
Visualization of Memory Reuse in Immutable Stacks and 
Lists 

 Abstract - I propose a visualization tool designed specifically 
for two immutable data structures: an immutable stack using a 
singly-linked list and an immutable list using a binary tree. The 
visualization tool produces a rendering of nodes used by the data 
structures, along with color-coding to show memory reuse in the 
form of reference counts. After creating several stacks or lists 
from the same original source, many nodes have multiple refer-
ences from different data structures. Higher reference counts are 
colored differently than lower reference counts, providing a quick 
visual illustration of the memory efficiency of the immutable data 
structures. 

Index Terms - Data visualization, immutable, stack, list

I.  MOTIVATION 

 Tools to visualize in-memory data structures are invalu-
able for debugging and teaching. In practice, efficient, im-
mutable data structures are useful when writing robust code 
that is easy to maintain. However, teaching students the con-
cepts behind efficient immutable data structure implementa-
tions is difficult without visualization tools. A need exists for 
visualization tools that can be utilized by instructors, when 
presenting to the class, and students, when learning. 

II.  RELATED WORK 

 Data structure visualization is not new. Many methods 
exist to render common data structures. Also, a single data 
structure may have many visualization methods. For example, 
Herman et. al. surveyed a variety of graph visualization meth-
ods in their paper Graph Visualization and Navigation in In-
formation Visualization: A Survey. The following is non-ex-
haustive list of surveyed layout structures or views[1]: 

• Tree layout 

• H-tree layout 

• Ballon view 

• Radial view (2D) 

• Radial view (3D) 

• Tree map 

• Information cube 

• Hierarchical cluster 

  

 The University of San Francisco has visualizations for a 
variety of different data structures and algorithms[2]. Binary 
search trees and linked-list-based stacks are supported, but 
both are mutable. Furthermore, no binary tree for a list is sup-
ported. In addition, no concept of reference count coloring is 
provided. While the tool is useful for helping students under-
stand data structures and operations, immutable data structures 
are not an area of focus. 

 From a rendered-structure standpoint, a rather standard 
tree view similar to that of existing tree visualizations is ex-
pected to suffice for this project. However, a preliminary 
search for immutable-structure-specific visualizations did not 
yield any significant results. Similarly, reference-counting-
specific visualization methods did not yield any significant 
results. 

 This project’s work intends to be novel in the area of 
specifically visualizing reference counts of nodes in im-
mutable data structures. 

III.  ETO_IMMSTACK AND ETO_IMMLIST 

 Two JavaScript classes, ETO_ImmStack and ETO_Imm-
List, were written to implement an immutable stack and an 
immutable list, respectively. Custom implementations were 
chosen, as opposed to finding existing implementations in 
open-source code, so that all internal data would be accessible 
and aspects of internal data structure can be controlled. Also, 
the ETO_ImmList implementation uses a binary tree for sim-
plicity, while other, real-world implementations may be more 
likely to use a more complex structure such as an RRB tree[3]. 

 ETO_ImmStack uses a singly-linked list internally.  Each 
node’s next member references the node below it, or null if 
the node is at the bottom of the stack. Each node is frozen us-
ing JavaScript’s Object.freeze method, so as to prevent alter-
ations. ETO_ImmStack exposes the stack’s top node through 
the enumerable topNode member. 

 ETO_ImmList uses a binary tree internally. The lists con-
tents are stored in order in the tree’s leaves, all of which are on 
the same level. Each node is frozen using JavaScript’s Objec-
t.freeze method, so as to prevent alterations. ETO_ImmList 
exposes the tree’s root node through the enumerable root 
member. 
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 The ETO_ImmStack implementation matches the time 
and space complexities of a mutable stack for each imple-
mented operation. The ETO_ImmList implementation is slow-
er than a mutable list for additions at the end of the list, re-
movals from the end of the list, and indexed read/replace ac-
cess. However, the mentioned operations all stay within O(log 
N) time complexity, which is considered practical for real-
world use. Table 1 contains a summary of implemented opera-
tions and associated worst-case time complexities.  

