-D dimension. A
is the convolution kernel and B is the input image. The output size
of C is depending on the stride. Current CNN normally set stride to
2 or higher value to compress input image. Two consecutive 3×3
convolution kernels with stride of 2 can compress a 7×7 iamge into
1×1 size. So this 1×1 point has a field of view 7×7 on original
image. Due to this nature of CNN, just visualizing the compressed
feature can hardly see the effectiveness of potential factors. However,
the encoder-decoder structure is so useful and effective. It leads an
idea that the high-dimensional feature is useful but needs an another
way to visualize it.

3.3 Decoder
The most important part in the proposed model is the decoder. The
decoder is responsible for classify the input image to a category.
Although normaly, researchers do not normally use encoder-decoder
structure for classification problem. But inspired by [11], weakly
supervised learning can still benefit for visualization how encoder-
decoder working.Based on the weakly-supervised training idea, I
think it is reasonable to use decoder to do classification. The decoder
is composed of two transposed convolutional layer just like other
normal decoder structure. Basically, the decoder. Each transposed
convolutional layer will enlarge the high dimensional feature by
2. For example, the (2,2,200) tensor output by encoder will be
enlarged to (4,4,200). Finally the output of the decoder would be
(8,8,200). Until now all the things are similar to a normal encoder-
decoder network. Nevertheless, normal convolutional layer has a
nature to combining the high dimensional features. If I visualize the
8×8 features maps. It is still ambiguous just like the output of the
encoder. To overcome this issue, I utilize the group convolution tech-
nique proposed by [10]. The idea of group convolution is decreasing
the computation complexity. The normal convolutional layer has
the same number of groups of convolution kernels as the number of
output channel. Each convolution kernel in a group convolves on the
input image and take the sum of all as the output to the correspond-
ing output channel. Unlike the traditional way, group convolution
do not have groups of convolutional kernel. Instead, the number of
convolutional kernel is a multiplication of number of input channel.
So the input is sliced into groups. And each group is convolved with
its corresponding convolution kernel. In the proposed model the
last convolutional layer is group convolution. This layer takes the
output of last layer with size of (4,4,200) tensor. And output size
of (8,8,200) with each 8×8 feature map corresponds to a class. I
will discuss later in detail how to encourage the model to learn the
feature map with corresponding class in the last group convolutional
layer. The above is all about the decoder part. Additionally, I add
two bacth normalization layer between three convolution layer and
two drop out layer with drop out probability of 0.3 after the batch
normalization layer.

3.4 Classification
As well known, DCNNs are loss driven algorithms. For every model,
loss function is responsible for encouraging the whole network
to learn its target. Until now, the model can output a tensor of
(8,8,200). And ideally, each 8× 8 feature map is corresponding
to a target class. However, it is hard to design a loss function to
compare the distance of a 8×8 feature map with a label. In order to
compare the difference of predicted class and target class. We need
to form (8,8,200) into a (1,200) vector. And comparing it with a
one-hot-encoding (1,200) vector which is the target class denote



as T . To achieve this goal, a global average pooling layer is added
which takes the average of each 8×8 into a single number with the
equation below.

Sk =
1

M×N ∑
M,N

fk(x,y) (8)

M and N denote the number of columns and rows of feature
map (here is 8×8). fk(x,y) are the value on M column and N row.
Sk is the output of each feature map. In this model we have S =
{S1,S2,S3....S200}. Finally, taking the SoftMax on S with equation
(4) to convert Sk into probability PK .Now, it is easy to compare S
and the target class T . This operation can be easily achived with
cross entropy loss with defined below.

L =−∑
k

Tklog(Pk) (9)

Where TK denote the corresponding class in target vector T . Cross
entropy loss would encourage the corresponding class to have an
output to 1. When doing backpropagation through the network, this
will encourage the corresponding 8× 8 feature map to activation
more until the model converges.

Above all is about the model structure and loss function. Below
Fig. 1 shows the proposed model architecture. Notice that the
last two convolutional layer is group convolutional layer. The First
orange box stands for a block of pre-trained ResNet-18 network.

