Lexing and Parsing

Owen Arden
UC Santa Cruz

Plan for this week

Last week:
- How do we evaluate a program given its AST?
 \[
 \text{eval} :: \text{Env} \rightarrow \text{Expr} \rightarrow \text{Value}
 \]

This week:
- How do we convert program text into an AST?
 \[
 \text{parse} :: \text{String} \rightarrow \text{Expr}
 \]

Example: calculator with vars

AST representation:

\[
\text{data Aexpr} = \begin{array}{l}
\text{AConst Int} \\
\mid \text{AVar Id} \\
\mid \text{APlus Aexpr Aexpr} \\
\mid \text{AMinus Aexpr Aexpr} \\
\mid \text{AMul Aexpr Aexpr} \\
\mid \text{ADiv Aexpr Aexpr}
\end{array}
\]

Evaluator:

\[
\text{eval} :: \text{Env} \rightarrow \text{Aexpr} \rightarrow \text{Value}
\]

...
Example: calculator with vars

Using the evaluator:
\[
\lambda \text{> eval } [\text{APlus (AConst 2) (AConst 6)}]
8
\]
\[
\lambda \text{> eval } [\text{("x", 16), ("y", 10)}] \text{(AMinus (AVar "x") (AVar "y"))}
6
\]
\[
\lambda \text{> eval } [\text{("x", 16), ("y", 10)}] \text{(AMinus (AVar "x") (AVar "z"))}
*** Exception: Error {errMsg = "Unbound variable z"}
\]
But writing ASTs explicitly is really tedious, we are used to writing programs as text!

Example: calculator with vars

We want to write a function that converts strings to ASTs if possible:
\[
\text{parse :: String -> Aexpr}
\]
For example:
\[
\lambda \text{> parse "2 + 6"}
\text{APlus (AConst 2) (AConst 6)}
\]
\[
\lambda \text{> parse "(x - y) / 2"}
\text{ADiv (AMinus (AVar "x") (AVar "y")) (AConst 2)}
\]
\[
\lambda \text{> parse "2 +"}
*** Exception: Error {errMsg = "Syntax error"}
\]

Two-step-strategy

How do I read a sentence “He ate a bagel”?
- First split into words: ["He", "ate", "a", "bagel"]
- Then relate words to each other: “He” is the subject, “ate” is the verb, etc

Let’s do the same thing to “read” programs!
1. Lexing: From String to Tokens

A string is a list of characters:

\[2 2 9 + 9 8 \# \times \times 2\]

First we aggregate characters that “belong together” into tokens (i.e. the “words” of the program):

\[229 \text{ Plus} 98 \text{ Times} \times 2\]

We distinguish tokens of different kinds based on their format:

- all numbers: integer constant
- alphanumeric, starts with a letter: identifier
- \+: plus operator
- etc

2. Parsing: From Tokens to AST

Next, we convert a sequence of tokens into an AST

- This is hard...
- ... but the hard parts do not depend on the language!

Parser generators

- Given the description of the token format generates a lexer
- Given the description of the grammar generates a parser

We will be using parser generators, so we only care about how to describe the token format and the grammar

Lexing

We will use the tool called alex to generate the lexer

Input to alex: a .x file that describes the token format
Tokens

First we list the kinds of tokens we have in the language:

data Token
 = NUM AlexPosn Int
 | ID AlexPosn String
 | PLUS AlexPosn
 | MINUS AlexPosn
 | MUL AlexPosn
 | DIV AlexPosn
 | LPAREN AlexPosn
 | RPAREN AlexPosn
 | EOF AlexPosn

Token rules

Next we describe the format of each kind of token using a rule:

```
[\+]    { \p_ -> PLUS p }
[-]    { \p_ -> MINUS p }
[*]    { \p_ -> MUL p }
[/]    { \p_ -> DIV p }
[(]    { \p_ -> LPAREN p }
[)]    { \p_ -> RPAREN p }
$alpha [\$alpha $digit \_ \_]* { \p s -> ID p s }
$digit+    { \p s -> NUM p (read s) }
```

Each line consist of:

- a regular expression that describes which strings should be recognized as this token
- a Haskell expression that generates the token

You read it as:

- if at position \(p \) in the input string
- you encounter a substring \(s \) that matches the regular expression
- evaluate the Haskell expression with arguments \(p \) and \(s \)

Regular Expressions

A regular expression has one of the following forms:

- \([c1 \ c2 \ldots \ cn]\) matches any of the characters \(c1 \ldots cn \)
 - \([0-9]\) matches any digit
 - \([a-z]\) matches any lower-case letter
 - \([A-Z]\) matches any upper-case letter
 - \([a-z \ A-Z]\) matches any letter
- \(R1 \ R2\) matches a string \(s1 + s2 \) where \(s1 \) matches \(R1 \) and \(s2 \) matches \(R2 \)
 - e.g. \([0-9]\) \([0-9]\) matches any two-digit string
- \(R+\) matches one or more repetitions of what \(R \) matches
 - e.g. \([0-9]+\) matches a natural number
- \(R^*\) matches zero or more repetitions of what \(R \) matches
Back to token rules

We can name some common regexps like:

$digit = [0-9]$

$alpha = [a-zA-Z]$

and write $[a-z A-Z] [a-z A-Z 0-9]*$ as $alpha \{digit\}$

[\+] { \p _ _ PLUS \ p }

[\-] { \p _ _ MINUS \ p }

[\}] { \p _ _ MUL \ p }

[\/] { \p _ _ DIV \ p }

\{ { \p _ _ LPAREN \ p }

\} { \p _ _ RPAREN \ p }

$alpha \{alpha \ digit \ _ _ \'}*$ (\p s _ ID \ p s)

$digit+$ (\p s _ NUM \ p (read s))

• When you encounter a +, generate a PLUS token … etc

• When you encounter a nonempty string of digits, convert it into an integer and generate a NUM

• When you encounter an alphanumeric string that starts with a letter, save it in an ID token

Running the Lexer

From the token rules, alex generates a function alexScan which

• given an input string, find the longest prefix p that matches one of the rules

• If p is empty, it fails

• Otherwise, it converts p into a token and returns the rest of the string

We wrap this function into a handy function

parseTokens :: String -> Either ErrMsg [Token]

which repeatedly calls alexScan until it consumes the whole input string or fails

Running the Lexer

We can test the function like so:

λ> parseTokens "23 + 4 / off -"

Right [NUM (AlexPn 0 1 1) 23 , PLUS (AlexPn 3 1 4) , NUM (AlexPn 5 1 6) 4 , DIV (AlexPn 7 1 8) , ID (AlexPn 9 1 10) "off" , MINUS (AlexPn 13 1 14)]

λ> parseTokens "%"

Left "lexical error at 1 line, 1 column"
Parsing

We will use the tool called happy to generate the parser

Input to happy: a .y file that describes the grammar

Parsing

Wait, wasn’t this the grammar?

data Aexpr
 = AConst Int
 | AVar Id
 | APlus Aexpr Aexpr
 | AMinus Aexpr Aexpr
 | AMul Aexpr Aexpr
 | ADiv Aexpr Aexpr

This was abstract syntax

Now we need to describe concrete syntax

• What programs look like when written as text
• and how to map that text into the abstract syntax

Grammars

A grammar is a recursive definition of a set of trees

• each tree is a parse tree for some string
• parse a string \(s \) = find a parse tree for \(s \) that belongs to the grammar

A grammar is made of:

• Terminals: the leaves of the tree (tokens!)
• Nonterminals: the internal nodes of the tree
• Production Rules that describe how to “produce” a non-terminal from terminals and other non-terminals
 • i.e. what children each nonterminal can have:

\[
\text{Aexpr} : \quad \text{-- NT Aexpr can have as children:} \\
\mid \text{Aexpr} \ ' + ' \ Aexpr \ \{ ... \} \quad \text{-- NT Aexpr, T ' + ', and NT Aexpr, or} \\
\mid \text{Aexpr} \ ' - ' \ AExpr \ \{ ... \} \quad \text{-- NT Aexpr, T ' - ', and NT Aexpr, or} \\
\mid \ldots
\]
Terminals

Terminals correspond to the tokens returned by the lexer.

