
Visualizing the Uncertainties of Probabilistic Soft Logic With a
Graphical Model

Jason Ting
University of California, Santa Cruz

1156 High St
Santa Cruz, CA 95064

jting2@ucsc.edu

Abstract— Probabilistic Soft Logic is a machine learn-
ing framework used in the Statistical Relational Learn-
ing, or SRL, community that generates a probabilistic
model to find soft truth. Unlike traditional machine learn-
ing with IID methods, Probabilistic Soft Logic breaks
the IID assumption by utilizes collective classification to
make an inference based on the model. Furthermore,
the difference between this probabilistic model and other
probabilistic models like Markov Logic Network, Prob-
abilistic Soft Logic uses soft truth value to make it’s
inference.

The objective of this paper is to construct a graphical
model to visualize the uncertainties and how it impacts
the model as a whole. This will be done through an im-
plementation of a multimodal graph with many different
nodes and edges that each have different characteristics.

I. INTRODUCTION

A. Motivation

The technological advancement starting the begin-
ning of 21st century allowed us to bring machine
learning and artificial intelligence to the next level.
With higher computational efficiency, we were able to
effectively train models to make inference and even
train robots to play games like Chess, Go, League of
Legends, etc.

Training these models generally requires large
amount of data. Most of the time, there exists some
excessive data that doesn’t help the model in any
way. People usually visualize these data through charts,
graphs, tables, etc. to identify these unwanted variables.
Even though there has been many different methods
to visualize data, there hasn’t been many methods to
visualize different types machine learning algorithms.

The main aspect of Probabilistic Soft Logic is it
follows a set of logical rules written to infer with some
probability of an event occurring. Below is an example
of a logical rule:

Fig. 1. Different types of visualization [1]

1 : Likes (User , ItemA) && Similar (ItemA ,
ItemB) -> Likes (User , ItemB)

What this specific logical rule we say since a user
likes item A with some probability and item A is sim-
ilar to item B, we can then infer with some probability
that the user will like item B. As you can see on the left,
this logical rule has an initial weight of 1. Generally,
there will be multiple logical rules that come into play
when deciding whether a user likes item B.

The motivation behind this paper is to be able to
visualize a Probabilistic Soft Logic model in order to
visualize how the algorithm works. Not only will it take
visualization to the next step, it also helps understand
the underlying mechanism behind Probabilistic Soft
Logic. Being able to visualize these mechanism can
help users see how the uncertainties in each rules in
Probabilistic Soft Logic affect the model’s decision
making. Furthermore, visualizing the impact of the
weights can help understand the importance of it corre-

sponding to the logical rules. Another goal of this paper
is to visualize the satisfaction of each rules, or how
confident each logical rules are with their inference.
This lets us know the importance certain logical rules
and the role they play in the inference process.

The biggest challenge for this scientific visualization
is visualizing the graphical model in an aesthetic way
while maintaining the comprehensibility. Visualizing a
machine learning model in general has always been
fairly difficult as most model deals with matricies of
features like neural networks. Having a visual rep-
resentation of a machine learning model can greatly
help enthusiasts understand how the algorithm operates
instead of treating it as a black box. Furthermore, this
visualization will be able to help users using Proba-
bilistic Soft Logic identify data errors and understand
which ground rules will be more beneficial.

B. Data

For this project, we will be using a synthetic dataset
by Lise Getoor and her team at University of California,
Santa Cruz to create this graphical model. In this
dataset, we want to the acquaintance links between
different people. We are given information on where
each people have lived, what activities they like or
dislike, and some known acquaintance link. Our goal
is to visualize the probability of the unknown acquain-
tance links. In this case, we will have some known
acquaintence data and we want to infer on the unknown
acquaintance data.

In our model, each of our nodes will contain differ-
ent people and an attribute pertaining to that person.
Then we will have an edge what shows the inferred
probability of each acquaintance link.

II. RELATED WORK

Even though there hasn’t been any studies on visu-
alizing a graphical model for Probabilistic Soft Logic,
there has been some previous studies on user prefer-
ences for explanations on a hybrid recommendation
system that utilizes Probabilistic Soft Logic through a
variety of text, visual, and graph-based formats [1]. An
example would be figure 1 where the author used con-
centric circles, Venn diagrams, and pathways between
columns to describe a logical rule.

