
Data Visualization for gaming agent of Go
using deep reinforcement learning

Zhongmou Cai
Santa Cruz, CA, United States

zcai34@ucsc.edu

December 14, 2020

1 abstract

In this project, I will implement an artificial intelligent agent to play the
Go game, using the deep reinforcement learning algorithm. There will be a
corresponding search tree(game tree)you, where every node has an expected
utility. We plan to use an interactive way to visualize the process. And I
will use Bootstrap, React, Angular to visualize the search tree in every move.
As we know, an game agent is an efficient algorithm that can search for the
optimal strategy in the game tree. The project shows how much utility the
agent will get for each move, and how the search tree is built using deep
reinforcement learning in the game tree. In the meantime, there will be a
board displaying the player who’s move it is. The well drawn circles in the
middle are the places on the game board.[1]

2 Motivation

Go originated in China over 3,000 years ago. Winning this board game
requires multiple layers of strategic thinking.

Two players, using either white or black stones, take turns placing their
stones on a board. The goal is to surround and capture their opponent’s
stones or strategically create spaces of territory. Once all possible moves

1

have been played, both the stones on the board and the empty points are
tallied. The highest number wins.

As simple as the rules may seem, Go is profoundly complex. There are
an astonishing 10 to the power of 170 possible board configurations - more
than the number of atoms in the known universe.

For a very long time, we had been puzzled by the interpretation of the
artificial intelligence. Now I try to visualize a simple AI in the Go. Our
past impression about artificial intelligence is quite vague, which we regard
as a black box. Yet data visualization uses algorithms to create images from
data so human can understand how AI work. And in essence, an artificial
intelligent gaming agent actually work by searching the optimal solution in
extremely large space. Moreover, since the entire strategic space is extremely
massive, it is impossible for us to search it completely.

3 Related Work

The most famous AI in Go game is the Alpha-Go invented by DeepMind
Technologies which was later acquired by Google. AlphaGo and its successors
use a Monte Carlo tree search algorithm to find its moves based on knowledge
previously acquired by machine learning, specifically by an artificial neural
network (a deep learning method) by extensive training, both from human
and computer play. A neural network is trained to identify the best moves
and the winning percentages of these moves. This neural network improves
the strength of the tree search, resulting in stronger move selection in the
next iteration.

Deep reinforcement learning[2] is the combination of reinforcement learn-
ing (RL) and deep learning. This field of research has been able to solve
a wide range of complex decision making tasks that were previously out of
reach for a machine. Thus, deep RL opens up many new applications in
domains such as healthcare, robotics, smart grids, finance, and many more.
This manuscript provides an introduction to deep reinforcement learning
models, algorithms and techniques. Particular focus is on the aspects related
to generalization and how deep RL can be used for practical applications.
We assume the reader is familiar with basic machine learning concepts.[3]

Reinforcement learning may be subdivided into two principal categories:
model-based, and model-free . Model-based RL constructs, as an interme-
diate step, a model of the environment.[4] Classically, this model is repre-

2

sented by a Markov-decision process (MDP) consisting of two components:
a state transition model, predicting the next state, and a reward model, pre-
dicting the expected reward during that transition. The model is typically
conditioned on the selected action, or a temporally abstract behavior such
as an option . Once a model has been constructed, it is straightforward
to apply MDP planning algorithms, such as value iteration or Monte-Carlo
tree search (MCTS)[5], to compute the optimal value or optimal policy for
the MDP. In large or partially observed environments, the algorithm must
first construct the state representation that the model should predict. This
tripartite separation between representation learning, model learning, and
planning is potentially problematic since the agent is not able to optimize
its representation or model for the purpose of effective planning, so that, for
example modeling errors may compound during planning.[6]

4 Proposed Research Approach

For an reinforcement learning agent, it will receive rewards(positive or neg-
ative) from the environment. since the goal of the Go game is to occupy as
many points on the board as possible, we can try using the expected points
as the reward for the agent. [7]

In the training process, we apply following tricks to the Go game: 1.in
a limited-area find all possible legal moves 2.search in the candidate moves,
find out the move with the maximum expected utility 3.in the searching
process, if it is a terminal state(reach the end of the game or the depth limit
of the searching process) , the utility would be the heuristic function we pick
(the number of places occupied on the whole board, if it is a win, the reward
would be really high) 4.collect the feature(the distribution of the grid, and
the corresponding action, expected reward, actual reward) for training

the model maps the state(distribution of state) to the expected reward(utility).
To train the reinforcement learning agent, I used q-learning method and

the Bellman equation to update the q-table, which stores the expected accu-
mulative reward in the long run.

Here is the meaning of the parameters, learning rate means how much the
agent consider the updated q values, and the gamma discount factor means
how much the agent consider the future rewards.

