Generation & Visualisation of Cosmological Data

Kapil Gupta
University of California, Santa Cruz
Santa Cruz, CA, USA

Figure 1: Cosmological data generated using the 2D HDR GAN. The leftmost image here is the Halo Map, that consists of bright
spots called the halos and constant color everywhere else, signifying lack of halos. The rightmost image is a slice of the 3D
data cube. The middle image is generated using 2D HDR GAN.

ABSTRACT

Cosmological N-body simulations are computationally expensive.
Deep Learning techniques can be used in order to reduce the time
and resources required, while providing the same statistical prop-
erties as the data generated by Monte Carlo Simulations. Under-
standing the differences between data that has been generated
using physical properties such as laws of gravity, properties of
dark energy, cosmological constants and the data generated using
a Generative Adversarial Network (GAN) can help understand the
usefulness of the dataset. We explore the useage of a Generative Ad-
versarial Network for generating the Cosmological data. We further
use progressive Direct Volume Rendering(DVR) that accumulates
object-space samples over successfully rendered frames.
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1 INTRODUCTION

Cosmic Web is an intricate multiscale interconnected network com-
posed of filaments of clustered galaxies and other matter such as
gases. It is a large-scale structure that is found all over the observ-
able universe and provides great insights into how the dynamics
of gravitational structure formation. Topological and morpholog-
ical information provided from such data allows astrophysicists
to study dark matter, cosmological model, and formation and evo-
lution of galaxies. The N-body simulations such as EAGLE and
Bolshoi-Planck are generally accepted method for generating such
Cosmological data. But the Monte-Carlo simulations required to
generate required data are quite expensive computationally. Using
Deep Learning algorithms to generate such data with same statisti-
cal pattern guarantees can help researchers work more efficiently.

Recently, GANs have been proposed for emulating the matter
distributions in two dimensions. These approaches have been suc-
cessful in generating data of high visual quality, and almost indis-
tinguishable from the real simulations to experts. Moreover, several
summary statistics often used in cosmology, such as power spectra
and density histograms, also revealed good levels of performance.
Some challenges still remain when comparing sets of generated
samples. In both works, the properties of sets of generated images
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Figure 2: Volume Rendering of the data cube, as visualized
using Paraview software.

did not match exactly; the covariance matrix of power spectra of
the generated maps differed by order of 10% with the real maps.

While such results signify that GANs are a good approach for
generating cosmological data, there is still a significant difficulty
in generating high quality data in both 2D and 3D. We explore the
idea of using GANSs to generate hight quality intensity maps by
taking in high mass/density halo positions as input.

2 RELATED WORK

Generative models that can produce novel representative samples
from high-dimensional data distributions have become quite popu-
lar in different fields such as image translation or image in-painting.
Popular Generative models include Variational Autoencoders, Auto
regressive models such as Pixel RCNN and Generative Adversarial
Models. The most common approaches for generating cosmolog-
ical data include upsampling using GAN [5], super-resolution of
low-resolution simulation data [6] and inpainting, cosmo3.

Direct Volume Rendering has two main approaches that are
used widely: Splatting and Ray Casting. In the splatting technique,
the data is resampled to a rectilinear grid and then each voxel is
drawn from back to front, based on the camera orientation, using
a small polygon with a gaussian texture whose color and opacity
are based on the voxel’s data and the volume transfer function. [8]
discuss the application of splatting to neurovascular data. In the
raycasting technique, there are a lot of optimizations that can be
performed in both image and object space to allow for interactive
rendering on unstructured data. Most common methods include
reducing sampling rate during interaction, progressive refinement
by recomputing required samples or by image space optimization.
[7] provide a new method of progressive DVR that is interactive
and less computationally intensive as it reuses the previous sam-
ples, although this method is memory intensive and requires more
resources than other possible methods. [2] is a great framework
that utilizes DVR to provide an interactive system.

In order to perform comparison between different 3D volume
datasets, geometric approaches can be used as suggested by [4].
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Figure 3: Slice of data cube, the bright spots here are the-
galaxy clusters, also called halos and the connecting strand
like structures are filaments. Filaments carry gases to galaxy
clusters and are instrumental in galaxy formation and evo-
lution.

Another method of comparison can be performed by linearizing
volumes along Hilbert space-filling curves and then using a loss
function to calculate the variations as explored by [9]. Proper layout
design allows for users to understand the visualization better and
hence for the tool to be easier to use, which has been explored
by [3]. Visualizing Cosmological data generated using procedural
generation methods has been explored before by [1], although no
comparative visualization has been done yet.

3 N-BODY DATA

The 3D data cube was generated using N-body Monte Carlo Simu-
lation algorithm. It contained 94795 data points as initialization to
the algorithm(which were listed along with their mass and density
values, and their positions were tracked to create a halos’ catalog),
with about 10 million agents running in parallel on a supercom-
puter to generate it. The simulation grid had a resolution of 12003
voxels, which was processed and reduced to 1024° grid data. The
grid’s center is (0.00131607, 0.00131989, 84.6443) mpc while the size
is (186.282, 186.282, 186.282) mpc. The data contains 10243 parti-
cles’ intensity values which are directly correlated to the mass and
density values as provided in the halos catalog. Given data has high
dynamic range, with 64-bit floating point value and intensity value
range being [ 0.017891133176195093, 448.9362993707059 ].

