CMPS 161 Final Project
By Cole Faust

Introduction

For my final project in our Intro to Data
Visualization class, | made a program that
would analyze a video of someone juggling
and attempt to figure out what throws they’re
making. The data visualization part comes
from drawing labeled arcs over the video.
The end result looks something like this:

Arcs are drawn over the path that each ball
makes, and those arcs are labeled with the
siteswap notation of the throw. The arcs are
quadratic regressions from the points given in
the video, to create a smooth line and
remove irregularities.

For those not familiar with siteswap, it is a
notation used to describe juggling patterns.
Each throw of the ball has a number
associated with it, where odd numbers are
increasingly higher throws from one hand to
the other, and even throws are increasingly
higher throws from one hand to itself. Two
small exceptions to this rule is a 2 in siteswap
corresponds to holding the ball without
throwing it, and a zero corresponds to not
having a ball in play for that beat. A
combination of these numbers can make a
complete juggling pattern. In the
demonstration video | showed for this class,

there were two different patterns: one made
of 4’s and 1’s, and one made of only 3’s.

Implementation

| wrote this a C++ program with opencv to do
the tracking, and GNU scientific library to do
the regression. Since this was my first foray
into computer vision, | ended up making
many assumptions about the video in order
to make it easier to track the balls. Most
notably, | assumed everything with a
saturation of less than 150 or value of less
than 100 (in HSV color format with values
ranging 0-255) was in the background and
could be removed. That left pretty much just
the balls for the video | chose, as it had a
very light background and a black shirt.
Remaining small fragments could be
removed by eroding the image. Here’s an
example of what the resulting image looked
like:

This process left the balls not looking very
ball-like however, so | picked them out by
finding any non-zero pixel and then using
flood fill to remove it from the image while |
look for other balls.

by using Huffman Circles. Huffman Circles

After identifying the locations of the balls on are a way to detect circles in an image, that
this frame, | try to figure out which ball OpenCV has native support for. They work off
matches up with another from a prior frame. of finding the contours in an image and then
What | went with was just a simple “pick the figuring out how much of the contour

closest” choice. In the videos in my matches a circular shape. If that value
demonstration, balls rarely cross over each passes a certain threshold, it’s considered a
other, so it’s reasonably accurate. | have 3 circle. The problem with this was that

cursors that | move along with their closest contours are very general, and they could be
ball, and where the cursors are | record applied all across the image. Here’s an

points as part of the arc of that ball. While example of contour line output.

recording those points, if any of them fall
outside of a certain range, | consider the arc
ended, and subsequent points will start a
new arc. The range of valid points | define to
be halfway between the juggler’s face and
the bottom of the video, or roughly
underneath the face. (to catch the 1’s) It’s not
a very good system, but again, | was just
trying to get it to work for this one video. An
image of the plotted points looks like this:

As you can see, it can be confusing even to a
human to tell what’s going on. You can see
the blue ball pretty well in this image, but the
red ball is only half there, and it’s mixed in
with the juggler’s neck. This produced very
inconsistent results when applied to video. It
often thought that there were several balls in
the juggler’s face and shirt, didn’t pick up the
real balls sometimes, and even thought the
circular logo on the video was a ball.

Another strategy | tried to use was optical
flow in order to figure out which ball was
which. Optical flow matches objects with prior

The pink points are the juggler’s face, and objects not just with position, but also velocity
the other colored points are where the balls and acceleration. This may have worked well,
are. and | started implementing the basics of it,
but | discovered that just doing a simple
Other Attempted Strategies proximity check worked out well enough for
Although the final product is very dependent my purposes, especially because in the
on the input data, | had tried some more juggling patterns | analyzed the balls don't
general strategies earlier. One of those cross or overlay over each other. For more

strategies was to detect where the balls are

complicated patterns or patters with more
balls this may be necessary.

Finally, to remove the remaining scraps of the
image that wasn’t part of a ball, | had tried
using a Gaussian blur before eroding, as |
had read that it could help. It actually ended
up having a negative effect, and caused less
of the image to be removed by the later
erosion. In hindsight, doing the Gaussian blur
after the erosion wouldn’t have hurt but it
wasn’t necessary because | was just
detecting any non-black pixels at that point.

Results

The final results of the project end up working
pretty well for the cherry-picked input data.
With more time and research into the proper
way to do computer vision, this could end up
becoming a useful tool. Some potential
applications for this would be teaching new
jugglers by clearly analyzing professionals, or
showing amateurs what they did wrong.
Future goals for the project could be
identifying mistakes, creating a complete
sight swap notation from the individual
throws, identifying the colloquial name for the
pattern, or overlaying a sample animation of
the pattern. These are all things to think
about when moving forward, as this project is
just the basics of what it could be.

