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1 Abstract

There is extensive literature on using convex optimization to derive piece-wise
polynomial trajectories for controlling differential flat systems with applications
to three-dimensional flight for Micro Aerial Vehicles.In this work, I use matlab to
realize algorithms in paper[1] ”Planning Dynamically Feasible Trajectories for
Quadrotors Using Safe Flight Corridors in 3-D Complex Environments.” [1] has
three parts, the first part is path planning using Jump Point Search(JPS)[2].The
second part of [1] is Safe Flight Corridor Construction. The third part of [1] is
Trajectory Optimization, which is a convex optimizaiton problem. Due to the
limitation of length of [1], many detail of implementation of algorithms are not
mentioned in [1]. In this report, details and theories about each steps of im-
plementation in [1] will be given. In addition, 3-D simulation and visualization
will be provided to illustrate how to realize each part of [1]. In the result part,
I compared the results using algorithms in this paper with using close form[3].

2 Motivation

Navigation of a Micro Aerial Vehicle(MAV) in an obstacle-cluttered environ-
ment is a challenging problem. There are many research about it, on the other
hand, visualizing the algorithm in 3D simulation not only could persuade other
people to understand why it is trustworthy, but also help engineers to anal-
ysis this algorithm. In this report, I will focus on visualize the algorithm in
paper ”Planning Dynamically Feasible Trajectories for Quadrotors Using Safe
Flight Corridors in 3-D Complex Environments”. It’s a good opportunity for
me to understand how to generate trajectory and know it’s strengthens and
shortcomings.
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3 Related work

The research about trajectory planning can be divided into two kinds, search-
based planning and path-based planning. Search-based[4] planning is well-
known to be inefficient for high dimensional planning due to the large num-
ber of nodes to expand. The precondition of path-based planning is to find
a safe path. For path planning[5], there are two kinds of methods—— deter-
ministic path and randomized path. For deterministic method, there are A*[6],
D*[7], ARA*[8] and so on. Since this kind of methods need to search the whole
space, it is time-consuming and also have a high requirement for computing
resource, if search space is large. For randomized method, there are PRM[9],
RRT[10], RRT*[10], FMT[11], BIT[12][13] and etc. This kind of methods is
suitable for great search space. Path only has the information about whether
this path is safe and waypoints leading to destination, while trajectory has
information about velocity and acceleration. After finding path, trajectory gen-
eration problem can be formulated as a quadratic programming problem[14]
with waypoints. [15] use unconstrained QP, but unconstrained QP can’t handle
inequality constraints(sub-optimal) and can’t guarantee the solution is Optimal.
R.deits and R.tedrake proposes MIT[16],but this method is hard to get colli-
sion constraint and it’s hard to build model about free space. Oleynikova and
USenko use local planner[17], it’s a fast method to find trajectory, but the result
is not globally optimal and not complete.

4 Proposed research directions

4.1 Path Planing

4.1.1 JPS(Jump Point Search[2])

Path planning is computational problem to find a valid collision-free path. In
[1], the environment is represented as a map with occupancy grids that can be
constructed from sensor data, the grids in this map are devided into free space,
target space and obstacle space. Many grid-based algorithms can be used to
find a valid collision-free path. For A*, all neighbors of current node are added
into openlist, while JPS only adds jump point into the openlist, thus jump
point search is fast and requires no preprocessing and introduces no memory
overheads. In [1], the author uses JPS on 3-D grid maps with uniform voxels.
In order to extend the 2-D algorithm proposed in [2] to 3-D, we just need to add
the number of neighhbors from 8 to 26,and for diagonal direction search in 3-D
map,we only need to add one more dierction compared with 2-D dimension.In
order to illustrate the difference between 2D and 3D JPS, definition of natural
neighbor[2] and forced neighbor[2] are given below. In Fig.1 and Fig.2 we use
pictures in 3D case to illustrate the difference between the definition of forced
neighbor and natural neighbor in 2D and that in 3D. In Fig.3, we give the path
found by JPS, red grid dedicates path points, green grids dedicates obstacles.
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Definition 1. A node n ∈ natural neighbour(x) if:

1. Assume there is no obstacles in neighbour(x)

2. For straight move,

len(〈p(x), · · · , n〉 \x) > len(〈p(x), x, n〉) (1)

For diagonal moves,

len(〈p(x), · · · , n〉 \x) ≥ len(〈p(x), x, n〉) (2)

In definition 1, p(x) is the parental node of x, 〈p(x), · · · , n〉 means a path
from p(x) to n,〈p(x), · · · , n〉 \x means that x does not appear on this path from
p(x) to n. In fig.1, white grid indicates natural neighbor.