4 DATA PREPROCESSING

We trained both 2D and 3D networks for which the data was
processed separately. For the 2D normalized network, we needed
slices(as shown in Figure ??) of the 1024> cube data as well as the
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halo map(as shown in Figure ??). A Halo map is defined as map of
white pixels in places where halos are present in the slice, and a
constant color where the halos are not present. As discussed later,
the constant color value was used in order to avoid collapsing the
convolutions. The slices were also converted into images by first
taking a log of every value, normalizing all the values and then
applying a color map on them. The slices were taken from all three
axes. The data was augmented by performing rotations, reflections
of data and sampling the slices across 3 different axes.

For the 2D HDR network, although the input and output values
were the same, the data was not normalized and was input as a 2D
vector. As mentioned in the methods section, the precision of data
was reduced from 64-bit floating point to 16-bit floating point to
allow training with lower GPU resource consumption. The data
was augmented in same manner as the 2d normalized approach.

For the 3D network, the input cube (of size (1024 x 1024 x 1024
vox) ) was subdivided into cubes of size (256 x 256 x 256 vox) with
a stride of 128 vox.

The data was augmented through axis-aligned rotations, taking
reflections of data, and varying the initial slicing position for the
cube.

5 METHOD

The training method is divided into three experiments, based on
the data pre-processing required. For the first experiment, data was
first cut into slices and then normalized to avoid the HDR property.
For the second experiment, the slices were directly input to the
model without without normalization. For the third experiment,
voxels of constant shape were cut from the 3D data cube, which
were then input into the model.

5.1 2D Training with Normalization

In this method, the data was normalized into the RGB range (0-255
integer values), which reduced the HDR property of the data. The
Generator model used in this training is the Resnet-6 model, which
consists of 6 resnet layers with alternate downsampling and up-
sampling layers. Each of the resnet layers employ skip connections.
The Discriminator is the Pixel Discriminator, which provides a 0/1
value according to fake/real classification of each pixel.

5.2 2D HDR Training

In this method, the data was not normalized before being entered
into the Generator network. The Generator network used here is
the Unet-256 model, which is a fully-convolutional model with
upsampling and pooling layers. Although Unet-256 was initially
proposed for segmentation tasks, it has been successfully used in
image generation tasks as well as the usage of upsampling layers in
the later layers allows for increased resolution of the output. The
Discriminator is the Pixel discriminator.

Although the data was not pre-processed, the precision of data
was reduced from its original 64-bit floating point to 16-bit floating
point value. There was no apparent difference in the output that
could have been caused by reduced precision.
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Figure 4: Figure represents the Discriminator loss over the
generated image for the 2d normalized gan

5.3 3D Training

For the 3D training, instead of getting slices from the 3D cube,
voxels of size (256x256x256) were sampled. A stride of 128 was
chosen to allow the network to be able to understand and learn the
interconnected nature of data. The Generator model used here is
the 3D Unet-256 model, which has the same architecture as the 2D
Unet-256 model except with 3D convolutions. The Discriminator
used is pixel discriminator.

Data precision was dropped from 64-bit floating point to 16 -bit
floating point value for this model in order to fit the model into
available GPUs. Since the model was still too large to fit into a single
GPU, the discriminator and generator models had to be trained on
separate gpus. This lead to longer training time, as the discriminator
model had to wait for the generator model to finish training and
vice-versa.

6 RESULTS
6.1 2D Normalized GAN

This part of the experiment worked well and the trained gan shows
stable loss function output for the discriminator as well as the
generator. The output images have very low difference values when
subtracted from the real input, showing that the generated output
matches the input in the statistical distribution.

The major inconsistency shown by the outputs tends to be in
the areas where the filaments are present without any halos at the
beginning or end of given filament. Such results are incorrect as
filaments cannot exist if not connected by halos. The reasoning
for such results can be that since the filaments are 3D structures, a
2D slice is incapable of containing all the information about them.
The experiment was repeated with the slices having a small depth
value (by concatenating and then averaging multiple slices), but
that didn’t remove this problem.

