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Abstract

Untangling black boxes can shed insight into highly complex systems.
One class of methods is dimensionality reduction, which takes high di-
mensional data, and transforms it into an encoded representation. How
this encoding works has potential to relate to underlying patterns of the
data. In this project, I use Tensor Component Analysis (TCA) which
can reduce Nth order tensors into factors representing each axis. TCA
is applied to both biological and artificial neural networks, shown to pro-
vide insights on both sets. Visualizing this complex data becomes, but
advanced visualization techniques help uncover meaning.

1 Background

Analyzing complex neural firing patterns is an important issue which can shed
light on human foundations of information processing and learning. As far as we
know, human brains are the most complicated system in the known universe, and
the pursuit of understanding them may help inform human-designed artificial
intelligence.

In order to help understand the high-dimensional data, dimensionality reduc-
tion techniques such as PCA and ICA have been used to create a lower dimen-
sional space. This ”latent space” essentially can show the data in a way where
structurally similar data points are nearby eachother. For biological neural-
networks, we run into a problem where many methods only explore the latent
dynamics linearly. Papers such as [1] explore nonlinear , and plot the dynamics
a latent space. This shows how real neural data recorded from a Macaque in an
arm reaching task can be separated based on positions, so the similarity between
the tasks is captured in the latent space.

Other papers have explored dimensionality reduction techniques for neural
recordings, and [2] provides a large review on different techniques. Even black
box encoders such as Hierarchical Convolutional Neural Networks(HCNN) have
shown biological relevance in predicting visual cortex activation from the higher
level hayers in the HCNN [3].



2 Methods

2.1 Notation

We will generalize notation similar to that in [4]. Our data matrix X represents
traces of neural activity through time which is size N7, where N indicates the
number of neurons and T indicates the total timesteps. For tensors, we only
utilize 3rd order tensors in this work which are denoted by &', indicating a size
NxTxK tensor, where K may represent different experiments, tasks, etc.

2.2 Principal Component Analysis

Starting with the matrix decomposition case, we assume to have a matrix X
where each row vector z for i = 1,2,..T represents a single neurons activity
trace through time. Principal component analysis (PCA) finds a reduced di-
mensionality representation of size R where the data X can be a approximated
as X. In this case

X = WB”

where W is of size Nz R and B is size Tz R.

PCA minimizes the error X — WB” via the squared error, or Frobenius
norm. However under PCA, this algorithm is minimized with the constraint
that the vectors of both W and B are orthogonal.

2.3 Tensor Component Analysis

Tensor Component Analysis (TCA) can intuitively seem like an extension of
PCA into n-th order tensors. The problem attempts to find a decomposition
which decomposes data, such as the 3rd order tensor x which is of size N KaT
where N is neurons, K is experiments/trials, and T is time. The decomposition
which minimizes:

[Ix = xII%

is desired. x is recreated through each component of it being determined with:
R
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where w' is the first neural factor, b' is the first time factor, and a® is the
first experimental factor. Alternating least squares is used to minimize the
reconstruction error.

3 PCA Toy Experiment

To start exploring results of observing these dimensionality reduction tech-
niques, we employ them on both toy examples and real examples. We start
with initial cases of techniques to elucidate what the latent variables (neuron



factors or temporal factors) can represent. Beginning in the easier cases and
adding complexity can help ensure that we are visualizing and analyzing the
data correctly.

3.0.1 Neural Factor Evaluation

Let us assume we have activity of 5 neurons. In order to pull out understandable
variables in an unsupervised manner, we implement PCA via SciPy. The first
toy example generates 5 neurons with traces which look like:

Figure 1: A) Traces of 5 simple signals. B) PCA Recreation of the traces. C)
First temporal latent variable, accounting for 100% variance. D) Neural factors
for the first latent variable, effectively scaling the amount of the neural factor.

Looking at Figure 1 we see that there is only one latent factor as composed,
even though the analysis looked for three components. The other factors are
visualized, but the line width is scaled by how much the factors account for the
total variance. In this, the first variable accounts for 100% of the variance, thus
there is one temporal factor. The neural factors as constructed account for the
scaling of each variable.



3.0.2 Neural and Temporal Factor Evaluation

This time we take the case of having 5 neurons composed in the following
manner:
—2sin(t)
—cos(t) + sin(t)
x = |.Beos(t) + 2sin(t)
cos(t) — sin(t)
sin(t)

Taking note that this time, there are two functions, where everything is a linear
combination of both sin and cos functions. The prediction is that the PCA
algorithm will fundamentally be able to pull out two temporal factors that can
explain the data completely.
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Figure 2: A) Traces and recreation of 5 compound signals. B) Variance ex-
plained by the principal components C) Temporal components with line width
indicating the variance explained D) Neural factors for the latent variables, ef-
fectively scaling the amount of the neural factor. E) Visually displaying the
percentage of variance explained by components.