In the .y file, we have to declare with terminals in the rules correspond to which tokens from the Token datatype:

```%
token
  TNUM { NUM _ $$ }
  ID { ID _ $$ }
  '+' { PLUS _}
  '-' { MINUS _}
  '*' { MUL _}
  '/' { DIV _}
  '(' { LPAREN _}
  ')' { RPAREN _}
```

- Each thing on the left is terminal (as appears in the production rules)
- Each thing on the right is a Haskell pattern for datatype Token
- We use $$ to designate one parameter of a token constructor as the token value
 - we will refer back to it from the production rules

Production rules

Next we define productions for our language:

```haskell
Aexpr : TNUM { AConst $1 }
      | ID { AVar $1 }
      | '(' Aexpr ')' { $2 }
      | Aexpr '*' Aexpr { AMul $1 $3 }
      | Aexpr '+' Aexpr { APlus $1 $3 }
      | Aexpr '-' Aexpr { AMinus $1 $3 }
```

The expression on the right computes the value of this node

* $1, $2, $3 refer to the values of the respective child nodes

Example: parsing (2) as AExpr:

1. Lexer returns a sequence of Tokens: [LPAREN, NUM 2, RPAREN]
2. LPAREN is the token for terminal '(', so let's pick production `'(' Aexpr ')'``
3. Now we have to parse NUM 2 as Aexpr and RPAREN as ')
4. NUM 2 is a token for nonterminal TNUM, so let's pick production TNUM
5. The value of this Aexpr node is AConst 2, since the value of TNUM is 2
6. The value of the top-level Aexpr node is also AConst 2 (see the `'(' Aexpr ')'` production)
Running the Parser

First, we should tell the parser that the top-level non-terminal is \texttt{AExpr}:

\begin{verbatim}
 name aexpr
\end{verbatim}

From the production rules and this line, \texttt{happy} generates a function \texttt{aexpr} that tries to
parse a sequence of tokens as \texttt{AExpr}

We package this function together with the lexer and the evaluator into a handy
function

\begin{verbatim}
evalString :: Env -> String -> Int
\end{verbatim}

We can test the function like so:

\begin{verbatim}
λ> evalString [] "1 + 3 + 6"
10
λ> evalString [('x', 100), ('y', 20)] "x - y"
80
λ> evalString [] "2 * 5 + 5"
20
λ> evalString [] "2 - 1 - 1"
2
\end{verbatim}

Precedence and associativity

\begin{verbatim}
λ> evalString [] "2 * 5 + 5"
20
\end{verbatim}

The problem is that our grammar is ambiguous!

There are multiple ways of parsing the string \(2 \times 5 + 5\), namely

- \texttt{APlus (AMul (AConst 2) (AConst 5)) (AConst 5)} (good)
- \texttt{AMul (AConst 2) (APlus (AConst 5) (AConst 5))} (bad!)

Wanted: tell \texttt{happy} that \(\times\) has higher precedence than \(+\)!

\begin{verbatim}
λ> evalString [] "2 - 1 - 1"
2
\end{verbatim}

There are multiple ways of parsing \(2 - 1 - 1\), namely

- \texttt{AMinus (AMinus (AConst 2) (AConst 1)) (AConst 1)} (good)
- \texttt{AMinus (AConst 2) (AMinus (AConst 1) (AConst 1))} (bad!)

Wanted: tell \texttt{happy} that \(-\) is left-associative!

How do we communicate precedence and associativity to \texttt{happy}?
Solution 1: Grammar factoring

We can split the AExpr non-terminal into multiple “levels”

\[
\begin{align*}
\text{AExpr} & : \text{AExpr} + \text{AExpr2} \\
& \quad | \text{AExpr} - \text{AExpr2} \\
& \quad | \text{AExpr2} \\
\text{AExpr2} & : \text{AExpr2} \ast \text{AExpr3} \\
& \quad | \text{AExpr2} \div \text{AExpr3} \\
& \quad | \text{AExpr3} \\
\text{AExpr3} & : \text{TNUM} \\
& \quad | \text{ID} \\
& \quad | (\text{AExpr} ')'
\end{align*}
\]

Intuition: AExpr2 “binds tighter” than AExpr, and AExpr3 is the tightest

Now I cannot parse the string 2 * 5 + 5 as

\[\text{AMul} (\text{AConst} 2) (\text{APlus} (\text{AConst} 5) (\text{AConst} 5))\]

Why?

Because the RHS of * has to be AExpr3, while 5 + 5 is not an AExpr3 (it’s an AExpr)

Solution 2: Parser directives

This problem is so common that parser generators have a special syntax for it!

\[
\begin{align*}
\%\text{left} & \ ' + ' \\
\%\text{left} & \ ' - ' \\
\%\text{left} & \ ' \ast ' \\
\%\text{left} & \ ' \div '
\end{align*}
\]

What this means:

- All our operators are left-associative
- Operators on the lower line have higher precedence