6.2 2D HDR GAN

Although both the generator and discriminator remain stable upto
the 30th epoch, mode collapse was observed after 30th epoch. The
2D HDR GAN model was able to understand the major filament



Woodstock ’18, June 03-05, 2018, Woodstock, NY

D_real_loss

0.4

o | :

D2

01

]

0 10 20 30 40 50 60 70 80 90

(=3

Figure 5: Figure represents the Discriminator loss over the
generated image for the 2d normalized gan
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Figure 6: Figure represents the Generator loss as calculated
using MSE Loss function for the 2d normalized gan
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Figure 7: Figure represents the Generator loss as calculated
using L1 Loss function for the 2d normalized gan
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Figure 8: Figure represents the Discriminator loss over the
generated image for the 2d hdr gan.
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Figure 9: Figure represents the Discriminator loss over the
generated image for the 2d hdr gan.

structures present in the data and accurately recreate such struc-
tures when working with variable number of halos. The GAN model
does have a clamping effect on the High Dynamic Range property of
the data, cutting off the extremely high and extremely low values in
the data to such effect that the output doesn’t need to be normalized
to be plotted. Moreover, the intensity values were not consistently
generated by the model. When calculating the difference image
to observe the difference between input and output 2D vectors,
we observed that no multiples of the output lead to a subtracted
value close to 0. This shows that the generated intensity values are
inconsistent.

When concatenating the output generated using different axes-
aligned halo maps (XY vs YZ vs XZ maps), the outputs were seen
to be consistent and having maintained the filament structures.
Interestingly, even though 2D slices with no depth were considered
as data for training, some 3D structure was seen on concatenating
contiguous slice outputs and generating a 3D output. The data’s
inherent 3D structure might be the reason for such output. Running
model on non-contiguous halo maps might indicate if the model
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Figure 10: Figure represents the Generator loss as calculated
using MSE Loss function for the 2d hdr gan. The sharp in-
crease in the loss at the 30th epoch and sudden decrease in
loss for the Discriminator as shown in figures 8 and 9 indi-
cate Mode Collapse.
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Figure 11: Figure represents the Generator loss as calculated
using L1 Loss function for the 2d hdr gan

is biased towards trying to generate 2D vectors that form some
structure or not.

6.3 3D HDR GAN

Training using 3D GAN showed better results than the 2D GAN.
3D GAN also didn’t show any indication of mode collapse when
plotting the loss function, although the gan hadn’t converged at the
90th epoch. The output 3D cube is used to perform visualization
after slight preprocessing using three.js based code.

7 VOLUME VISUALIZATION

We used GPU-based Ray Casting for Direct VOlume Rendering. Al-
though CPU based approach is also possible, GPU based approach
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Figure 12: Figure represents the Discriminator loss over the
generated image for 3d gan
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Figure 13: Figure represents the Discriminator loss over the
generated image for 3d gan
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Figure 14: Figure represents the Generator loss as calculated
using MSE Loss function for 3d gan
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Figure 15: Figure represents the Generator loss as calculated
using L1 Loss function for 3d gan

Figure 16: Figure shows the difference between output and
input images. On the left is the output image for 2d hdr
model, in the middle is the real image and on the right is
the difference image. The difference image has a reverted
intensity map, indicating that there is a pattern to incorrect
predictions of such maps.

is a better fit because of the availability of an optimized graph-
ics pipeline that runs in a loop, thus providing a way to create
interactive visualization.

7.1 Using Paraview

Paraview provides a great interface to visualize the volumetric data,
providing a fine control over the transfer function. It is possible to
clamp the range of values that are mapped by the color range, thus
changing the color intensity of each data point. This is really useful
for High Dynamic Range, as both high intensity and low intensity
values can be easily observed.

Paraview allows users to render data in both Volume and Slice
mode. We used the slice mode to show a comparison of the gener-
ated cube and the input data. The main observation was the same
as seen using image difference as in 16, that the model introduces
a clamping to the data, while maintaining the filament structures
as shown in 17. We also used the volume mode to visualize the
data, varying the color map and the range of color map to observe
specific properties of data.
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Figure 17: Comparison between slice generated by the 2d
model (left) and real image (right). As seen in the difference
image, model behaves like a clamping function over the in-
tensity values of halos, but is able to preserve filament struc-
tures

Figure 18: Visualization of the volume, generated using 3D
GAN, and then processed to filter out halos with high inten-
sity values. Used raycasting algorithm implemented using
three.js

7.2 Using Three.js

Three.js is a library that provides easy access to graphics api for
3D development using WebGL. We used three.js for volume visual-
ization of given data such that the structure of filaments is easily
observable as in 18. In order to do that, the data was preprocessed
such that the all halos with high intensity values were removed
from the given data. This allowed for only filaments to be left visi-
ble, providing an interesting visualization of the structure of cosmic
web. The current implementation also allows for remapping the
scale of transfer function.

8 CONCLUSION

This work represents exploration of Deep Learning methods for
Cosmological data generation as well as the visualization of such
data. The generation of data was largely successful for 2D & 3D
methods, and visualization of various aspects of the system (metrics,
loss functions, generated data visualization) helped understand
properties of input and generated data well.
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9 FUTURE WORK

The idea for the online (three.js based) visualization was for it to act
as a server, which could recieve the intermediary 3D results from the
model while training, and render those results for easy observation.
Moreover, a cell selection mechanism to explore specific part of
the visualization was also considered. We would like to work on
implementing these capabilities to this system.

The deep learning model has problems with mode collapse. Fu-
ture work here would be selecting models carefully and preprocess-
ing data to avoid model collapse.
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