
Nucleus Decomposition and Complex Function

Visualization

Will Bolden

We explore two very different areas of visualization. The first relies on
the nucleus decomposition operation, which turns a graph into a tree of
subgraphs of ever increasing density. In visualizing this tree of subgraphs,
along with the intersections between subgraphs, we hope to quickly highlight
regions of interest in large graphs and allow users to explore them. Our
second focus was visualization of functions of a complex variable in a 2D
and 3D context, and make these potentially difficult to grasp concepts more
accessible. Our efforts here were very successful, however as this was a
secondary project we spend less time analyzing this than we do on our first
topic.

1 Nucleus Decomposition Visualization

1.1 Introduction

Several real-world datasets, from citation information to social networks,
can be represented as graphs. Although each dataset might represent very
different topics, a graphical representation opens the possibility of investi-
gating them with standard graph-theoretic techniques. In this initial step
in our work we will focus primarily on “citation networks”, graphs where
papers are represented by vertices and citations are represented by edges.
Although this might seem like a very narrow focus, we believe that that
techniques developed for use on citation networks may prove very useful in
a wide variety of real-world networks.

In large graphs, which can have well over a million vertices and an even
larger number of edges, it can be difficult to pick out regions of interest

1

to examine. However most real-world graphs are sparse, meaning that the
number of edges in the graph is much less than the number of possible edges
in the graph, which can be used to our advantage. Given this generalization
it is reasonable to say that a dense subgraph, which has near the maximum
number of possible edges, is a potentially interesting part of the data and a
good candidate to focus our visualization resources on. Finding these dense
subgraphs is often easier said than done, and in fact finding the densest k
subgraphs of a graph is an NP-hard problem in general. As such, approxi-
mation methods are needed.

Nucleus decomposition is one such approximation which, at a high level,
transforms a graph into a tree of subgraphs. The root node of the tree is
the least dense, and represents the entire graph, while as the depth increases
the children represent denser subgraphs of their parents. In the context of
citation networks, we decided that this approach was potentially very ad-
vantageous in the sense that this tree could potentially clearly show related
fields and subfields in an area of research. It is important to note that ver-
tices in the original graph can be “duplicated” when creating this tree, in
the sense that two subgraphs can contain the same vertex despite not being
ancestors or descendants of one another. To provide a simple example, if a
graph contained a paper A, it is possible for any number of its subgraphs
(children in the nucleus decomposition tree) to also contain the paper A. In-
tuitively places where these “intersections” between subgraphs occur could
also be interesting, possibly representing an important paper that linked two
fields or a paper from one field that spawned an entirely new field, so exam-
ining these regions also became a topic of interest in this project.

The original publication of this method included some simple visualizations,
as seen below, but a more interactive and easy-to-interpret visualization was
desired. This was the main focus of our work.

2

Figure 1: Visualization shown in the original paper

Note that in the above image of a forest can be made into a tree, as
previously specified, by connecting the root node of each tree in the forest
to a new node representing the original graph.

1.2 Related Works

As we did not work on the implementation of Nucleus Decomposition algo-
rithm ourselves, we will focus purely on the related visualization techniques
in this section.

As we primarily focused on citation networks, existing software used to vi-
sualize citation networks was of primary interest to us. We found a few in-

3

stances of this kind software, notably CitNetExplorer and VOSviewer, which
are both free tools released by Leiden University in the Netherlands. Their
work was discussed in depth in a paper they published, however all of their
techniques focus on operating on the original citation network, rather than
a tree of subgraphs [1]. As it is clear that their work did not employ a
tree-based decomposition of the original graph like we did, so from a user
perspective at least our technique provides a very different, and potentially
more useful, visualization of the data.

1.3 Technical Detail

The primary tool we used in creating our visualization was the JavaScript
library d3, which provides a variety of useful features for quickly visualizing
data [2]. Although d3 was the backbone of our vis, it was sometimes cumber-
some and slow to work with JavaScript-based methods, so we occasionally
employed Gephi, a free graph visualization tool, to examine some parts of
the data [3]. We also used python in conjunction with networkx, a graph
library, to obtain some statistics about our graphs. [4]

Because of the amount of data provided, some 500,000 papers, and ease
of access we focused on visualizing citations from the many Physical Re-
view journals provided by the American Physical Society. Although we were
somewhat limited by the fact that we all had limited experience in physics,
we figured quantity was somewhat important if we want to extend out tech-
niques to other large networks.

The specific code to perform a nucleus decomposition was never provided to
us, and instead we were given the output of a nucleus decomposition that
had been run on the aforementioned citation network. The result, a tree as
mentioned, took the form of a JSON file which contained information about
all of the papers in each node of the tree (where each node represents a
subgraph). Some information was missing from this representation, notably
we did not have any information on the papers which comprised a subgraph
for subgraphs with a density less than 0.01 and initially did not have any in-
formation about the actual structure of the subgraph, though we were later
provided this.