In addition, there has also been previous studies on
visualizing uncertainty in graphs[2]. In that paper, it
talks about different techniques and prototype tools to
visualize multimodal graphs. To extend on both of the
ideas above, we focus on combining both of those ideas

Fig. 2. Multi modal graph [2]

Fig. 3. Dualnet [3]

above to create a tool that views the uncertainties of
a graphical model for Probabilistic Soft Logic. Just
like figure 2, my proposed graphical model will have
different nodes and edges except in a way larger scale.
Furthermore, it will show more information including
the weight of each logical rules, inference value, sat-
isfaction of each rules, and the impact of an inference
from each rules.

Namata et al. designed a network visualization tool
called Dualnet shown in figure 3 to visualize a multiple
coordinated view of a given network. They imple-
mented it using multiple different views that is also
interactive as seen above.

III. BACKGROUND

A. Probabilistic Soft Logic

Probabilistic Soft Logic is an open source machine
learning framework that uses logical representation to
define large graphical model. Because it is a templat-
ing language for Markov Random Field which allows
Probabilistic Soft Logic to provide a fast and scalable
inference. What makes Probabilistic Soft Logic dif-
ferent from other statistical relational learning models
like Markov Logic Network is that it instead of having
hard truth values, the ground atoms all have soft truth
values between [0,1]. Given a set of weighted logical
rules, Probabilistic Soft Logic builds a graphical model
defining a probability distribution over the continuous
space of values of the random variables in the model.
Furthermore, Probabilistic Soft Logic shapes the model
into a convex optimization problem wheras Markov
Logic Network is an NP-hard problem.

The rules are defined as below:

∀u1, u2, i. w : SimilarUsers(u1, u2) ∧
Likes(u1, i) −→ Likes(u2, i)

∀i1, i2, u1. w : SimilarItems(i1, i2) ∧
Likes(u1, i1) −→ Likes(u1, i2)

In this notation, w will represent the weights,
u1, u2, i, i1, i2 will all represent random variables. The
two rules above are defined as logical rules and the goal
is to use some available data to create many different
ground rules based on logical rules. A ground rule is a
logical rule where the random variables are replaced by
constants. For example, SimilarUsers(’Annie’, ’Bob’)
would be a a ground rule where ’Annie’ and ’Bob’ are
both constants.

As mentioned above, all ground atoms have soft
truth values between [0,1] and in order to compute the
soft truth value for each logical rule, one must first
transform the logical rules into boolean logic.

Because the logical rules are in the form of A implies
B
(
A −→ B

)
, the boolean logic would be ¬A ∨B.

The truth table is shown below:

A B ¬A ∨B
F F T
F T T
T F F
T T T

’A’ would be the lefthand side of the rule and ’B’

would be the righthand side, but once you convert it
to boolean logic, the left and righthand side of the rule
will disappear.

Now that you have transformed the ground rules
logic boolean logic, you can check whether the rules
are satisfied or find the distance to satisfaction d of
each individual ground rules by using the Lukasiewicz
relaxation formula below:

r1 ∧ r2 = max{r1 + r2 − 1, 0}

r1 ∨ r2 = min{r1 + r2, 1}

¬r = 1− r

where r represents the value of each ground atoms.
Now we can transform this into a MAX SAT

problem with this Lukasiewicz relaxation in the
formula below:

argmaxr∈[0,1]n
∑
Cj∈C

wjmin(
∑
i∈I+

j

ri +
∑
i∈I−

j

(1− ri, 1))

where C represents the logical knowledge or rules
that gets interpreted by using Lukasiewciz logic, wj

represents the weight of each logical knowledge. Let
I+j in i ∈ I+j within the summation correspond to the
non-negated atoms in the ground rules, likewise, let
I−j in i ∈ I−j within the summation correspond to the
negated atoms in the ground rules.

Because of the formula above, this allows Proba-
bilistic Soft Logic to be a convex optimization problem
which is fast and scalable. Probabilistic Soft Logic will
jointly infer the best satisfaction value for all the target
atoms to maximize the equation above.

Just like many other machine learning algorithm,
Probabilistic Soft Logic also includes a weight learning
component. The nice thing about the weight learn-
ing component is there are many different types of
weight learning method users can invoke including
different types of voted perceptron algorithm including
MaxLikelihood MPE, Expectation Maximization, Max-
PseudoLikelihood, etc. In addition to voted perceptron
algorithms, Probabilistic Soft Logica can also invoke
different types of grid search algorithm including Ran-
dom Grid Search, Rank Search, Continous Random
Grid Search, etc.

