
Simple collaborative visualizations
Patrick Landis (pdlandis@ucsc.edu)

CMPS161 Final Project
03/20/2017

Abstract
Collaborative visualization tools have become increasingly easy to create and
use as the related technologies improve and become popularized. While it
becomes easier to develop these systems, the demand for intuitive data
visualization and collaborative techniques is growing rapidly, as computer
hardware enables the collection and storage of enormous amounts of data. This
paper describes the technical details and development process of a simple
collaborative tool to highlight some of the challenges and opportunities related
to these circumstances.

1. Introduction
Collaborative visualization software is not a particularly new field of study. Data
visualizations are generally intended to be shared between users in a way that
assists an understanding of the data being viewed. While visualizations based on
a single individual’s understanding of a dataset, and the relevant features to be
highlighted, can be incredibly useful, there are many applications in which the
benefits of additional perspectives are clear. Medical visualizations, such as x-ray
images, have specific areas of interest that can benefit from a collaborative
environment where multiple doctors can quickly and efficiently identify these
critical points, without significantly overlapping in work. Prior to collaborative
medical imaging, these documents would be sent to each doctor individually,
resulting in significantly slower communication and a delayed diagnosis [1].
There are now many software solutions to the specific problem of radiological
collaboration [1][2][3], from small, academic-lead initiatives like radiollaboration
[1], to fully-featured commercial products such as Terarecon’s Overlay PACS™
[3]. For very similar reasons, collaboration software in an architectural,
engineering and construction context has become commonplace, with solutions
like Gehry Technologies’ GTeam™[4] offering collaborative visualizations of
2D and 3D architectural designs. Other, more generalized collaborative
visualization tools

Collaboration tools like these are intended to offer solutions for
professionals in specific fields and industries. Because of this, the tools often
come with significant price tags, hardware requirements, and training
requirements: hurdles that are difficult, if not impossible, to overcome for general
users. Open-source collaborative visualization systems designed for general data

sets, such as ​Paraview​ , solve the issues of specialization and monetary cost, but
come at the price of requiring even more technical expertise in order to be used
effectively[7]. While non-specialist participation may not be an issue for many
uses, certain collaborative projects have much to gain from increased ease of
access that allows and encourages users who otherwise would not meet the
requirements of specialized products.

Isenberg et al described “engaging new audiences” as a primary goal for
the preferred future of collaborative visualizations, and the importance of
expanding collaborative tools beyond the realm of the scientific community [5].
This paper describes the development of a collaborative visualization tool that
attempts to provide a collaborative and intuitive environment that allows sending
and receiving simple drawn input while maximizing ease-of-use, both in terms of
program interactivity and setup. The program was created with the goal of
learning more about the process and challenges facing developers attempting to
pursue these new audiences.

2. Technical Detail
Both client and server components of the program are written almost entirely in
the JavaScript[9] programming language. The server portion is built in the
Node.js [10] JavaScript runtime, and uses the Express[11] package for serving
templated HTML and static script files to clients. The client architecture uses
JavaScript, as implemented by any major modern web browser, in conjunction
with an HTML5 canvas[12] element. The jQuery[13] JavaScript library is used
for simplified DOM[14] manipulation on client side elements, and the jscolor[15]
JavaScript widget is used for the client color selection input. To connect clients
to the server, WebSockets[16] manipulated by the Socket.io[17] JavaScript
library are used. The program is built on the ​Dead Simple Screen Sharing​ [18]
Chrome extension developed by Mohammed Lakkadshaw, who provided a server
framework and an implementation of mutation-based website screen sharing
previously described by Chrome developer Rafael Weinstein.

2.1 Screen Sharing
In mutation-based screen sharing, the host user has event handlers created to
watch DOM elements for changes. When a change is detected, visual information
of the user’s active tab is saved, then propagated to connected clients. For most
screen sharing purposes, this is an extremely efficient way to collect only
relevant data. If we were watching the web browser from outside the application,
and were unable to watch the DOM, we would have to constantly process image
data for changes, or worse, maintain a constant stream of unaltered images
whenever visual content on the page is not changing. For systems intending to
support large numbers of users, sending this much data would be a significant
waste of resources. Using Weinstein’s method, as primarily implemented by

Lakkadshaw, the program avoids excessive packet transmission by only sending
visual data when applicable changes have been made to the viewed tab. Visual
data is captured from the host user using the captureVisibleTab() Chrome
extension API call[19], which provides a dataURL[20] representation of a JPEG
screenshot of the active tab. As it is already effectively compressed, this
dataURL is sent to the server, and rebroadcast to each connected client.

2.2 Client Curve Drawing

Class variable member definitions for CurveNode and CurveRoot. CurveNodes

are stored in a linked-list style data structure.

