SYMMETRIC-KEY CRYPTOGRAPHY

NOTICES

- Lab #2 servers now available
- Start those dictionary attacks early! If your search has been going for ~4 days or more, let me (or a TA) know and you might get a hint
- In the meantime, teach yourself to smash stacks!
- It takes a lot of work to pull off a buffer overflow attack successfully!
- Homework #2 due 23:59 Jan 31st

SYMMETRIC-KEY CRYPTOGRAPHY

LAST TIME: WEB SECURITY

- Formats and protocols
 - HTTP/ HTML / CSS / Javascript
 - Cookies
- Web security goals / policies
 - Same Origin Policy
 - Attacks and Defenses
- SQL Injection / Code injection
- Cross Site Request Forgery (CSRF)
- Cross Site Scripting (XSS)

TODAY

- Introduction to cryptography
- Definitions and goals
- Historic Symmetric-Key Encryption
 - Caesar Cipher
 - One-Time Pad
- Modern Symmetric-Key Encryption
 - Block Ciphers

WHAT IS CRYPTOGRAPHY?

- Cryptography is the study and practice of secure communication over insecure channels
- A channel is any medium of communication: written messages, network protocols, digitally stored files, electromagnetic signals, sound, etc.
- A channel generally has a sender and an intended recipient (or recipients), but may also be observed by an adversary

CRYPTOGRAPHY GOALS

- Confidentiality
 - Prevent adversaries from reading data
- Integrity
 - Prevent attackers from altering data
- Authentication
 - Determining who created a given message
EVE'S POWER (PASSIVE ATTACKERS)

1. Cipher text only
 - Eve sees every cipher text C_i
 - Variant: partial knowledge about M
 - Language, or space of possible words (yes/no, true/false, buy/sell)

2. Known plaintext
 - Eve knows part of M, and has (complete) previous messages
 - Known protocol: HTTP request will start with GET
 - Known patterns in previous messages: "Dear Bob," or "Date: 1/3/2019"

THE CRYPTO GAME

- Attacker's goal:
 - Gain any knowledge about M, beyond an upper bound on length
 - Even slightly better than 50% probability at guessing 1 bit => attacker wins

- Defender's goal:
 - Ensure attacker has no basis to think any other (for M beyond of length n)

Confidentiality
- Prevent adversaries from reading data

Integrity
- Prevent attackers from altering data

Authentication
- Determining who created a given message

SYMMETRIC-KEY CRYPTOGRAPHY
- EVE'S POWER
- No knowledge of K:
 - Assume K is selected by a truly random process
 - For b-bit key, any $K \in \{0,1\}^b$ is equally likely
 - Success is recognizable:
 - Eve can recognize a fully recovered message M
 - But not a partial solution, such as whether a particular bit in M was correct
 - Doesn't apply if Eve can examine all possible messages in $\{0,1\}^n$ (why?)
CIPHER DESIGN

- **Caesar cipher**: rotate each letter in M by K places in the alphabet

 \[E(M, K) = \text{ROT}_K(M) \]

 \[D(C, K) = \text{ROT}_K^{-1}(C) \]

 Examples:

 - \(E(\text{DOG}, 3) = \text{GRJ} \)

 - \(D(\text{GRJ}, 3) = \text{DOG} \)

CHOSEN PLAINTEXT ATTACK SECURITY (IND-CPA)

- **Chosen plaintext**

 - Eve gets Alice to send \(M \) of Eve’s choosing

 - Example: In WWII, Allies would plant mines to induce German ships to send “warning” and “all clear” messages with the location of the mines.