IV. METHOD

A. Forced Directed Graph

Forced directed graph is an algorithm that assist in
drawing graphs in an aesthetically pleasing way. Instead
of x and y coordinates, forced directed graph utilizes
information from the data to create its graph. To do
this, the algorithm simulates the the graph for a certain
number of iterations before actually plotting the graph.
In addition, the algorithm uses a spring-like attractive
force based on Hooke’s law to pull adjacent nodes
closer to each other while utilizing repulsive force
based on Coulomb’s law to push all irrelevant nodes
away.

Forced directed graph algorithm has many advan-
tages including simplicity, flexibility, and most impor-
tantly interactivity. This helps with the visualization of
a Probabilistic Soft Logic model because of the amount
of nodes and edges it contains. Interactivity can help
users choose certain nodes to view and examine some
details.

To implement this algorithm, I used a javascript
library called d3. D3 is a scientific visualization library
that implements forced directed graph as well as vari-
ous other implementation.

B. Data Preprocessing

In order to visualize any sort of graphical model,
we first need to obtain the data. The data used to
visualize the graphical model in this paper is the simple
acquaintance data. The data contains information on
where people lived, who they know, and what they like.
The goal of this model is to infer who everyone knows.
In order to obtain the ground rules and its satisfaction,
after evaluation, I output those data onto a txt file.

After obtaining the data from the Probabilistic Soft
Logic algorithm, there was a lot of data preprocessing
involved. Generally, the form that the data needs to be
in for a forced directed graph is shown below:

’nodes’ : [
{ ”groundAtom”: ”LIKES(’Steve’, ’Hiking’)”,
”group”: 2, ”type”: ”closed” },
{ ”groundAtom”: ”LIKES(’Dhanya’, ’Hiking’)”,
”group”: 2, ”type”: ”closed” },
{ ”groundAtom”: ”LIKES(’Ben’, ’Hiking’)”, ”group”:
2, ”type”: ”closed” }
]

’links’ : [
{ ”source”: ”KNOWS(’Ben’, ’Alex’)”, ”target”:
”KNOWS(’Elena’, ’Alex’)”, ”rule”: ”¬(
KNOWS(’Elena’, ’Alex’)) ∨ ¬(KNOWS(’Ben’,
’Elena’)) ∨ KNOWS(’Ben’, ’Alex’)”, ”satisfaction”:
0.985 },
{ ”source”: ”KNOWS(’Ben’, ’Steve’)”,
”target”: ”KNOWS(’Ben’, ’Elena’)”, ”rule”: ”¬(
KNOWS(’Elena’, ’Steve’)) ∨ ¬(KNOWS(’Ben’,
’Elena’)) ∨ KNOWS(’Ben’, ’Steve’)”, ”satisfaction”:
0.996 },
{ ”source”: ”KNOWS(’Ben’, ’Alex’)”, ”target”:
”KNOWS(’Ben’, ’Dhanya’)”, ”rule”: ”¬(
KNOWS(’Dhanya’, ’Alex’)) ∨ ¬(KNOWS(’Ben’,
’Dhanya’)) ∨ KNOWS(’Ben’, ’Alex’)”, ”satisfaction”:
1 }
]

The nodes data is used to represent the nodes in
the graphical model. Each node will have a unique
id, or groundAtom, which will be the node’s identifier.
The group of the nodes will determine which predicate
it belongs to. The type will allow the user to know
whether it is open or closed predicate.

As for the link data, it is used to show correlation
between the nodes. It basically inform the users which
nodes are affecting each other. The link data will
be fairly similar to node data except it will contain
the source, target, rule, and satisfaction. The source
and target of each link correspond to the source and
destination node respectively. The rule and satisfaction
parameter will correspond to the rule of the source and
destination nodes and the satisfaction of that entire rule.

V. RESULTS

Figure 4 shows the overall graphical representation
of a Probabilistic Soft Logic model. The nodes being
displayed above represents individual ground atoms of
the model. The color of the nodes in the Probabilistic
Soft Logic each represents different predicate. How-
ever, only open predicate(s) will have the name of the
ground atoms displayed. There are two reasons for this.
First off, it is to prevent over crowding of the graphical
model. Secondly, since we are making inference on the
open predicate(s), the user will be able to identify nodes
that are open predicate(s).

Fig. 4. Simple Acquaintance Graphical Model With Search Bar

The edges of each ground atoms above can represent
two different possibilities:
• Link two unobserved atoms within each corre-

sponding logical rules together
• Link an unobserved atom with an observed atom

of the corresponding logical rules

Technically speaking, Probabilistic Soft Logic is an
undirected graphical model where all the nodes will
create many cliques, however for the sake of visualiza-
tion, a link between two observed atoms is not really
useful because the value of the unobserved atoms that
you are inferring is the important part.