IV.  USER INTERFACE 

 The software’s UI contains a code editor where the user 
can type a snippet of JavaScript code. The open-source Ace 
code editor is used (https://ace.c9.io/). 

 The user’s code is expected to construct instances of ei-
ther ETO_ImmStack or ETO_ImmList objects. Multiple in-
stances of either can be constructed, but mixing instances of 
stacks and lists is currently not supported. 

 After entering code, the user can click the button below 
the code editor to refresh the visualization of the stack(s) or 
list(s). Should the code contain errors, the errors will display 
in a message box below the refresh button. If the code does 
not contain errors, the data structures are rendered in a canvas 
below the message box. Figure 1 shows a sample of the user 
interface with a single stack being rendered. 

V.  PARSING THE USER’S CODE 

 When the refresh button is clicked, the code string entered 
by the user is analyzed. Regular expressions are used to rec-
ognize lines of code that instantiate an ETO_ImmStack or 
ETO_ImmList. The declare variable name strings for each are 
stored in a set named nameSet. 

 A second regular expression is then built to recognize 
variable declarations that are assigned the result of one of the 
objects from nameSet. If found, the new variable names are 

added to nameSet. The process repeats until no new variable 
names are found. 

 A string of JavaScript code is generated from the set of 
variable names. The code inserts each variable name into an 
array named “structures”. This string is concatenated to the 
end of the user’s JavaScript code, then a JavaScript function is 
built using the code as the body, and a single argument named 
“structures”. Upon successful construction of the JavaScript 
function, it is invoked with an empty array. Upon completion, 
the array will contain each data structure that needs to be ren-
dered, along with a corresponding variable name for that 
structure. 

Figure 1: User interface with a simple stack rendered

Class Member Description Worst-case time

ETO_ImmStack length Gets the number of items in the stack. O(1)

ETO_ImmStack pop() Creates and returns new stack with the item popped off the 
top.

O(1)

ETO_ImmStack push(item) Creates and returns new stack with the item pushed on the top. O(1)

ETO_ImmList add(item) Creates and returns new list with the item added. O(log n)

ETO_ImmList length Gets the number of items in the list. O(1)

ETO_ImmList removeLast() Creates and returns new list with the last item removed. O(log n)

ETO_ImmList replaceAt(index, newItem) Creates and returns new list with the item at the specified index 
replaced by the new item.

O(log n)

Table 1: ETO_ImmStack and ETO_ImmList members and worst-case time complexities

https://ace.c9.io/


VI.  CONNECTIVITY GROUPS: STACKS 

 A single stack may not suffice to properly visualize con-
tent created by the user’s code. All immutable stack operations 
are implemented to return a new stack that shares nodes from 
the previous stack, so new stacks generally branch off an ex-
isting stack, as shown in figure 2. But the user may elect to 
create multiple new stacks that do not all stem from the same 
original source, and therefore do not share any nodes. In this 
case, a single stack with branches would not suffice as an ac-
curate rendering. 

 For example, the following code produces two stacks with 
identical content, but no nodes are shared between them. 

let s1 = new ETO_ImmStack(); 

let s2 = new ETO_ImmStack(); 

for (let i = 0; i < 5; i++) { 

    s1 = s1.push(i); 

    s2 = s2.push(i); 

} 

 Rendering disjoint stacks as separate is crucial to properly 
convey when stacks do or do not share nodes. Stacks must be 
grouped based on connectivity. Two stacks are connected if 
they have 1 or more nodes in common. 

 Reference counts alone do not determine stack groups. 
For example, among 4 stack objects a particular node could be 
shared by only 2 of the 4. Such a node would have a reference 

count of 2, but the 4 stacks could potentially be connected or 
disjoint. 

    Since nodes are immutable, any shared node eventually 
leads to (or is) a shared node at the bottom of the stack. There-
fore, stacks can be grouped by a simple criteria: Two stacks 
are in the same group if and only if they share a bottom node. 

