Roadmap

Past three weeks:
- How do we use a functional language?

Next three weeks:
- How do we implement a functional language?
 - ... in a functional language (of course)

This week: Interpreter
- How do we evaluate a program given its abstract syntax tree (AST)?
- How do we prove properties about our interpreter (e.g., that certain programs never crash)?

The Nano Language

Features of Nano:
1. Arithmetic expressions
2. Variables and let-bindings
3. Functions
4. Recursion
Reminder: Calculator

Arithmetic expressions:

\[e ::= n \mid e_1 + e_2 \mid e_1 - e_2 \mid e_1 \times e_2 \]

Example:

\[4 + 13 \Rightarrow 17 \]

Reminder: Calculator

Haskell datatype to represent arithmetic expressions:

```haskell
data Expr = Num Int  
          | Add Expr Expr  
          | Sub Expr Expr  
          | Mul Expr Expr
```

Haskell function to evaluate an expression:

```haskell
eval :: Expr -> Int

eval (Num n) = n

eval (Add e1 e2) = eval e1 + eval e2

eval (Sub e1 e2) = eval e1 - eval e2

eval (Mul e1 e2) = eval e1 * eval e2
```

Reminder: Calculator

Alternative representation:

```haskell
data Binop = Add | Sub | Mul

data Expr = Num Int  -- number
           | Bin Binop Expr Expr  -- binary expression
```

Evaluator for alternative representation:

```haskell
eval :: Expr -> Int

eval (Num n) = n

eval (Bin Add e1 e2) = eval e1 + eval e2

eval (Bin Sub e1 e2) = eval e1 - eval e2

eval (Bin Mul e1 e2) = eval e1 * eval e2
```
The Nano Language

Features of Nano:
1. Arithmetic expressions [done]
2. Variables and let-bindings
3. Functions
4. Recursion

Extension: variables

Let's add variables and let bindings!

\[
e ::= n \mid x \\
\mid e1 + e2 \mid e1 - e2 \mid e1 \cdot e2 \\
\mid let \; x = e1 \; in \; e2
\]

Example:

```
let x = 4 + 13 in -- 17
let y = 7 - 5 in -- 2
x \ast y
```

\[==> 34\]
Extension: variables

type Id = String

data Expr = Num Int -- number
 | Var Id -- variable
 | Bin Binop Expr Expr -- binary expression
 | Let Id Expr Expr -- let expression

Haskell function to evaluate an expression:

eval :: Expr -> Int
eval (Num n) = n
eval (Var x) = ???
...

Environment

An expression is evaluated in an environment, which maps all its free variables to values

Examples:

x * y
=[x:17, y:2]⇒ 34

x * y
=[x:17]⇒ Error: unbound variable y

x * (let y = 2 in y)
=[x:17]⇒ 34

How should we represent the environment?
Which operations does it support?
Environment: API

To evaluate `let x = e₁ in e₂ in env`:
- evaluate `e₂` in an extended environment `env + [x:v]`
- where `v` is the result of evaluating `e₁`

To evaluate `x` in `env`:
- lookup the most recently added binding for `x`

Type

```
type Value = Int
```

Data

```
data Env = ... -- representation not that important
```

```
-- | Add a new binding
add  :: Id -> Value -> Env -> Env

-- | Lookup the most recently added binding
lookup :: Id -> Env -> Value
```
Evaluating expressions

Back to our expressions... now with environments!

```haskell
data Expr = Num Int        -- number
         | Var Id           -- variable
         | Bin Binop Expr Expr -- binary expression
         | Let Id Expr Expr  -- let expression
```

Haskell function to evaluate an expression:

```haskell
eval :: Env -> Expr -> Value
eval env (Num n) = n
eval env (Var x) = lookup x env
eval env (Bin op e1 e2) = f v1 v2
  where
    v1 = eval env e1
    v2 = eval env e2
    f = case op of
      Add -> (+)
      Sub -> (-)
      Mul -> (*)
eval env (Let x e1 e2) = eval env' e2
  where
    v  = eval env e1
    env' = add x v env
```