Figure 1: Model architecture

4 EXPERIMENT

In this section is mainly about the conducted experiments in this
project. I will talk about the experiment setup and the experiment re-
sult in this section. Also I compare the result with other models. Our
model is trained by PyTorch1 opensource deep learning framework.

1https://github.com/pytorch/pytorch

4.1 Experiment Setup
As discussed in the previous section, our encoder part is a ResNet-
18 [2] model without the last MaxPooling layer and the classification
SoftMax layer. In detail, the ResNet-18 model is initialized with the
pre-trained weights. And all the other layers (the rest of encoder,
decoder and classification layers) are initialized with gaussian dis-
tribution random numbers. During all the experiment, the hyper
parameters are learning rate set to 0.0001, batch size are 100 and
number of epochs to train are 80. All the experiment has the same
hyper parameters unless we specified. I follow the rules to split the
data set by ImageNet official development kit. The learning rate
has a cosine decay rate during the training. To compare our model
performance, I find an same model on github 2. I follow the exact the
same way to train the network in their second experiment. The Table.
1 blow shows the accuracy of proposed model and baseline model.
The proposed model is more accurate in top1 accuracy and worse a
little in top5-accuracy which is an acceptable result. The Pre-trained
ResNet-18 (224x224) shows the official version of the ResNet-18
performance on original ImageNet data set as a reference.

4.2 Training

Model Accuracy@1 Accuracy@5

Baseline 52.80% 73.31%
Pre-trained ResNet-18 (224x224) 69.76% 89.08%

Proposed 53.78% 61.09%

Table 1: Comparison of proposed model and baseline models

During the training phase, I also record the training loss, training
accuracy, validation loss and validation accuracy as a reference of
correctness of my training procedure. The result as below.

Figure 2: Model architecture

Fig.2 shows the training and validation accuracy and loss progress.
The model converges at about 70 epochs which demonstrate that
the proposed model is learning the feature and perform at a stable
stage. In addition the doted line shows the accuracy and the solid
line shows the trend of loss.

My training environment is on GCP (Google cloud platform)3

with ubuntu 18.04, PyTorch 1.0.0 and a single Nvidia Tesla K80
GPU. The training time totally cost about 12 hours. I totally trained
the network from scratch three times. Each time the model shows a
very close performance and I take the best one which is shown in
Table.1. All the rest experiment is performed on this model unless
we specified.

2https://github.com/tjmoon0104/pytorch-tiny-imagenet
3https://cloud.google.com/



Above all is the details about the experiment. We will look in
deep of how this encoder-decoder CNN performs in the next section.

5 ANALYSIS

In this section, I utilize different ways to compare and visualize the
perform of proposed encoder-decoder CNN model. This section has
mainly three parts which show how is the proposed network learning.
Secondly, I compare the different aspect to show the effects to the
output. And finally, I did the error analysis.

5.1 How CNNs learn?
It has been a long time topic to reveal how CNNs learn the useful
feature to do classification or clustering. [11], [9], [6] and [5] shows
a wide variety of way to explain how CNNs learn and how make
them lear better and fast.

In section 3, I propose a novel way to visualize the fkx,y which
called activation map. Remind that activation map is generated by
the last group convolution layer. The reason why deploy the group
convolution layer is inspired by the nature of group convolution can
split the fusion features. So that the final stage output can get rid
of a fully-connected layer to do the classification which results that
the group convolution layer’s output is sliced into category with
no feature fusion to impact each other. By comparing the equation
(6), the proposed model is get rid of the last layer wclass

k . To better
visualize the activation map, I normalize the activation map by the
equation below.

fknorm(x,y) = fk(x,y)/max( fk(x,y)) (10)

The max() function will return the max pixel value in the raw acti-
vation map. Here, I didn’t process the negative value because the
last ReLU layer would not output negative values. To show how
CNNs learn the feature, I first compare the output of a same image
in different training stage. The examples are shown below.