VII.  CONNECTIVITY GROUPS: LIST TREES 

 Much like the stacks, a single binary tree may not suffice 
to properly visualize content created by the user’s code. Any 
two trees sharing one or more nodes should be rendered as a 
connected tree. Any two trees not sharing any nodes should be 
rendered as separate trees. 

 Determination of tree groups is more complex than stack 
groups. Stack groups are determined based on a single node at 
the bottom of the stack. Tree groups are determined by shared 
leaf nodes. 

 The NamedListGroup class implements a static build 
method, that returns an array of NamedListGroup objects. 
Each object represents a collection of lists whose trees are 
connected by 1 or more shared nodes. The build algorithm 
does the following: 

1. Build and populate JavaScript Map object, nodeMap, 
that maps a node to a descriptive structure containing a set 
of trees that contain the node. 

2. Create a collection of Set objects, initially 1 per list. Store 
them in a Map object, listGroupMap, that maps a list 
to the set containing all lists with connected trees. 

3. Iterate through nodes in nodeMap. If a node’s list set 
contains more than 1 referencing list, merge the sets asso-
ciated with each list together into 1 set, then update 
listGroupMap for each list in the merged set. 

4. Find the distinct sets in listGroupMap, build a 
NamedListGroup for each one, and return the groups in 
an array. 

VIII.  NODE POSITIONING: STACKS 

 When rendering a collection of stacks, node positions in 
the render view must be computed. Since stacks are typically 
rendered vertically, the tallest stack amongst the collection, 
denoted as T, is rendered vertically first, then shorter stacks 
branch off at appropriate points. 

 A JavaScript Map object is used to map a node to a de-
scriptive structure that includes an (x, y) position. Nodes in 
stack T are iterated through first. The top node is arbitrarily 
placed at (0, 0). Each next node is placed below the previous, 
such that the distance between the nodes’ centers is a bit more 
than a node’s diameter. 

 After T’s nodes are positioned vertically, each additional 
stack is analyzed. For some stack S, node N is found such that 
N is the first/highest node from S that is also in T. Each node 

Figure 2: Stack s2 branches off of s2 above node 4



below N has already been positioned, so only nodes above N 
need positions computed. 

 An arbitrary set of branching directional vectors is used: 
(1, 1), (1, 0),(1, -1), (-1, 1), (-1, 0), and (-1, -1). A node at a 
branching point will head off in one of these directions. More 
than 6 branches from a single node is currently not supported. 

IX.  COLOR SCHEMES 

 Two different color schemes were tested during develop-
ment. An initial assumption was that a gradient scheme would 
suffice if the starting and ending colors were sufficiently dif-
ferent. Green and red were chosen as the two colors. The 
scheme chooses red for nodes with one reference and red for 
nodes with the maximum number of references. Colors for 
reference counts in between 1 and the max were computed 
based on linearly interpolating. The figure below shows the 
results on a sample tree. 

 Although discernible, the color scheme didn’t seem to 
provide as clear of a picture as desired. The color used for 2 
references doesn’t stand out from the other colors, especially if 
the display’s color quality is poor. Therefore, a new color 
scheme was developed and tested in similar situations. 

 Choosing colors arbitrarily, such that colors have high 
visual contrast between each other, produced better results. 
The same tree is shown with the arbitrary color scheme in 
figure 4. Note that the two green nodes with a reference count 
of 2 have a more pronounced difference from the blue and 
black nodes.  

 The arbitrary color scheme uses the following colors in 
this order: 

1. Black 

2. Green 

3. Blue 

4. Orange 

5. Magenta 

6. Yellow 

7. Red 

8. Gray 

 The colors may be reordered and/or extended in a future 
version, but the color scheme seemed to suffice for most situa-
tions. 

X.  RENDERING CONNECTED GROUPS 

 Each connected stack group is rendered as 1 unit. Each 
distinct group simply gets rendered to the right of the previous 
group, as shown below in figure 6. 