User-generated curves are stored in a linked list style data structure, allowing for
efficient traversal while drawing a curve on the display. CurveRoots serve as the
initial node for a curve and also contain additional information about size, color,
and drawing conditions, as well as member functions for manipulating the nodes.
While this structure is highly efficient for client processing, it causes some issues
with networking using standardized data serialization. The most widely used
standard for transmitting JavaScript objects in networked applications is through
JSON encoding [21]. However, for the purpose of saving a linked list data
structure, the JSON standard requires the inclusion of a large amount of
redundant data, significantly increasing the bandwidth requires of a server
sharing CurveNode information. To solve this issue, I wrote a minimalistic
encoding/decoding specification for the CurveNode class, substantially
decreasing the size of data payloads being sent and received.

Standard JSON (456 bytes) Custom Data String (162 bytes)

{"x":436,"y":309,"c":"rgb(0, 0,
0)","s":6,"n":{"x":437,"y":309,"n"

rgb(0,0,0).6.436.309.1371.700.0.43
7.309.440.309.442.309.444.309.445.

:{"x":440,"y":309,"n":{"x":442,"y"
:309,"n":{"x":444,"y":309,"n":{"x"
:445,"y":309,"n":{"x":446,"y":309,
"n":{"x":447,"y":309,"n":{"x":448,
"y":309,"n":{"x":450,"y":309,"n":{
"x":451,"y":309,"n":{"x":453,"y":3
09,"n":{"x":454,"y":309,"n":{"x":4
56,"y":309,"n":{"x":457,"y":309,"n
":{"x":457,"y":309,"n":{"x":457,"y
":309,"n":null}}}}}}}}}}}}}}}},"is
Drawn":false,"xm":1371,"ym":700,"h
ostTopOffset":0}

309.446.309.447.309.448.309.450.30
9.451.309.453.309.454.309.456.309.
457.309.457.309.457.309.

Comparison of standard JSON encoding and implemented custom method for a
simple curve.

The drawing interface is implemented on clients through JavaScript event
handlers[ref], which interact with the browser to provide triggers for specific
events. When the screen drawing area is initially clicked, a CurveRoot object is
generated with the user’s current option selections. While the mouse button is
held, another event handler is triggered when the user drags the mouse across the
surface. At regular intervals during this event, CurveNodes, containing the
current mouse position within the canvas element, are appended to the list
maintained by the original CurveRoot object.

2.3 Host Extension
The host’s view is controlled by JavaScript code found within a Google Chrome
extension. Background scripts are used to create a constant WebSocket
connection to the server, while content scripts inject JavaScript code onto each
visited website, such as the mutation observers described in section 2.1. A
particularly time-consuming issue that arose in using Chrome extensions was the
way in which inter-script communication was handled. Background scripts are
loaded just once, when the extension is activated by the user, and continue
running as long as the extension is active. The content scripts for this project
must be re-injected into each page visited by the host, in order to manipulate the
DOM of that page. Due to the nature of this program, constant communication
between scripts able to modify the visual content of the host’s active tab, and the
scripts maintaining the WebSocket connection was necessary. Although the
Chrome extension API provides excellent options for handling this situation, it
adds a significant layer of complexity to the program.

Inter-script communication diagram.

3. Results
Despite many setbacks and technical issues, as described above, the current state
of the program meets the initial goals of the project. Without any additional
downloads or configuration, users with any popular modern web browser can
enter a simple URL to begin participating. Input is intuitive and smooth, allowing
even inexperienced users to collaborate on a shared document. Barriers of entry
for host users are only slightly greater, with the requirement of a specific web
browser (Google Chrome) and an extension. Viewer clients can draw on the
shared screen images and have their input shared quickly and efficiently with all
connected users.

Some users, while testing, have mentioned that the lack of host input
options reduces the usefulness of the program. I agree, and wish I had more time
to implement an interface for this behavior.

Pang and Wittenbrink wrote about encountering significant latency
issues while testing the networked collaborative visualization system ​CSpray
using a standard Internet connection in 1994 [6]. During the initial phases of
developing my program, these issues were mostly disregarded as being
predicated on the low-bandwidth technology available at the time. However,
while bandwidth issues have been greatly alleviated by improvements in network
infrastructure, experiences in developing this program have shown that network
resource management is still an important issue when building collaborative tools
that rely on such communications. Tests using remote web hosting resulted in
latency issues that created frustrating user experiences, such as a curve not
appearing on the host for several seconds. Implementing the data compression
techniques described in Technical Detail reduced, but did not eliminate, those
problems.

Although the excellent frameworks and tools mentioned in Technical
Detail made it possible to complete this project in such a short time, there are still
many issues with using them. In particular, the Chrome extension system of
inter-script communication necessitated a much larger investment of time to
implement ostensibly simple features, although these problems were greatly
exacerbated by my own inexperience with the Chrome API.