Figure 3: Different activation map output from different epoch with
input image school bus

The fig.3, fig.4 and fig.5 shows the model’s prediction of three
images in epoch 1, 5, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70,
75 and 80. As we can see, the activation map forms a unique pattern
during the training for each input image. Actually, the model will
generate similar patterns for each class. We will reveal that later.

Figure 4: Different activation map output from different epoch with
input image brown bear

Figure 5: Different activation map output from different epoch with
input image christmas socks

From the figures, the unique pattern is changing rapidly during the
initial stage of training and becomes stable in the later epochs. This
trend is the same as the loss and accuracy. And another interesting
result is that the model learns gradually for each class. However,
some class learns fast and some slow. Fig. 3, the school bus’s unique
pattern forms at epoch 5. Fig.5, the christmas sock’s pattern forms
around epoch 10. The brown bear’s unique pattern forms at epoch 30.
Actually, the first 6 epochs misclassified the brown bear as golden
retriever or bison. And we can see there is a big change during epoch
20 to epoch 30 in Fig.4 which this big change I guess impact a lot in
form the unique pattern of brown bear.

From my observations, it is easy to see that different class may
learn differently. I guess there is a latent variable to control how
to learn different class. Ideally, when researchers train model, we



assume every class learns the same. But from the result, this as-
sumption may not correct. Because brown bear’s pattern and school
bus’ pattern forms at different time, these two classes’ accuracy may
different. And I guess the proposed model will perform better in
predicting school bus.

5.2 Pattern analysis
After understanding the form of each categories’ unique pattern, I
am also interested in analyzing how different pattern effect intra-
class. I hope that The model will generate the same-like pattern
when predict a same class. And also, I am still interesting in how
the confidence score Pk related to the activation map.

Figure 6: Randomly sampled correct prediction from validation
dataset

Figure 7: Randomly sampled wrongly prediction from validation
dataset

Above shows some randomly choosing image from validation set.
Fig.6 shows the correct prediction examples and Fig.7 shows the
wrongly predict examples. The label on top is the ground truth and
the label on right of each activation map is the prediction and the Pk
value which is the confidence score. Notice the Flagpole, Hog from
Fig.6 and Water jug, barrel, and beerbottle from Fig.7. We can see
these activation maps nearly has the same pattern even if they are
not the top1 prediction with high confidence score. Interestingly,
the three Water jug prediction shows that with the increasing of the
Pk the activation map is more sharp. Otherwise, the activation map
is dark and blur. In Fig.7, the confidence score has less difference
than Fig.6. This property may help researcher that we can check this
score to identify if potential wrong output occurs. To afflict this idea,

I examines on other pictures which also shows the same property.
Below are two examples, schoolbus and lion with each has two
different input but show similar activation map pattern. In addition,
these two example are both predict correctly (top1 accuracy).

Figure 8: Two examples of same class has same activation map left
is input and right is activation map

From the above example, it is easy to see when predict correctly,
the model would generate the same activation map pattern. In con-
clusion, proposed network can learn an unique and identifiable acti-
vation map which can be used to object classification. More impor-
tantly, this activation map pattern can be used to find the confidence
of the output which may help to identify the potential wrong output.

5.3 Noisy analysis
To learn how CNNs learn during training, it is not enough to see
the examples from input to output. In this section, I use some
conventional computer vision techniques to change the input images’
color space, shape or element. But keep the images’ main object
which is still can be identified by human eyes in some cases.

5.3.1 Gray image
The first experiment I conduct is eliminate all the color information
from the input image and keep the shape information. To do that I
convert the image into gray scale before feed into the model. Below
is some examples generated from this method.