3

And because of the state-action space are so immense that we will not
be able to build such a q-table, we used deep neural network to predict the
expected q value for each state. This is how we deploy deep reinforcement
learning.

And I proposed to use D3.js to visualize the searching tree of the game
agent, showing the corresponding coordinate and expected utility.

And I used tensorflow’s visualization toolkit to visualize the model struc-
ture of the the deep reinforcement learning.

the training data is a tuple: (the distribution of the grid, and the corre-
sponding action, expected reward, actual reward)

the training data will include the distribution of the grid, which is how
the stones are placed on different positions of the grid, and the action that
will maximize rewards, and the expected reward, the actual reward given by
the environment.

and then this kind of training data will be fed into a three layer fully
connected layer and a dropout layer to train a model to predict the expected
reward given an action and a state.

4

Since the entire gaming space (search space) is incredibly large, there is
no way that we can search the entire space, so we can only look a few steps
further. I plan to set up a few experiments to show how the number of steps
we look further affect the performance of the game agent, including the time
complexity and the utility. Therefore, the algorithm performs differently
given different time constraints, because the steps we can look further is
limited.

We can find an innovative way to display the interactive game board.
I have completed the first version of Go game.[8] Now it supports the

human vs human mode. When the project is complete, it will support three
modes: AI vs AI, human vs human, AI vs human.

And also I have completed the first version of AI, but it’s still quite slow.
I’ll do some enhancement later.

5

5 work completed

I have completed the implementation of
the Go game environment, now it supports human vs AI, human vs human
mode as well as the basic version of Deep reinforcement learning agent for
Go game.

Now I use the number of points occupied by one player as the reward
and the state for one agent would the distribution of its points on the board.
Also I use a parameter of 0.8 for the back propagation to pass the q value
back to the agent from the future.

6 visualization

For the visualization part, I’ve completed the visualization of the searching
process and the visualization of the neural network graph structure that I
used in the deep reinforcement learning. To visualize the searching tree, I
saved the information needed to build a tree in a dictionary ans saved it in
a json string and then dump it into a stirng, then I connect the python app
with the web page using flask framework. After the web page received the
json string, then it will use D3.js to visualize it and represent it as a tree.

6

as for the visualization of the graph structure, I used the visualization
toolkit in the tensorboard to visualize the graph structure of my model,
which consists of three dense(fully connected) layer and one dropout layer
that help avoid over fitting. As I mentioned in the paper reading about
this visualization method, this visualization toolkit has following advantages:
1.the design process emphasizes understanding of both users and data. 2.the
visualization tool will enable the users to define custom collapsible units by
using / symbol.

7

And the following framework is the structure that I used to represent the
searching tree.

At first we saved the coordinate and corresponding utility and then dump
it as a json string. And then I sent the json string to the web page, and then
I use D3.js to visualize the searching tree.

7 conclusion

In this project, I’ve completed a go game app that supports human vs human,
human vs AI, AI vs AI mode. And I also save completed the visualization
of the searching process of the game agent which is trained using deep rein-
forcement learning.

In conclusion, we found that if we set the learning rate to be higher, the

8

time that the agent’s policy will be trained faster, and vice versa. Moreover,
if we set the gamma parameter (discount factor) to be smaller, the agent
will become more short sighted, only considering the immediate rewards. In
this case, for current move the agent will consider more about how to occupy
more space in the current grid instead of think more about how to will the
whole game.

And I really learned a lot from this course, it make me achieve a better
understanding of data visualization. It help me know more about the un-
derlying details of reinforcement learning and some front end technology like
D3.js.

References

[1] I. Srivastava, “A different take on the best-first game tree pruning algo-
rithms,” 2019.

[2] G. Brero, A. Eden, M. Gerstgrasser, D. C. Parkes, and D. Rheingans-Yoo,
“Reinforcement learning of simple indirect mechanisms,” 2020.

[3] S. P. Singhal and M. Sridevi, “Comparative study of performance of par-
allel alpha beta pruning for different architectures,” 2019.

[4] V. François-Lavet, P. Henderson, R. Islam, M. G. Bellemare, and
J. Pineau, “An introduction to deep reinforcement learning,” Foundations
and Trends® in Machine Learning, vol. 11, no. 3-4, p. 219–354, 2018.
[Online]. Available: http://dx.doi.org/10.1561/2200000071

[5] M. Lanctot, A. Saffidine, J. Veness, C. Archibald, and M. H. M. Winands,
“Monte carlo *-minimax search,” 2013.

[6] D. Mguni, “Stochastic potential games,” 2020.

[7] Y. Savas, M. Ahmadi, T. Tanaka, and U. Topcu, “Entropy-regularized
stochastic games,” 2019.

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770–778.

9