Example evaluation

Nano expression

```
let x = 1 in
let y = (let x = 2 in x) + x in
let x = 3 in
x + y
```

is represented in Haskell as:

```
exp1 = Let "x"
  (Num 1)
  (Let "y"
    (Add
      (Let "x" (Num 2) (Var x))
      (Var x)))
  (Let "x" (Num 3)
    (Add (Var x) (Var y))))
```
Example evaluation

```haskell
eval [] exp1
  → eval [] (let "x" (Num 1) exp2)
  → eval [["x",eval [] (Num 1)]] exp2
  → eval [["x"=]]
    (let "y" (Add exp3 exp4) exp5)
  → eval [["y",eval [["x",1]] (Add exp3 exp4)]] (["x",1])
  exp5
  → eval [["y",eval [["x",1]] (let "x" (Num 2) (Var "x"))
    + eval [["x",1]] (Var "x")), (["x",1])]
  exp5
  → eval [["y",2 -- use latest binding for x
    + 1), (["x",1])]
  exp5
  → eval [["y",3), (["x",1]]
    (let "x" (Num 3) (Add (Var "x") (Var "y")))]
```

Example evaluation

```haskell
  → eval [["y",2), (["x",1]]
    (let "x" (Num 3) (Add (Var "x") (Var "y")))
  → eval [["x",1]], (["x",1]]
    (Add (Var "y") (Var "x"))
  → eval [["x",2), (["y",1], (["x",1]) (Var "x")]
  → 3 + 3
  → 6
```

Example evaluation

Same evaluation in a simplified format (Haskell Expr terms replaced by their “pretty-printed version”):

```haskell
  eval []
    (let x = 1 in let y = (let x = 2 in x) + x in let x = 3 in x + y)
  → eval [x:=eval []]
    (let y = (let x = 2 in x) + x in let x = 3 in x + y)
  → eval [x:=eval []]
    (let y = (let x = 2 in x) + x in let x = 3 in x + y)
  → eval [y:=eval [x:=1]]
    (let y = (let x = 2 in x) + x in let x = 3 in x + y)
  → eval [y:=eval [x:=1]]
    (let y = (let x = 2 in x) + eval [x:=1]] (x), x:=1]
      (let x = 3 in x + y)
  → eval [y:=eval [x:=2,x:=1]] (x)
    (let y = (let x = 3 in x + y)
      + eval [x:=1]]) (x), x:=1]
  → eval [y:=eval [x:=2,x:=1]] (x)
    (let y = (let x = 3 in x + y)
      + eval [x:=1]]) (x), x:=1]
  → eval [y:=2]
    (let x = 3 in x + y)
  → eval [y:=2]
    (let x = 3 in x + y)
```

Example evaluation

\[\text{eval} \{ y : (2 + 1), x : 1 \} \]
\[\text{eval} \{ y : 3, x : 1 \} \]
\[\text{let} x = 3 \text{ in } x + y \]
\[\text{let} x = 3 \text{ in } x + y \]

-- new binding for x:
\[\text{eval} \{ x : 3, y : 3, x : 1 \} \]
\[x + y \]

-- use latest binding for x:
\[\text{eval} \{ x : 3, y : 3, x : 1 \} \]
\[x + \text{eval} \{ x : 3, y : 3, x : 1 \} \]
\[x + y \]
\[\text{eval} \{ x : 3 \} \]
\[\text{eval} \{ y : 3, x : 1 \} \]
\[3 + 3 \]
\[6 \]

Runtime errors

Haskell function to evaluate an expression:

```haskell
eval :: Env -> Expr -> Value
eval env (Num n) = n
eval env (Var x) = lookup x env -- can fail!
eval env (Bin op e1 e2) = f v1 v2
    where
        v1 = eval env e1
        v2 = eval env e2
        f = case op of
            Add -> (+)
            Sub -> (-)
            Mul -> (*)
eval env (Let x e1 e2) = eval env' e2
    where
        v = eval env e1
        env' = add x v env
```

How do we make sure `lookup` doesn't cause a run-time error?

Free vs bound variables

In `eval env e`, `env` must contain bindings for all free variables of `e`!

- an occurrence of `x` is free if it is not bound
- an occurrence of `x` is bound if it's inside `e2` where `let x = e1 in e2`
- evaluation succeeds when an expression is closed!
The Nano Language

Features of Nano:
1. Arithmetic expressions [done]
2. Variables and let-bindings [done]
3. Functions
4. Recursion
Extension: functions

Let's add lambda abstraction and function application!

\[
\begin{align*}
e & ::= n \mid x \\
& \mid e_1 + e_2 \mid e_1 - e_2 \mid e_1 \ast e_2 \\
& \mid \text{let } x = e_1 \text{ in } e_2 \\
& \mid \lambda x \to e \quad \text{-- abstraction} \\
& \mid e_1 \, e_2 \quad \text{-- application}
\end{align*}
\]