The initial iteration of the project simply represented this tree via circle
packing in d3, which didn’t provide much more information than the den-
sities and number of vertices per subgraph at different levels of the tree.

4

Improving upon this we added the ability to pan and zoom around the visu-
alization, along with the ability for users to select a node of the tree to load
information about all of the papers contained within it. To help us identify
common topics and authors we also provided a list of the most common
keywords and authors in the subgraph, sorted for greatest to least. Together
these strategies were relatively effective in allowing us to quickly look around
the tree and identify different subcomponents.

Figure 2: Our early progress on the visualization. 305 is the number of
vertices in the selected subgraph (near center), 0.15 is the density.

We also made some edits to the underlying d3 circle packing code in order
to provide a more spread out look, as we feared that the default clumped
look provided by d3 would provide users with the illusion of correlation where
there was none. In this iteration we also allowed users to filter by subgraph
size, which cleaned up the look of our image in general and mode the program
run much more quickly. Although we added many more features, this general
look did not change for the remainder of the project.

5

Figure 3: A more spread-out view

With this basic component of the visualization done we decided to take
a closer look at intersections among subgraphs, which in the end consumed
the remainder of our time on this project. We decided to only record the
intersections of maximum depth, meaning that a node would not be marked
as intersecting with a paper if a descendant of it also intersected with the
paper. To do this we used a simple recursive algorithm, which updated an
array where each index represented a paper number. At each step of the
recursive process if a paper appeared in a child the child was added to that
paper’s index in the array, and the parent was likewise removed, such that

6

when the algorithm completed the array would have exactly the information
desired.

From this, in addition to some statistics which will be further discussed
in the results section, we obtained the information required to work on the
last two components of the project we had time to work on this quarter.
The first of these components involved taking the intersection data and us-
ing it to generate graphs which show what other subgraphs you can reach
by traversing intersections as if they formed edges.

Figure 4: A fragment of an intersection graph, orange nodes represent sub-
graphs while blue nodes represent papers

The second, perhaps more obvious, component this enabled us to imple-
ment was the ability to highlight click on a circle, while intersection mode
was enable, in order to highlight all nodes which intersected with the given
node. Although we feared that this method might appear to messy, and
indeed if we highlight all possible intersections stored in the papers array
it does, when limiting the papers to those intersecting with a selection the

7

results are very manageable. This allows users to quickly see different in-
tersecting sets and look at them in order gain better understanding of their
relations.

Figure 5: Highlighting subgraphs which intersect with the selected subgraph

1.4 Results

The final result of our work was a fully functional tool for visualizing our
citation data, complete with the ability to search for papers and authors,
and quickly access the paper and intersection information related to each
node. In the image below we also show a quick test of a new color scheme,
which we hoped would be easier to look at than the very saturated color

8

scheme we previously used.

Figure 6: Our current progress

We also collected several statistics about intersections in the graph, not-
ing that while 8132 subgraphs participated in intersections of size 2, only 738
subgraphs participated in intersections of size 3. This rapid decay contin-
ues to the point where only 11 subgraphs participate in intersections of size
greater than 9. When creating graphs out of the intersections we noticed
a somewhat similar phenomenon. Most, 1577, of the intersection graphs
formed had 3 vertices, two vertices representing subgraphs and one ver-
tex representing their linking paper, while there was one intersection graph
which contained 6192 vertices. Aside from this outlier, the largest number
of vertices was only 216. All other intersection graphs involved appeared to
be planar, while the 6192-vertex graph appeared to be non-planar. It should
be noted that we only know these statistics about planarity because of our
attempts to visualize the graphs, and as determining the crossing number of
a graph is an NP-hard problem we have not formally checked whether the
6192-vertex graph is planar.

Examining several random intersections we found that there usually was
some correlation between the keywords in intersecting sets, though given

9

our lack of expertise in physics it is still difficult for us to say exactly how
significant this correlation is. Allowing a physics professor to take a look
at our data would be a good step to take in the future, and should help us
gauge the effectiveness of our technique.

1.5 Conclusion

While our efforts were successful, perhaps the main obstacle which held back
our progress was our inability to pinpoint what, specifically, was useful in-
formation to get out nucleus decomposition tree. Because of this most of our
work was focused more on giving us tools, and reasonably effective ones at
that, to analyze our graph and display various statistics about it. While this
is useful, it unfortunately has not brought us to our end goal of displaying
truly useful information about citation networks, or large graphs in general,
at a glance.