 Each connected tree group is currently rendered as 1 tree.  
Only nodes from an arbitrarily chosen tree are shown, but ref-
erence count coloring is applied to represent all trees in the 
group. Future work may change this to render all nodes from Figure 4: Arbitrary color scheme used on a list’s binary tree

Figure 3: Green/red color scheme used on a list’s binary tree

Figure 5: Code that produces 2 stack groups

Figure 6: Rendering of the 2 stack groups made by figure 5’s code



all trees, although this would introduce complexities with node 
spacing/locations. 

XI.  ROOT NODE EXTERNAL LABELS 

 In order to allow the viewer to match a JavaScript vari-
able with a corresponding rendered list, external node labels 
are added to each root node in the rendered tree view. For ex-
ample, figure 7 shows code that creates two lists. list1 is a 
list containing the integers 1 through 8. list2 is built by 
adding the integer 100 to list1. Since list1’s tree was 
perfect, list2’s tree has a height one greater. This means that 
list1’s root is list2’s root’s left child. 

 Positioning of root labels and arrows is arbitrarily chosen 
as up and to the left. This generally suffices, since roots are 
often along the leftmost side of the tree. However, it is ac-
knowledged that should certain operations be added to the 
immutable list, such as sublist or concatenation, then roots 
may appear more towards the center of the tree. The labeling 
position would not suffice in such cases, as the label and/or 
arrow may overlap another node. 

 A problem occurs when two list’s root nodes exist at the 
same position. In fact, a plethora of problems beyond just root 
node labeling arise because of this. Solutions to other aspects 
of this problem are discussed in later sections. For now, just 
the labeling problem is addressed. 

 If two root nodes occupy the same position, one option is 
to have cascade positions, as will be discussed more in the 
next section. In this case, adding cascaded labels generally 
results in overlap and is visually unpleasant, as shown in fig-
ure 8. 

 This problem was addressed by producing a single label 
for all root nodes that cascade from a shared position. A com-
ma-separated list of all JavaScript variable names correspond-
ing to the root is used as a single label, as shown in figure 9. 

 The algorithm to determine how to group labels for a 
cascaded node group is as follows: 

1. Create Map object rootToNamedList, which maps 
a list tree's root node to the named structure object. 

2. Initialize handledShared, a Set object that tracks 
sets of shared nodes that already have had a label pro-
duce for them. 

3. For each named list that's being rendered: 

a. Let desc = the descriptor for the named list's 
root node, which includes a list of all nodes that 
shared the same position. 

b. If handledShared contains desc's list of nodes 
sharing the position, skip this list. 

c. Else iterate through the lists whose roots share the 
position, producing a comma-separated string of 
all list names. 

d. Add the list of nodes sharing the position to 
handledShared to prevent the label from be-
ing built/rendered more than once. 

XII.  OVERLAPPED, NON-SHARED NODE POSITIONING 

 When two distinct lists have the same height, their root 
nodes are positioned at the same location. However, the 2 
nodes are NOT shared, since distinct each list has a distinct 

Figure 7: Root node labels for 2 connected trees

Figure 8: Overlapping labels for l1 and l2’s root nodes

Figure 9: Comma-separated node label



Figure 10: Overlapping node counts rendered in the upper-right of nodes. Trees are produced by figure 13’s code.

Figure 11: Cascaded positioning for non-shared nodes at the same position. Trees are produced by figure 13’s code.



tree root node. A few methods were tried to deal with the issue 
of 2 or more distinct nodes occupying the same position. 

 The code in figure 13 creates 4 lists and accompanying 
trees. Six instances of overlapping, non-shared nodes exist in 
the produced trees. 

let l1 = new ETO_ImmList([54, 12, 8, 454, 9]); 

let l2 = l1.add(100); 

let l3 = l2.add(200); 

let l4 = l3.replaceAt(0, 10); 

Figure 13: Code that creates 6 overlapping, non-shared nodes 

  

 The first method implemented for visualizing overlapping, non-
shared nodes was a small circle containing the number of overlapping 
nodes at a particular node. Figure 10, on the previous page, shows 
this method used with trees produced by the code from figure 13. 

