
CMPS 161 Final Project
By Cole Faust

Introduction
For my final project in our Intro to Data 
Visualization class, I made a program that 
would analyze a video of someone juggling 
and attempt to figure out what throws they’re 
making. The data visualization part comes 
from drawing labeled arcs over the video. 
The end result looks something like this:

Arcs are drawn over the path that each ball 
makes, and those arcs are labeled with the 
siteswap notation of the throw. The arcs are 
quadratic regressions from the points given in 
the video, to create a smooth line and 
remove irregularities. 

For those not familiar with siteswap, it is a 
notation used to describe juggling patterns. 
Each throw of the ball has a number 
associated with it, where odd numbers are 
increasingly higher throws from one hand to 
the other, and even throws are increasingly 
higher throws from one hand to itself. Two 
small exceptions to this rule is a 2 in siteswap 
corresponds to holding the ball without 
throwing it, and a zero corresponds to not 
having a ball in play for that beat. A 
combination of these numbers can make a 
complete juggling pattern. In the 
demonstration video I showed for this class, 

there were two different patterns: one made 
of 4’s and 1’s, and one made of only 3’s. 

Implementation
I wrote this a C++ program with opencv to do 
the tracking, and GNU scientific library to do 
the regression. Since this was my first foray 
into computer vision, I ended up making 
many assumptions about the video in order 
to make it easier to track the balls. Most 
notably, I assumed everything with a 
saturation of less than 150 or value of less 
than 100 (in HSV color format with values 
ranging 0-255) was in the background and 
could be removed. That left pretty much just 
the balls for the video I chose, as it had a 
very light background and a black shirt. 
Remaining small fragments could be 
removed by eroding the image. Here’s an 
example of what the resulting image looked 
like:

This process left the balls not looking very 
ball-like however, so I picked them out by 
finding any non-zero pixel and then using 
flood fill to remove it from the image while I 
look for other balls. 



After identifying the locations of the balls on 
this frame, I try to figure out which ball 
matches up with another from a prior frame. 
What I went with was just a simple “pick the 
closest” choice. In the videos in my 
demonstration, balls rarely cross over each 
other, so it’s reasonably accurate. I have 3 
cursors that I move along with their closest 
ball, and where the cursors are I record 
points as part of the arc of that ball. While 
recording those points, if any of them fall 
outside of a certain range, I consider the arc 
ended, and subsequent points will start a 
new arc. The range of valid points I define to 
be halfway between the juggler’s face and 
the bottom of the video, or roughly 
underneath the face. (to catch the 1’s) It’s not 
a very good system, but again, I was just 
trying to get it to work for this one video. An 
image of the plotted points looks like this:

The pink points are the juggler’s face, and 
the other colored points are where the balls 
are.

Other Attempted Strategies
Although the final product is very dependent 
on the input data, I had tried some more 
general strategies earlier. One of those 
strategies was to detect where the balls are 

by using Huffman Circles. Huffman Circles 
are a way to detect circles in an image, that 
OpenCV has native support for. They work off 
of finding the contours in an image and then 
figuring out how much of the contour 
matches a circular shape. If that value 
passes a certain threshold, it’s considered a 
circle. The problem with this was that 
contours are very general, and they could be 
applied all across the image. Here’s an 
example of contour line output.

As you can see, it can be confusing even to a 
human to tell what’s going on. You can see 
the blue ball pretty well in this image, but the 
red ball is only half there, and it’s mixed in 
with the juggler’s neck. This produced very 
inconsistent results when applied to video. It 
often thought that there were several balls in 
the juggler’s face and shirt, didn’t pick up the 
real balls sometimes, and even thought the 
circular logo on the video was a ball.

Another strategy I tried to use was optical 
flow in order to figure out which ball was 
which. Optical flow matches objects with prior 
objects not just with position, but also velocity 
and acceleration. This may have worked well, 
and I started implementing the basics of it, 
but I discovered that just doing a simple 
proximity check worked out well enough for 
my purposes, especially because in the 
juggling patterns I analyzed the balls don’t 
cross or overlay over each other. For more 



complicated patterns or patters with more 
balls this may be necessary. 

Finally, to remove the remaining scraps of the 
image that wasn’t part of a ball, I had tried 
using a Gaussian blur before eroding, as I 
had read that it could help. It actually ended 
up having a negative effect, and caused less 
of the image to be removed by the later 
erosion. In hindsight, doing the Gaussian blur 
after the erosion wouldn’t have hurt but it 
wasn’t necessary because I was just 
detecting any non-black pixels at that point.
 
Results
The final results of the project end up working 
pretty well for the cherry-picked input data. 
With more time and research into the proper 
way to do computer vision, this could end up 
becoming a useful tool. Some potential 
applications for this would be teaching new 
jugglers by clearly analyzing professionals, or 
showing amateurs what they did wrong. 
Future goals for the project could be 
identifying mistakes, creating a complete 
sight swap notation from the individual 
throws, identifying the colloquial name for the 
pattern, or overlaying a sample animation of 
the pattern. These are all things to think 
about when moving forward, as this project is 
just the basics of what it could be.