Figure 9: Gray image as input compared with original image

Fig.9 shows some random examples of gray scale image com-
pared with original image. As I expect, I originally think the model



will perform very bad due to loss of color information. However, the
output astonishing me. I test on 100 random sampled image and the
accuracy is still 45.52%. From the observation, the activation map
for predicted image is still unique for that class which is identifiable.
But noticing on the wrong answer, the confidence score of wrong
answer can hardly achieve 20% which just like the comment stated
in section 5.1. The wrong answer always have low confidence score
and most scores are less different. In details, the confidence score of
iPod(4th row) is even increasing. The reason, I guess is that in the
training dataset most iPod is white or silver. Due to the same color,
that may be one of the reason the confidence score is increasing.

5.3.2 Gaussian blur
Gray scale image keeps the shape information of the original image.
How about we inverse this process which we keep the color infor-
mation and eliminate the shape information. To achieve this goal I
apply gaussian filter to the input image. The equation of gaussian
filter I use is below.

G(x,y) =
1√

2πσ2
e−

x2+y2

2σ2 (11)

Where σ is the standard deviation of the gaussian distribution. To
analyze more carefully, I apply two types of gaussian filter, kernel
size 3× 3 and kernel size 5× 5. Below is some example images
comparing the original images and gaussian blur images.

Figure 10: Gray image as input compared with original image

Compared with the gray scale image, 3×3 gaussian filter do not
impact a lot. However, 5×5 gaussian filter make the result worse
which is reasonable in this experiment. Interestingly, the last row
of the scorpion is misclassified as Pretzel. With the gaussian filter,
the confidence score is even increasing. This shows a weakness of
the CNNs. But we see other examples are still correct with 3× 3
gaussian filter. That is a good news for the robustness of the proposed
model. Notice that the Policevan example when apply 3×3 gaussian
filter, the left lower corner of the pattern is lost compared with the
original image. But the other part keeps the same. That shows the
usefulness of the activation map pattern.

5.3.3 color channel
In previous section, I discuss the effect of color and shape to the
model. Nevertheless, I still interesting in digging more deeply in

this field. So I design two more experiments to show deep effect of
color and noise. First, I would like to show the effect of different
color effect the result but keep the shape the same. Compared with
gray scale image, this method bring more challenges to the model
and I expect the model will perform worse than gray scale image.

Figure 11: shuffle the color channel compared with the original
image

Fig.11 shows the comparison of original image and the shuffled
channel image. The original images have channel order [R,G,B]
before feeding into the model. To shuffle the channel, I choose
two different channel order, [B,G,R] and [B,R,G]. The results are
interesting. In the example. Gazelle with shuffled channel order has
merely no change. However, with almost the same color, camel are
impact by this color channel ordering. Same as camel, school bus
are identified as police van with high confidence. After checking
the training data, camel data are captured with a wide variety of
angle and some of them only has part of the bogy. However, gazelle
always have full body with different angle. That’s why may be some
class are easy to learn and some other class are hard to learn (section
4). But why school bus are identified as police van? I believe that
the first reason they are both vans. The second reason, in the training
data the police van are some times blue and green (police van skin in
europe or some where). From the parking meter, it is easy to explain
why it has no effect for the channel ordering. The parking meter is
almost black. Changing the channel ordering has nearly not effect
for the color.

From this experiment, it is obviously that the CNN model is
very sensitive to the color information. And we can conclude that,
CNN is a data driven model. With more data, the noise can be
canceled during the training in a single image. So more data and
data augmentation is needed in training the CNN model.

5.3.4 Salt & Pepper noise
The last experiment I did is using a conventional and general way to
add noise to the input images. The previous experiment are dedicate
in fix one element and see the effects of the other element. In this
experiment, I utilize the Salt & Pepper noise (S&P noise) which is
a general noise would effect both shape and color. To generate the
S&P noise, the simplest idea is change random choose channel pixel
value to 0 for pepper or 255 for salt. The amount of pepper Mnoise is
controlled by λ showing in the equation below.



Mnoise = λ × (H×W ×C) (12)

Where H, W and C denote the input image height, width and
channel. We pick two λ in this experiment 0.005 and 0.0005. Here I
show some example images.