 It was quickly decided the that the circular numerical labels 
were not a good indication of what was going on. This lead to the 
creation of method 2, which involved shifting / repositioning nodes 
that overlapping. 

 The “cascading” method method is shown in figure 11, also on 
the previous page. This method more clearly indicates when multiple 
distinct nodes exist at the same position. Each node is shifted a small 
amount up and to the right, so the exact number of nodes at that par-
ticular location can be determined. 

 The cascading method uses a small shift, but a larger shift to the 
right was also implemented. The goal was to try to visually separate 
out parts that were specific to new lists after the first. The results are 
shown in figure 12. While the results work to visually distinguish 2 
trees, 3 or more trees become visually confusing quickly, as shown in 
figure 14. 

XIII.  ANALYSIS OF RESULTS 

 The rendered structures produced a clear picture of mem-
ory reuse for both the immutable stacks and the immutable 
lists. The remaining and future work sections that follow men-
tions aspects of the results that need improvement. 

XIV.  REMAINING WORK 

 The top nodes of stacks currently only contain their data 
values. An external label for top nodes should be implement-
ed, similar to the labels for tree roots. 

Figure 12: Right shifting for overlapping, non-shared nodes from two list’s trees.

Figure 14: Multiple shifted lists



 Although list tree grouping is implemented, rendering 
separate tree groups is not yet implemented. Rendering tree 
groups side by side should suffice. This was not implemented 
simply due to time constraints and may be added if the project 
continues after this quarter. 

XV.  FUTURE WORK 

 This project could be extended in many ways. The first, 
and perhaps most obvious, is that additional immutable data 
structures can be rendered. The following data structures are 
of interest: 

• Immutable binary search trees 

• Immutable k-ary heaps 

• Immutable binomial heaps 

• Immutable queues 

• Immutable dequeues 

• Immutable sets 

• Immutable maps 

 Some of the above immutable objects may be implement-
ed with another immutable object as the underlying storage. 
For example, if an immutable binary search tree is implement-
ed, this could potentially be used as the storage for an im-
mutable set or map. So perhaps not all of the above need to be 
implemented with custom immutable data structures, but it is 
desired to have efficient implementations of each. Ideally, 
operations with O(1) time complexity in the mutable version 
should have no worse than O(log n) time complexity in the 
immutable version. 

 A second way to extend the project would be to visualize 
additional aspects beside position and reference count of 
nodes. Perhaps the ability to single out a specific list’s tree  
from a tree with shared nodes by using color coding would be 
helpful to the viewer. 

 Interactivity is another area for extension. Any of the fol-
lowing could be implemented: 

• Add the ability for the user to choose which of mul-
tiple trees is the frontmost, since the cascading 
scheme still has only 1 node’s data value visible in a 
cascaded collection. 

• Add the ability for the user to hover over nodes and 
get a list of all lists or stacks containing that node. 

• Add visibility toggles for all rendered structures, so 
that desired structures can be hidden/shown. 

 Animation is yet another potential area for extension. 
Showing how a tree or stack is built by executing the code 
line-by-line may help the viewer understand which steps in 
code correspond to the creation of various constructs. Also, 
animating between views, such as between the cascading vs. 
shifted views for trees, may help with understanding of what’s 
being shown. 

 One additional note pertains to the importance of general-
izing the code if the project continues. In theory, generic posi-
tioning and rendering logic could be produced for a k-ary tree, 
allowing list binary trees, BSTs, AVL trees, red-black trees, k-
ary heaps, and any other k-ary tree to be positioned/rendered 
using the same code. Abstracting out the positioning and ren-
dering logic as separate, reusable pieces may be worth the 
effort to increase the flexibility of the tool. 

 If made more flexible, the tool could potentially even 
become an integrated browser debugging / visualization tool. 
Such an alteration would require a significant amount of work, 
but may be well worth the effort if this project continues. 
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