4. Conclusion
Modern computers and software have greatly increased our ability to collect,
store and visualize data sets. These advances have lead not only to the collection
of enormous amounts of data, but to mass audience understanding of the
importance and usefulness of data. One only needs to think about the term “big
data” and its implications to understand the prevalence of information collection
and processing in our modern world. In addition to the massive data collections
built by Internet companies, smaller businesses and organizations are taking
advantage of the increasing accessibility of data collection and presentation
systems [22]. As these systems increase in availability and popularity, simple and
intuitive means of presenting and interacting with data will become more
important.

5. Related Works
There are many projects attempting one or both of the major components of this
program. Simple web-based collaborative whiteboard applications include ​A Web
Whiteboard​ [23] and ​Ziteboard​ [24]. Web-based screen sharing projects that only
require the host user to install software include Mohammad Lakkadshaw’s ​Dead
Simple Screen Sharing ​ [18], the code of which was used for this project, and the
commercial product ​Screenleap​ [25].

References
[1] Walsh, John. “X-Ray Collaboration.” John Carroll University.
http://sites.jcu.edu/magazine/2012/01/06/x-ray-collaboration/

[2] BRIT Systems. “Collaborative Radiology Pool.” BRIT Systems.
http://www.brit.com/productsandservices/services/technology.html

[3] Lugo, Kevin. “Collaborative tools for Radiologists.” Terarecon, Inc.
http://www.terarecon.com/blog/collaborative-tools-for-radiologists

[4] Gehry Technologies. ​http://www.gteam.com/

http://sites.jcu.edu/magazine/2012/01/06/x-ray-collaboration/
http://www.brit.com/productsandservices/services/technology.html
http://www.terarecon.com/blog/collaborative-tools-for-radiologists
http://www.gteam.com/

[5] Isenberg, Petra et al. “Collaborative Visualization: Definition, Challenges, and Research
Agenda.” French Institute for Research in Computer Science and Automation.
http://www.umiacs.umd.edu/~elm/projects/collabvis/collabvis.pdf

[6] Pang, Alex and Wittenbrink, Craig. “Collaborative 3D Visualization with CSpray.” Links to
paper at: ​http://avis.soe.ucsc.edu/cspray.html

[7] Kitware Inc. “The ParaView Guide: Community Edition”
http://www.paraview.org/paraview-guide/

[8] Weinstein, Rafael. “DOM Mutation Observers and the Mutation Summary Library.”
https://www.youtube.com/watch?v=eRZ4pO0gVWw

[9] Mozilla Developer Network. “JavaScript.”
https://developer.mozilla.org/en-US/docs/Web/JavaScript

[10] Node.js. ​https://nodejs.org/en/

[11] Express. ​https://expressjs.com/

[12] Mozilla Developer Network. “Canvas API.”
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API

[13] The jQuery Foundation. ​https://jquery.com/

[14] Mozilla Developer Network. “Introduction to the DOM.”
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction

[15] Odvarko, Jan. jscolor. ​http://jscolor.com

[16] Fette, I. and Melnikov, A. “The WebSocket Protocol.” Internet Engineering Task Force.
https://tools.ietf.org/html/rfc6455

[17] Socket.io. ​https://socket.io/

[18] Lakkadshaw, Mohammad. “Dead Simple Screen Sharing - Overview.”
http://mohammedlakkadshaw.com/blog/Deadsimplescreensharing_overview.html

[19] Google Chrome Developer Documentation.
https://developer.chrome.com/extensions/tabs#method-captureVisibleTab

[20] Masinter, L. “The ‘data’ URL scheme.” The Internet Society.
https://tools.ietf.org/html/rfc2397

[21] Brey, T. “The JavaScript Object Notation (JSON) Data Interchange Format.” Internet
Engineering Task Force. ​https://tools.ietf.org/html/rfc7159

[22] Wall, Stuart. “How and Why Data Will Save Small Business.” Small Business Trends.
https://smallbiztrends.com/2015/03/small-business-data-collection.html

http://www.umiacs.umd.edu/~elm/projects/collabvis/collabvis.pdf
http://avis.soe.ucsc.edu/cspray.html
http://www.paraview.org/paraview-guide/
https://www.youtube.com/watch?v=eRZ4pO0gVWw
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://nodejs.org/en/
https://expressjs.com/
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API
https://jquery.com/
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
http://jscolor.com/
https://tools.ietf.org/html/rfc6455
https://socket.io/
http://mohammedlakkadshaw.com/blog/Deadsimplescreensharing_overview.html
https://developer.chrome.com/extensions/tabs#method-captureVisibleTab
https://tools.ietf.org/html/rfc2397
https://tools.ietf.org/html/rfc7159
https://smallbiztrends.com/2015/03/small-business-data-collection.html

[23] A Web Whiteboard. ​https://awwapp.com/

[24] Ziteboard. ​https://app.ziteboard.com/

[25] Screenleap. ​http://www.screenleap.com/

https://awwapp.com/
https://app.ziteboard.com/
http://www.screenleap.com/