As we continue to work on the project, we hope to approach this goal, and
along we way plan on conducting many additional tests. Notably we wish
to see how the nucleus decomposition graph changes if its data is restricted
to a period of time, and also how the topics of interest in each subgraph
change over time. There is still more work to be done on the intersection
problem, notably about how we can use intersections and their properties to
help convey information to our users, if such a thing is possible at all. There
is a significant amount of work ahead of us, but we will continue to make
progress.

2 Complex Function Visualization

2.1 Introduction

The purpose of this project was to provide a fast and simple to use method of
displaying functions of a complex variable, a variable of the form z = x+ yi,
where i is the imaginary unit. As this project was secondary to our work
on nucleus decomposition visualization we will not go into as great of detail
here, and merely provide a brief overview of the project.

2.2 Related Works

Visualizing complex functions has been a topic of discussion for centuries,
and as such none of the concepts we implement here are truly original. The

10

basic layout and color scheme used in the initial 2D representation were
based almost entirely on a similar site created by David Bau [5]. The col-
oring scheme used by this site is based on a common technique known as
domain coloring, which colors points based on their angle and magnitude
on the complex plane. One feature of this site that we had not seen before,
however, was the presence of a regular grid of points to emphasize how areas
were stretched or squished, which can be very difficult to do when looking
at seemingly continuous colors. This site, however, does all of its rendering
slowly in Javascript and does not support many of the more advanced fea-
tures we added to our work.

The 3D component of our project is based on an idea called a Riemann
surface, which essentially allows us to display a deformed portion of the
complex plane as a surface in 3D. In general complex functions would re-
quire 4 dimensions to present as they take a point x+ yi and output a point
z + wi, for a total of 4 components that would need to be plotted. In our
work we quickly generate a Riemann surface by creating this 4D point vector
[x, y, z, w] and projecting down into 3D.

2.3 Detail and Results

The overall structure of the program is fairly simple. The core graphics en-
gine is a collection of GLSL shaders, many of them filled with placeholder
tags such as $userinput$ or $userfunctions$. These tags are used to indicate
where code can be inserted into the shaders after the user enters the ex-
pression they wish to compute. The user inputted expressions are not valid
GLSL code, and instead have to be put through a parser to compile the fairly
easy-to-write user input into the much more complicated sequence of func-
tion definitions and calls needed to produce the desired result from GLSL.
We perform this process of parsing user input, splicing it into a shader, and
then recompiling the shader each time the user changes their input as this
allows GLSL to generate results extremely quickly, especially on computers
with a good GPU.

Although some code depends entirely upon user input, and thus cannot
be added to the shader in advance of said input, the majority of supporting
code can remain statically in the shaders. The majority of this code con-
sists of function definitions, as although GLSL has builtin math functions
for real variables some additional work is required to define these functions
for complex variables. In addition to math functions, the core code graphics

11

code does not chance based on user input. One piece of code that remains in
the shader is the code for numerically computing the inverse of a function,
which can often be accomplished using Newton’s method.

A new feature we added was support for two additional definitions of i.
In regular complex numbers i2 = −1, but we added support for i2 = 1
(where i is not 1, the hyperbolic numbers) and i2 = 0 (where i is not 0,
the dual numbers). To avoid requiring a costly numerical computation for
any of these alternative functions we used taylor expansions and employed
well-known identities in order to find closed-form expressions for all of them,
which we then implemented.

Below we list a small number of examples of the visualization’s capabili-
ties:

Figure 7: The Mandelbrot set

12

Figure 8: The square root function, plotted in 3D

13

Figure 9: The exponential function

14

Figure 10: The Riemann zeta function

15

Figure 11: The sin function in the hyperbolic plane (i2 = 1)

2.4 Conclusion

Although there is always room for improvement, all the core features of the
complex function visualization are implemented. Our visualization offers
many different modes to the user, and is quite configurable within each of
these modes, so for most users our tool should provide sufficient flexibility
to be useful.

References

[1] Van Eck, N.J., & Waltman, L. (2014). CitNetExplorer: A new software
tool for analyzing and visualizing citation networks. Journal of Informet-
rics, 8(4), 802-823.

[2] Mike Bostock et al, d3: Data Driven Development, available from
https://d3js.org/

16

[3] Bastian M., Heymann S., Jacomy M. (2009). Gephi: an open source
software for exploring and manipulating networks. International AAAI
Conference on Weblogs and Social Media.

[4] Aric A. Hagberg, Daniel A. Schult and Pieter J. Swart, ”Exploring net-
work structure, dynamics, and function using NetworkX”, in Proceedings
of the 7th Python in Science Conference (SciPy2008), Gäel Varoquaux,
Travis Vaught, and Jarrod Millman (Eds), (Pasadena, CA USA), pp.
11–15, Aug 2008

[5] David Bau, Complex Function Viewer, available from
http://davidbau.com/conformal/

17