Figure 1: We show one case where a node x is reached from its parent p(x)
by a diagonal move. When x is expanded we can prune from consideration
all nodes marked grey.White grids indicate natural neighbor.Notice that for
natural neighbor, assume there are no obstacles in neighbors, no matter there
exists obstacles or not.

Definition 2. A node n ∈ forced neighbour(x) if:

1. n is not a natural neighbour of x and obstacles exist in neighbour of x.

2.
len(〈p(x), x, n〉) < len(〈p(x), · · · , n〉 \x) (3)

In Fig.2, shadow grid indicates forced neighbor, white grids indicate natural
neighbor. (Revise after changing the picture) Fig.3 is the result of finding path
using JPS.
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Figure 2: We show one case where a node x is reached from its parent p(x) by a
diagonal move. When x is expanded we can prune from consideration all nodes
marked grey.Shadow grids indicate forced neighbor.Notice that grid x, forced
neighbor only exist when there are obstacles in its neighbor and forced neighbor
don’t belong to natural neighbor.

4.1.2 Simplify path

Since we use grid 3-D map, during the searching processing, the algorithm
searching direction is limited in neighbor grid(only 27 direction), however in
practice,quadrotors can go in any direction, so the path points found may be
redundant for the quadrotors. The process of how to prune redundant points
are described in algorithm1.

Algorithm 1 Simplify path

Require: path:way points
s = 1
simplePath
for i from 2 to n do

if line of point s and point i is not collide with obstacles and line of point
s and point i+1 is collide with obstacles then

simplePath.push(s)
s = i

end if
end for
return simplePath
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Figure 3: Red girds is the path found by JPS. Green grids indicates obstacles.
The start and end points are marked in this picture.This 3D grid map is 30*30
grids and each grid size is 5*5*5.It doesn’t matter if quadrotors fly close to
obstacles, because obstacles are dilated.

(a) Path without simplification (b) Path with simplification

Figure 4: Comparison of way points between using simplify path and not

4.2 Safe Flight Corridor Construction

1) Find Sphere
A piece-wise linear path P found in section 4.3(Fig.5) from start to goal in
the free space is denoted as P = 〈p0 → p1 → ...pn〉 . The ith line segement
is represented as Li = 〈Pi → Pi+1〉, we use L as the diameter of a sphere.
At this time, it is possible obstacles is inside the sphere(fig.6).
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Figure 5: A top view of the piece-wise linear path P. Red line indicates the
path, red Point indicates the way point and green grid indicates obstacles.

(a) Initial sphere from one side view. (b) Initial sphere from a top view.

Figure 6: Initial sphere for each pieces of path from two different of view.

2) Shrink minor axes
It’s obviously that in figure6.b, some parts of obstacles are contained in
the initial spheres. Start with a sphere, we find the closest point pi to the
center of Li and adjust the length of short axes such that a new ellipsoid
touches this pi.Repeat the same procedure until no obstacles are contained
in the ellipsoid.
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(a) Final spheroid from one side view. (b) Final spheroid from a top view.

Figure 7: Final spheroid excludes all the obstacles. In practice, the data of
obstacles we get from senors is point cloud,thus in this picture, using small
blue circles to indicates point cloud. Notice that some blue circles is outside of
the obstacle(green bricks),it is normal because in order to make sure the safe
of quadrotors, we dilate obstacles firstly to avoid quadrotors hitting the edge
of obstacles. In figure.b, the red point indicates that one point of obstacles is
exactly on the ellipsoid interface.

3) Dilate ellipsoid and find hyperplane:
Find the intersection point P0 for the ellipsoid and obstacles. P0 is on the
surface of ellipsoid. Draw a tangent plane through point P0 and remove
the obstacles outside the tangent plane. Then dilate the ellipsoid, find
next intersection point, repeat the previous process until all the obstacles
are removed. Actually,according to the ellipsoid we find in step3),if we find
the closet point(intersection point) from the center of a current ellipsoid,
we can get hyperplanes directly. Namely, although this step equals dilating
the ellipsoid, there is no need to solve the dilate ellipsoid. Next, we will
explain how to get the equation of hyperplane.
The standard equation of ellipsoid in matrix representation is:

xTΛ−1x = 1 (4)

in equation(4), Λ =


r21

r22
. . .

r2n

 and x =


x1
x2
...
xn


xi indicates the ith axis, ri are half the length of the principal axes.
Now, rotate this ellipsoid and let the principal semi-axes of the ellipsoid
aligned with path Li, assume the rotation matrix is A, we have

(ATx)TΛ−1(ATx) = xT (AΛ−1AT )x = 1 (5)

Then move the center of this ellipsoid to the center of path Li, we have:

f(x) = (x− xc)T (AΛ−1AT )(x− xc) = 1 (6)
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For equation(6), if we dilate the ellipsoid, namely, let ribecomes to λri,

we only need to change: Λ =


λ2r21

λ2r22
. . .