Figure 2 shows the results from this experiment. We see that PCA can
recreate the data sufficiently, and that two main temporal factors are deter-
mined. Figure 2C shows the temporal factors with their line width identifying
the percent of variance accounted for(also present in 2B and E). Figure 2D shows
how each temporal component is weighted for the corresponding neurons, which
shows relative similarities to the equations crafted.



3.0.3 Trajectory in Reduced Dimension

In order to see intuitively see how trajectories can be reduced into a lower-
dimensional space, we begin with a toy problem which has a follows a 3D path.
The path is defined as:

10 + .04¢% + cos(22t)
T = t2 + cos(5t) + 5
—.1t% — cos(10t)

The dimension of x is 3 initially, but it can be reduced to 2 dimensions using
PCA and selecting the 2 components which account for the most variance, seen
in Figure 3.
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Figure 3: Trajectory and projection of the toy problem, along with the major
components showing their corresponding direction

4 Results

4.1 Biological Neural Data

Taking the same TCA approach, data is taken this time from true biological
samples. Primary neurons are dissociated and placed on a 6 well plate, adhered
to a microelectrode array (MEA). This MEA has 64 channels for recording for



each well. The experiment conducted involved stimulating the neurons every 20
seconds for 13 total minutes. The data processing pipeline is seen if Figure 4.

1. Raw Electrode Data 2. Spike Sorting

. (Manual) Spike Curation | 4. Stim Reshaping

Figure 4: Data flow from raw electrode to a 3rd order tensor (NxKxT).

Beginning with the raw data, the neural spikes are sorted and turned into
singular binarary events. Spikes are manually curated to be deemed correct,
then the data is wrapped around the periodicity of the stimulations. This gives
the 3rd axis of the tensor, resulting in an NxKxT tensor. The factors identified
with TCA can be analyzed to show patterns of which neurons show specific
temporal patterns, and how those patterns change through time. In this case,
it would show how neurons show different activity types as they are stimulated
more and more. In the long term, experiments may show underlying patterns
which represent learning, such as two neurons having a pattern of activity which
strengthens through experiments. The visualization reducing to 3 factors is
shown in Figure 5.
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Figure 5: Factors for the primary cortical neurons. Rows indicate factor number,
columns indicate factor type.

Observing the neural factor shows us which neurons are active together,
and can tell about their underlying connectivity. The experimental factors in
the middle tell a story which may align with two neural properties of short
term potentiation and short term depression. We would see these occur as the
activity increasing or decreasing respectively with each stimulation. The neuron
factors do show this, with the first one exhibiting increasing strength through
trials, and the second two losing strength through more stimulations. The
activity itself is seen in the time factor, which shows that there are dampened
oscillations occurring which seem to be at differing phases. A fourier transform
is visualized in Fig. 6
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Figure 6: A fast fourier transformed is used on the neural factors, showing that
there is a peak in the low frequency range around 12 Hz. Phase angles around
that peak are differing, while the rest seems to be noisy.

Finally, the neural factor is used to reduce the problem to 3 dimensions,
and a trajectory is plotted through time. This is shown through the gif file
Supplementary Figure 1.

4.2 Artificial Neural Network

A final case study was completed to analyze more interpret able trajectories.
30 machine learning models are trained on the MNIST dataset which consists
of 60000 handwritten digits. The model involved has one fully connected layer,
so each input pixel (size 784) connects to each possible output digit class (10
digits). Together this results in a tensor of shape (MxDxNxT) or (models x
digits x neural weights x timesteps). Once again we identify factors for each
component, shown in Figure 7
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Figure 7: Three factors for each axis are displayed. Digit factors represent how
much each digit displays the corresponding other factors (blue factors exhibit
the qualities of the other marked blue factors, or factor 1). The experimental
or model factor displays that each model has a similar weighting. The tem-
poral model strictly display that the most pertinent time change are weights
increasing. Finally, the weight factors can be reshaped to visibly show a repre-
sentation. The blue factors from the digit factors mostly show the corresponding
blue weight representation.

These factors can provide great insights on what is happening under the
hood. Finally, we can see how their trajectories move in the reduced dimensional
space. Since 3 factors have been determined, the weight space is reduced from
784 to 3, and are visualized through time. Each digits weight is color coded, and
we can successfully see that the digits share separate trajectories through this
low dimensional space. Figure 8 and Supplemental Figure 2 show the trajectory.
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Figure 8: Trajectories of ANN models are graphed through the reduced di-
mensional weight-space, with digits color coded. We see definite separation for
differing digits.

5 Conclusion

Dimensionality reduction techniques such as Tensor Component Analysis can
help provide insights into black boxes which have inputs and outputs. Large
amounts of data can be used to find smaller dimensional factors which can
recreate the full data. These factors can have meaning in how underlying com-
putation is done. Through analysis of biological data, different activity increases
or decreases through multiple stimulations, and primary activity patterns are
identified. In the case of an artificial neural networks, we can see easily dis-
cernible trajectories in a low dimensional space corresponding to how the algo-
rithm was trained. Visualization techniques are absolutely necessary in order
to find interpretations of this complex data.
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