Another feature of this visualization is a user can se-
lect a node and all the unrelated links with the selected
node will disappear and the opacity of unrelated nodes
will also decrease as shown in figure 5. Furthermore,
the names of all related ground atoms to the selected
node will appear. This shows you a better visualization
of which ground atoms are affecting the selected node
instead of visualizing one giant graph.

In addition, selecting the nodes will also trigger a
side bar menu as shown in figure 6. The side bar will
allow the user to view all the rules corresponding to
the selected node and the satisfaction of each rule.

Being able to view all the rules corresponding to the
selected node can help users spot errors in the data. For
example, if a user was expecting certain ground rule(s),
he or she can examine the side bar to ensure that the
ground rule(s) is actually there. Furthermore, users can
also catch bizarre rules that shouldn’t exist. Besides the
ground rules, being able to see the satisfaction of each
ground rules will show the users which ground rule
isn’t as satisfied as others.

The color of the nodes in the Probabilistic Soft Logic
each represents different predicate. This color scheme
also help users visually cluster predicates together. In
addition, color scheming help users further identify the
open predicate. If the colors weren’t different, it will
be difficult to identify open predicate nodes by having
it display the ground atoms.

Another important feature from this scientific vi-
sualization is it has the capability of displaying the
rules each link creates. Although it is not as relevant
currently, however once the link is color schemed with
red being the connection is negatively affecting the
satisfaction of the rule and green being the connection
is positively affecting the satisfaction of the rule, users
will be able to identify the rule of the connection and
how that specific connection affects the satisfaction.

In certain cases, there will exist much more nodes

Fig. 5. Node Selection

than the current example. It will be a difficult task for
a user to find a specific ground atom. A way to tackle
this problem is implementing the search bar on the top
right as shown in figure 4. You can select which ground
atom you want to vie by simply typing in the ground
atom in the search box. This will alleviate the problem
of looking at every node manually to find the specific
ground atom.

VI. PROPOSED RESEARCH DIRECTIONS

The current graphical model design is just a pro-
totype. Given the time and opportunity, I want to
be able to compare two different Probabilistic Soft
Logic models and visualize the performance difference
between the two. This can help us compare the pros
and cons of both model hopefully be able to learn
from both models. In addition, I want to be able
to color code the links of each node to represent
whether the that link positively or negatively affected
the open node’s value. With this, we can improve on
the two models to hopefully create a better model. In
addition, visualization is very subjective and therefore
this project will always have room for improvement or
enhancement.

The current search bar does not give suggestions as
you type in the ground atom. Adding this feature will

allow users to find the ground atoms he or she is
searching for much faster than manually looking at the
graph or typing everything in perfectly.

Another important implementation would be to cre-
ate a general purpose code that can preprocess all the
data when you run the training script for Probabilistic
Soft Logic. Afterward, just open up the html file and
the visualization would be there.

VII. CONCLUSION

Overall, visualizing machine learning algorithm in
general can be quite tricky. Being able to visualize the
graphical model for Probabilistic Soft Logic can be
beneficial for the user utilizing the machine learning
model. It helps the user obtain a better understanding
visually of what the model actually looks like. In
addition, it allows the user to double check for data
error and see the satisfaction of each rule.

REFERENCES

[1] User Preferences for Hybrid Expla-
nations. (2019). [online] Available at:
https://linqs.soe.ucsc.edu/sites/default/files/papers/kouki-
recsys17.pdf [Accessed 1 Feb. 2019].

[2] Visualizing Uncertainty in Graphs.
(2019). [online] Available at:
https://users.soe.ucsc.edu/ pang/261/s10/projects/projects/ncesario/proj/paper.pdf
[Accessed 1 Feb. 2019].

[3] A Dual-View Approach to Interactive Network
Visualization. (2019). [online] Available at:
https://www.cs.umd.edu/ namatag/dualnet/cikm2007-Full.pdf
[Accessed 1 Feb. 2019].

[4] Hinge-Loss Markov Random Fields and Proba-
bilistic Soft Logic. (2016). [online] Available at:
https://linqs.soe.ucsc.edu/sites/default/files/papers/bach-
jmlr17.pdf [Accessed 1 Feb. 2019].

[5] Simple Acquaintence data. (2016). [online] Available
at: https://github.com/linqs/psl-examples/tree/master/simple-
acquaintances/data [Accessed 1 Feb. 2019].