INDISTINGUISHABILITY GAMES

CHOSEN CIPHERTEXT ATTACK SECURITY (IND-CCA1/CCA2)

- **Ciphertext chosen**

 - Eve tricks Bob into decrypting some \(C_i \)’s of her choice and he reveals something about the result

 - Example: A webserver that responds with different-sized messages depending on whether ciphertext decrypts to a valid message or not

ATTACKING THE CAESAR CIPHER

- **Possibly effective in 50 BC, but not many people could even read back then.**

- **Brute force**: try every possible value of \(K \)

- **Analysis**:

 - Analyze letter frequencies (most common is “e”)

 - Known plaintext: guess likely words (“JCKN ECGUCT” = “HAIL CAESAR”)

 - Chosen plaintext:

 - get a general to send “ALL QUIET”, observe “Y JJ OSGCR”, infer \(K = 24 \)
SYMMETRIC-KEY CRYPTOGRAPHY

KERCKHOFFS'S PRINCIPLE
- Cryptosystems should remain secure even when an attacker knows all internal details
 - OR: Don’t rely on security by obscurity
 - Key should be the only thing that must stay secret
 - It should be easy to change the key

Find K!

SYMMETRIC-KEY CRYPTOGRAPHY

ROT BETTER
- Consider $E(M,K) = \text{Rot-}(K_1, K_2, ..., K_n)(M)$
 - Rotate first character by K_1, second by K_2, up through nth character. Then start over with K_1
 - $K = (K_1, K_2, ..., K_n)$
 - How well do the previous attacks work now?
 - Brute force: key space is factor of $26^{(n-1)}$ bigger
 - Frequency analysis: need way more ciphertext
 - Known/Chosen plaintext: still effective! Why?

SYMMETRIC-KEY CRYPTOGRAPHY

ONE-TIME PAD
- Requirement 1: Use a different key for each message M
 - Keys must be completely independent
 - Defeats known plaintext, chosen plaintext – Why?
- Requirement 2: Make the key as long as M
 - $E(M,K) = M \oplus K$ (\oplus = XOR)
 - $D(C,K) = C \oplus K = M \oplus K \oplus K = M \oplus 0 = M$

SYMMETRIC-KEY CRYPTOGRAPHY

ONE-TIME PAD: PROVABLY SECURE!
- Suppose Eve has some partial information about M' and M''
- We want to show Eve does not gain any additional information given C
- Formalization
 - Alice sends either $C = M' \oplus K$ or $C = M'' \oplus K$
 - Eve tries to guess which one based on C
- Proof sketch
 - For random, independent K, probability that $C[i] = 0$ or $C[i] = 1$ is $\frac{1}{2}$ for all i. Regardless of whether Alice chose M' or M''!
SYMMETRIC-KEY CRYPTOGRAPHY

ONE-TIME PAD: LIMITATIONS
▸ One-time pads are still used for some extremely sensitive communication but they have some drawbacks
▸ Key generation
 ▶ Generating truly random, independent keys at scale is challenging
▸ Key length
 ▶ Keys must be at least as long as the message sent
 ▶ Requires anticipating message sizes in advance
▸ Key distribution
 ▶ Sender and receiver must have matching pads

SYMMETRIC-KEY CRYPTOGRAPHY

TWO-TIME PAD?
▸ What if we reuse a key K just one more time?
▸ Alice sends: $C = E(M, K)$ and $C' = E(M', K)$
▸ Eve observes $M \oplus K$ and $M' \oplus K$
 ▶ Can Eve learn anything about M and/or M'?
▸ Eve computes:

 $$C \oplus C' = (M \oplus K) \oplus (M' \oplus K)$$

 $$= (M \oplus M') \oplus (K \oplus K) = (M \oplus M') \oplus 0$$

 $$= M \oplus M'$$

 Learns which bits match in M and M'!

 If Eve knew M, she can recover M'!

SYMMETRIC-KEY CRYPTOGRAPHY

TWO-TIME PAD EXERCISE
▸ Two volunteers
 ▶ Flip a coin 4 times (write down the results on two pieces of paper)
 ▶ Go to separate sides of the room
 ▶ Pick a number between 0-15 and encrypt it
 ▶ “Send” the encrypted numbers
 ▶ Everyone else:
 ▶ What pairs of numbers are possible?

(OTHER SLIDE DECK)

SYMMETRIC-KEY CRYPTOGRAPHY

NEXT TIME
▸ Public Key Cryptography