λ2r2n

.

In addition, a normal vector of a point on the surface of an ellipsoid is:

5f =

〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉
(7)

Notice that after dilating the ellipsoid,5f = 1
λ2

〈
∂f
∂x ,

∂f
∂y ,

∂f
∂z

〉
, which means

5f is not related to λ. Assume the intersection point is p0 = (x0, y0, z0),
it is easy for us to get the equation of the hyperplane through p0. The
equation of this hyperplane is:

5f · (x− x0, y − y0, z − z0) = 0 (8)

(a) One hyperplane from one side view. (b) One hyperplane from a different view.

Figure 8: Hyperplane and dilated ellipsoid from two different of view.The red
point which is on the hyperplane is intersection point for the ellipsoid and ob-
stacles.In practice, there is no need to draw the dilated ellipsoid.

4) Getting polyhedron:
In step3),we dilate the ellipsoid and get hyperplanes till we move away all
of the point cloud of obstacles. According to equation(8), we can write
the constraint of hyperplanes as:

5f1
5f2

...
5fn


xy
z

 =


b1
b2
...
bn

 (9)

In equation(9), 5fi(x, y, z) = bi is the equation of ith hperplane.
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4.3 Trajectory Optimization

For smooth trajectories, we have

x∗(t) = argmin
x(t)

∫ T

0

(x(n))2dt (10)

when n = 1, this equation indicates shortest distance; n = 2, it indicates
minimum acceleration;n = 3, it indicates minimum jerk; when n = 4, it means
minimum snap[18]. In this paper, we choose minimum-snap trajectory as the
cost function:

x∗(t) = argmin
x(t)

∫ T

0

∥∥∥x(4)∥∥∥2 dt (11)

From the Euler-Lagrange equations, a necessary condition for the optimal tra-
jectory is:

x(8) = 0 (12)

Thus, the minimum-snap trajectory is a 7th order polynomial. If the trajectory
has k + 1 waypoints(including begin point and end point), we need to design a
trajectory xt such that: {

t = [t0, t1, · · · , tk]T

x = [x0, x1, · · · , tk]T
(13)

Thus, the trajectory will be a 7th−order piecewise polynomial with k segments:

x(t) =


c1,7t

7 + c1,6t
6 + c1,5t

5 + c1,4t
4 + c1,3t

3 + c1,2t
2 + c1,1t+ c1,0

c2,7t
7 + c2,6t

6 + c2,5t
5 + c2,4t

4 + c2,3t
3 + c2,2t

2 + c2,1t+ c2,0
...

ck,7t
7 + ck,6t

6 + ck,5t
5 + ck,4t

4 + ck,3t
3 + ck,2t

2 + ck,1t+ ck,0

(14)

We also could write equation(8) as

x(t) =


[
1, t, t2, ..., tn

]
· c1 t0 ≤ t < t1[

1, t, t2, ..., tn
]
· c2 t1 ≤ t < t2

...[
1, t, t2, ..., tn

]
· ck tk−1 ≤ t < tk

(15)

In equation(9), ci = [ci0 , ci1 , ..., cin ]T and n = 7.
For begin point and end point in the trajectory, we have position, velocity and
acceleration constraint. For example, at the begin point, position is p0, velocity
is v0 and acceleration is a0, we have:
Position constraint: 1, t0, t

2
0, ..., t

n
0 , 0...0︸︷︷︸

(k−1)(n+1)

 c = p0 (16)
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Velocity constraint: 0, 1, 2t0, ..., nt
n−1
0 , 0...0︸︷︷︸

(k−1)(n+1)

 c = v0 (17)

Acceleration constraint:0, 0, 2, ..., n(n− 1)tn−2
0 , 0...0︸︷︷︸

(k−1)(n+1)

 c = a0 (18)

For the joint point between two segments, the position, velocity, and acceleration
between adjacent segments have the same value. Take the ith segment and the
(i+ 1)th segment for instance, at the joint point we have position constraint: 0, ..., 0︸ ︷︷ ︸

(i−1)(n+1)

, 1, ti, t
2
i , ..., t

n
i ,−1,−ti,−t2i , ...,−tni , 0...0︸︷︷︸

(k−i−1)(n+1)

 c = 0 (19)

Use all of the constraints, we have equation:

1, t0, t
2
0, ..., t

n
0 , 0...0︸︷︷︸

(k−1)(n−1)

0, 1, 2t0, ..., nt
n−1
0 , 0...0︸︷︷︸

(k−1)(n−1)