Figure 12: Salt & Pepper noise image compared with the original
image

From the above examples, the S&P noise show different action
of the previous experiment. Nearly all examples above are effected
by this kind of noise. And intuitively, all the confidence score are
decreased linearly. S&P noise not only changes the shape but also
changes the color which is hard for the model to capture the changes.
I also send these images to 10 people to identify what is this. Unlike
the above examples, this examples all can be correctly identified
by human eyes (the previous experiment are not). This shows a
new idea that the CNNs identify the object different than humans.
Maybe CNN is not as string as we think. It is also capture the subtle
information but not a global information. So that this S&P noise can
effect the results. Nevertheless, this result shows a new way to do
the data augmentation which is to add the S&P noise when training
the model.

6 CONCLUSION

In this CSE 261 project, I propose a new model architecture which
is suitable for visualizing a certain kind of CNN models, encoder-
decoder model. And proposing a new activation map technique to
visualize the CNN model via group convolution. I conduct a bunch
of experiments to show the potential factors to effect the CNN model
and use the comparison visualize technique to compare and find the
most informative factor. We explore the progress of how CNN learns
during training stage and find that for each class the learning time is
different and that’s why the model has some bias for some classes. I
conduct a bunch of experiment to show the noise effect the models.
And the result is interesting. The CNN model utilize both shape
and color information to predict the result. But for different objects,
the discriminating information seems different. That’s probably
what CNN learns during training. The final experiment shows the
effectiveness of S&P noise effect the model in for linearly decreasing
the confidence score may be can be utilize in the future of training
CNN models.

All in all, in this project I combine the computer vision and data
visualization and try to explain how CNN learns and its strength
and weakness in a data visualization way. This new perspective

encourage the future study of computer vision and I hope more
researchers in data visualization field can be interesting in deep
learning and computer vision. All the code can be found on my
github repo 4

4https://github.com/zxh009123/visualization-DCNNs-CSE261-W19-
UCSC



REFERENCES

[1] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In
Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q.
Weinberger, eds., Advances in Neural Information Processing Systems
27, pp. 2672–2680. Curran Associates, Inc., 2014.

[2] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 770–778, 2016.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification
with deep convolutional neural networks. In F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, eds., Advances in Neural Information
Processing Systems 25, pp. 1097–1105. Curran Associates, Inc., 2012.

[4] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. pp. 2278–2324, 1998.

[5] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. In Proceedings of
the 28th International Conference on Neural Information Processing
Systems - Volume 1, NIPS’15, pp. 91–99. MIT Press, Cambridge, MA,
USA, 2015.

[6] K. Simonyan and A. Zisserman. Very deep convolutional networks
for large-scale image recognition. In International Conference on
Learning Representations, 2015.

[7] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson. Understand-
ing Neural Networks Through Deep Visualization. arXiv e-prints, p.
arXiv:1506.06579, June 2015.

[8] M. D. Zeiler and R. Fergus. Visualizing and Understanding Convolu-
tional Networks. arXiv e-prints, p. arXiv:1311.2901, Nov. 2013.

[9] M. D. Zeiler and R. Fergus. Visualizing and understanding convolu-
tional networks. In D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars,
eds., Computer Vision – ECCV 2014, pp. 818–833. Springer Interna-
tional Publishing, Cham, 2014.

[10] T. Zhang, G.-J. Qi, B. Xiao, and J. Wang. Interleaved group convolu-
tions for deep neural networks. CoRR, abs/1707.02725, 2017.

[11] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. Learning
deep features for discriminative localization. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2016.

[12] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image
translation using cycle-consistent adversarial networks. In Computer
Vision (ICCV), 2017 IEEE International Conference on, 2017.


	Motivation
	Related Works
	Proposed method
	Dataset
	Encoder
	Decoder
	Classification

	Experiment
	Experiment Setup
	Training

	Analysis
	How CNNs learn?
	Pattern analysis
	Noisy analysis
	Gray image
	Gaussian blur
	color channel
	Salt & Pepper noise


	Conclusion