0, 0, 2, 2t0, ..., n(n− 1)tn−2
0 , 0...0︸︷︷︸

(k−1)(n−1)

...
0...0︸︷︷︸

(i−1)(n+1)

, 1, ti, t
2
i , · · · , tni , 0...0︸︷︷︸

(k−1)(n−1)

...
0...0︸︷︷︸

(k−1)(n−1)

, 1, tk, t
2
k, · · · , tnk

0...0︸︷︷︸
(k−1)(n−1)

, 0, 1, 2tk, · · · , ntn−1
k

0...0︸︷︷︸
(k−1)(n−1)

, 0, 0, 2, · · · , n(n− 1)tn−2
k

0, ..., 0︸ ︷︷ ︸
(i−1)(n+1)

, 1, ti, t
2
i , ..., t

n
i ,−1,−ti,−t2i , ...,−tni , 0...0︸︷︷︸

(k−i−1)(n+1)

0, ..., 0︸ ︷︷ ︸
(i−1)(n+1)

, 0, 1, 2ti, ..., nt
n−1
i , 0,−1,−2ti, ...,−ntn−1

i , 0...0︸︷︷︸
(k−i−1)(n+1)

0, ..., 0︸ ︷︷ ︸
(i−1)(n+1)

, 0, 0, 2, ..., n(n− 1)tn−2
i , 0, 0,−2, ...,−n(n− 1)tn−2

i , 0...0︸︷︷︸
(k−i−1)(n+1)


4k+2

c =



p0
v0
a0
...
pi
...
pk
vk
ak
0
...
0



(20)
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Equation(19) is linear constraint of equation(10), next we will find equa-
tion(10) is a quadratic objective function, then we can use quadratic program-
ming to solve the best coefficient in equation(13).
For equation(10), we have:

x∗(t) = argmin
x(t)

∫ T

0

(x(4))2dt

= min

k∑
i=1

∫ ti

ti−1

(x(4))2dt

= min

k∑
i=1

∫ ti

ti−1

([0, 0, 0, 0, 24, · · · , n!

(n− 4!)
tn−4] · ci)T [0, 0, 0, 0, 24, · · · , n!

(n− 4!)
tn−4] · ci dt

= min

k∑
i=1

cTi

∫ ti

ti−1

[0, 0, 0, 0, 24, · · · , n!

(n− 4!)
tn−4]T [0, 0, 0, 0, 24, · · · , n!

(n− 4!)
tn−4]dt ci

= min

k∑
i=1

cTi Qici

(21)
In equation(20),

Qi =

∫ ti

ti−1

[0, 0, 0, 0, 24, · · · , n!

(n− 4!)
tn−4]T [0, 0, 0, 0, 24, · · · , n!

(n− 4!)
tn−4]dt

=

[
04×4 04×(n−3)

0(n−3)×4
r!

(r−4)!
c!

(c−4)!
1

(r−4)+(c−4)+1 (tr+c−7
i − tr+c−7

i−1 )

]
(22)

ci is the coefficient of the polynomial of ith segment path, r and c is the index of

rows and columns in this matrix. Now if we assumeQ =


Q1

Q2

. . .

Qk

,the

cost function becomes to min cTQc. In addition, equation(9) and equation(20)
will be used as a constraint of this cost function (10).

Notice that from now on, in this section from equation(10) to equation(22),
we only consider one dimension, while in practice, quadrotors fly in 3D di-
mension. Next, we will give equations combining three dimension and we use
subscripts x y z to indicate which dimension this variable belongs to.
For cost function, it becomes to:

f(cx, cy, cz) = min
[
cTx cTy cTz

] Qx Qy
Qz

cxcy
cz

 (23)
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Simplify equation(20) to form Tc = P ,thus for three dimension, we have:

[
Tx Ty Tz

] cx cy
cz

 =

PxPy
Pz

 (24)

5 Result

Now, for three dimension, we have cost function —— equation(23), two con-
straint function—— equation(24) and equation(9), solve the matrix c, we can
have the equation of the trajectory.

(a) Trajectory generated by SFC (b) Trajectory generated by Close Form

Figure 9: Trajectory generated by SFC and Close Form. Notice that in Fig-
ure9(a), the trajectory not pass each waypoints, while in figure9(b), the trajec-
tory generated by close form pass each waypoints.

(a) Trajectory tracking(position) of SFC (b) Trajectory tracking(position) of Close
Form

Figure 10: Trajectory tracking of position by SFC and Close Form. Blue line is
the plan position and red line is actual position.
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(a) Trajectory tracking(velocity) by SFC (b) Trajectory tracking(velocity) by close
form

Figure 11: Trajectory tracking of velocity by SFC and Close Form. Blue line is
the plan velocity and red line is actual velocity.
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