Example:

\[
\begin{align*}
\text{let } c = 42 \text{ in } \\
\text{let } \text{cTimes} = \lambda x \to c \ast x \text{ in } \\
\text{cTimes } 2 \\
\implies 84
\end{align*}
\]

Haskell representation:

```haskell
data Expr = Num Int -- number \\
| Var Id -- variable \\
| Bin Binop Expr Expr -- binary expression \\
| Let Id Expr Expr -- let expression \\
| Lam Id Expr -- abstraction \\
| App Expr Expr -- application
```

Example:

\[
\begin{align*}
\text{let } c = 42 \text{ in } \\
\text{let } \text{cTimes} = \lambda x \to c \ast x \text{ in } \\
\text{cTimes } 2 \\
\implies 84
\end{align*}
\]
Extension: functions

Example:

```haskell
let c = 42 in
let cTimes = \x -> c * x in
cTimes 2
```

represented as:

```
Let "c"
  (Num 42)
(Let "cTimes"
  (Lam "x" (Mul (Var "c") (Var "x")))
  (App (Var "cTimes") (Num 2)))
```

How should we evaluate this expression?

```
eval []
  {let c = 42 in let cTimes = \x -> c * x in cTimes 2}
=> eval [c:42]
=> eval [cTimes:???, c:42]
```

What is the value of cTimes???
Rethinking our values

What do these programs evaluate to?

(1)
\[
\lambda x \rightarrow 2 * x
\]
\[
\Rightarrow ???
\]

(2)
\[
\text{let } f = \lambda x \rightarrow \lambda y \rightarrow 2 * (x + y) \text{ in}
\]
\[
f 5
\]
\[
\Rightarrow ???
\]

Conceptually, (1) evaluates to itself (not exactly, see later), while (2) evaluates to something equivalent to \(\lambda y \rightarrow 2 * (5 + y)\).

Rethinking our values

Now: a program evaluates to an integer or a lambda abstraction (or fails)

- Remember: functions are first-class values

Let’s change our definition of values!

data Value = VNum Int
| VLam Id Expr -- What info do we need to store?

-- Other types stay the same
type Env = [(Id, Value)]

eval :: Env -> Expr -> Value

Function values

How should we represent a function value?

let c = 42 in
let cTimes = \x \rightarrow c * x in
cTimes 2

We need to store enough information about cTimes so that we can later evaluate any application of cTimes (like cTimes 2)!

First attempt:

data Value = VNum Int
| VLam Id Expr -- formal + body
Function values

Let's try this!

```
let c = 42 in let cTimes = \x -> c * x in cTimes 2
```

```
=> eval [c:42]
   {let cTimes = \x -> c * x in cTimes 2}
=> eval [cTimes:(\x -> c*x), c:42]
   {cTimes 2}

-- evaluate the function:
=> eval [cTimes:(\x -> c*x), c:42]
   {((\x -> c * x) 2}

-- evaluate the argument, bind to x, evaluate body:
=> eval [x:2, cTimes:(\x -> c*x), c:42]
   {c * x}
=> 42 * 2
=> 84
```

Looks good... can you spot a problem?

QUIZ

What should this evaluate to? *

```
let c = 42 in
let cTimes = \x -> c * x in -- but which c???
let c = 5 in
```

```
cTimes 2
```

(A) 84
(B) 10
(C) Error: multiple definitions of c

http://tiny.cc/cmps112-cscope-nd

QUIZ

What should this evaluate to? *

```
let c = 42 in
let cTimes = \x -> c * x in -- but which c???
let c = 5 in
```

```
cTimes 2
```

(A) 84
(B) 10
(C) Error: multiple definitions of c

http://tiny.cc/cmps112-cscope-grp
Static vs Dynamic Scoping

What we want:

```plaintext
let c = 42 in
let cTimes = \x -> c * x in
let c = 5 in
  cTimes 2
=> 84
```

Lexical (or static) scoping:

- each occurrence of a variable refers to the most recent binding *in the program text*
- definition of each variable is unique and known statically
- good for readability and debugging: don't have to figure out where a variable got "assigned"

What we don't want:

```plaintext
let c = 42 in
let cTimes = \x -> c * x in
let c = 5 in
  cTimes 2
=> 10
```

Dynamic scoping:

- each occurrence of a variable refers to the most recent binding *during program execution*
- can't tell where a variable is defined just by looking at the function body
- nightmare for readability and debugging:

```plaintext
  let cTimes = \x -> c * x in
  let c = 5 in
    let res1 = cTimes 2 in -- => 10
    let c = 10 in
    let res2 = cTimes 2 in -- => 20!!!
    res2 - res1
```
Function values

```haskell
data Value = VNum Int
            | VLam Id Expr -- formal + body

This representation can only implement dynamic scoping!
```

```haskell
let c = 42 in
let cTimes = \x -> c * x in
let c = 5 in

cTimes 2
```
evaluates as:

```haskell
eval []
  (let c = 42 in let cTimes = \x -> c * x in let c = 5 in cTimes 2)
```

```haskell
eval []
  (let c = 42 in let cTimes = \x -> c * x in let c = 5 in cTimes 2)
  => eval [c:42]
  => eval [cTimes:((\x -> c*x), c:42]
  => eval [c:5, cTimes:((\x -> c*x), c:42]
  => eval [x:2, c:5, cTimes:((\x -> c*x), c:42]
  => 5 * 2
  => 10
```

Lesson learned: need to remember what `c` was bound to when `cTimes` was defined!
- i.e. “freeze” the environment at function definition

Function values

```haskell
eval []
  (let c = 42 in let cTimes = \x -> c * x in let c = 5 in cTimes 2)
  => eval [c:42]
  => eval [cTimes:((\x -> c*x), c:42]
  => eval [c:5, cTimes:((\x -> c*x), c:42]
  => eval [x:2, c:5, cTimes:((\x -> c*x), c:42]
  => (\x -> c * x) 2
  => 5 * 2
  => 10
```

Closures

To implement lexical scoping, we will represent function values as closures

```haskell
Closure = lambda abstraction (formal + body) + environment at function definition
```

```haskell
data Value = VNum Int
            | VClos Env Id Expr -- env + formal + body
```

```haskell
```

```haskell
```
Closures

Our example:

```plaintext
eval []
  {let c = 42 in let cTimes = \x -> c * x in let c = 5 in cTimes 2}
-> eval [c:42]
  {let cTimes = \x -> c * x in let c = 5 in cTimes 2}
-- remember current env:
-> eval [cTimes:<[c:42], \x -> c*x>, c:42]
  {let c = 5 in cTimes 2}
-> eval [c:5, cTimes:<[c:42], \x -> c*x>, c:42]
  {cTimes 2}
-> eval [c:5, cTimes:<[c:42], \x -> c*x>, c:42]
  {<[c:42], \x -> c * x> 2}
-- restore env to the one inside the closure, then bind 2 to x:
-> eval [x:2, c:42]
  {c * x}
->
  42 * 2
  84
```

QUIZ

Which variables should be saved in the closure environment of f?

```plaintext
let a = 20 in
let f = 
  \x -> let y = x + 1 in
  let g = \z -> y + z in
  a + g x
  in ...
```

http://tiny.cc/cmps112-env-ind

QUIZ

Which variables should be saved in the closure environment of f?

```plaintext
let a = 20 in
let f = 
  \x -> let y = x + 1 in
  let g = \z -> y + z in
  a + g x
  in ...
```

http://tiny.cc/cmps112-env-grp
Free vs bound variables

• An occurrence of \(x \) is free if it is not bound

 • An occurrence of \(x \) is bound if it's inside

 e₂ where \(\text{let } x = e₁ \text{ in } e₂ \)

 e where \(\lambda x \to e \)

 • A closure environment has to save all free variables of a function definition!

```
let a = 20 in
let f =
  \x -> let y = x + 1 in
  let g = \z -> y + z in
  a + g x -- a is the only free variable!
```

Evaluator

Let’s modify our evaluator to handle functions!

```
data Value = VNum Int |
  VClos Env Id Expr -- env + formal + body

eval :: Env -> Expr -> Value
eval env (Num n) = VNum n -- must wrap in VNum now!
eval env (Var x) = lookup x env
eval env (Bin op e₁ e₂) = VNum (f v₁ v₂)
  where
    (VNum v₁) = eval env e₁
    (VNum v₂) = eval env e₂
    f = ... -- as before
eval env (Let x e₁ e₂) = eval env' e₂
  where
    v = eval env e₁
    env' = add x v env
eval env (Lam x body) = ??? -- construct a closure
eval env (App fun arg) = ??? -- eval fun, then arg, then apply
```

Evaluator

Evaluating functions:

• Construct a closure: save environment at function definition

 • Apply a closure: restore saved environment, add formal, evaluate the body

```
eval :: Env -> Expr -> Value
...
...eval env (Lam x body) = VClos env x body
eval env (App fun arg) = eval bodyEnv body
  where
    (VClos closEnv x body) = eval env fun -- eval function to closure
    vArg = eval env arg -- eval argument
    bodyEnv = add x vArg closEnv
```

Quiz

With eval as defined above, what does this evaluate to? *

```
let f = \x -> x + y in
let y = 10 in
f 5
```
- (A) 15
- (B) 5
- (C) Error: unbound variable x
- (D) Error: unbound variable y
- (E) Error: unbound variable f

http://tiny.cc/cms112-enveval-ind

Quiz

With eval as defined above, what does this evaluate to? *

```
let f = \x -> x + y in
let y = 10 in
f 5
```
- (A) 15
- (B) 5
- (C) Error: unbound variable x
- (D) Error: unbound variable y
- (E) Error: unbound variable f

http://tiny.cc/cms112-enveval-grp

Evaluator

```
eval []
    (let f = \x -> x + y in let y = 10 in f 5)
  => eval [f:([], \x -> x + y)]
        (let y = 10 in f 5)
  => eval [y:10, f:([], \x -> x + y)]
           (f 5)
  => eval [y:10, f:([], \x -> x + y)]
               ([]), \x -> x + y])
     (f 5)
  => eval [x:5] -- env got replaced by closure env + formal!
              (x + y) -- y is unbound!
```
Quiz

With eval as defined above, what does this evaluate to? *

\[\text{let } f = \lambda n \to n \times f \left(n - 1 \right) \text{ in } f 5 \]

- (A) 120
- (B) Evaluation does not terminate
- (C) Error: unbound variable f

http://tiny.cc/cmps112-enveval2-ind

Quiz

With eval as defined above, what does this evaluate to? *

\[\text{let } f = \lambda n \to n \times f \left(n - 1 \right) \text{ in } f 5 \]

- (A) 120
- (B) Evaluation does not terminate
- (C) Error: unbound variable f

http://tiny.cc/cmps112-enveval2-grp

Evaluator

\[
\begin{align*}
\text{eval } [] & \\
& \text{let } f = \lambda n \to n \times f \left(n - 1 \right) \text{ in } f 5 \\
\Rightarrow & \text{eval } [f:[]] \\
& \text{let } f = \lambda n \to n \times f \left(n - 1 \right) \text{ in } f 5 \\
\Rightarrow & \text{eval } [f:[]] \\
& \text{let } f = \lambda n \to n \times f \left(n - 1 \right) \text{ in } f 5 \\
\Rightarrow & \text{eval } [n:5] \quad \text{env got replaced by closure env + formal!} \\
& \{ n \times f \left(n - 1 \right) \} \quad \text{-- } f \text{ is unbound!}
\end{align*}
\]

Lesson learned: to support recursion, we need a different way of constructing the closure environment!
Nano1: Syntax

We need to define the syntax for expressions (terms) and values using a grammar:

\[
e ::= n \mid x \quad \quad \text{-- expressions} \\
| e_1 + e_2 \\
| \text{let } x = e_1 \text{ in } e_2 \\
\]

\[
v ::= n \quad \quad \text{-- values} \\
\]

where \(n \in \mathbb{N}, x \in \text{Var} \)

Nano1: Operational Semantics

Operational semantics defines how to execute a program step by step.

Let's define a step relation (reduction relation) \(e \Rightarrow e' \)

- “expression \(e \) makes a step (reduces in one step) to an expression \(e' \)”

We define the step relation inductively through a set of rules:

- **[Add-L]**

 \[
 e_1 \Rightarrow e_1' \quad \quad \text{-- premise} \\
 e_1 + e_2 \Rightarrow e_1' + e_2 \quad \text{-- conclusion} \\
 \]

- **[Add-R]**

 \[
 e_2 \Rightarrow e_2' \\
 n_1 + n_2 \Rightarrow n_1 + n_2' \\
 \]

- **[Add]**

 \[
 n_1 + n_2 \Rightarrow n \quad \text{where } n = n_1 + n_2 \\
 \]

- **[Let-Def]**

 \[
 e_1 \Rightarrow e_1' \\
 \text{let } x = e_1 \text{ in } e_2 \Rightarrow \text{let } x = e_1' \text{ in } e_2 \\
 \]

- **[Let]**

 \[
 \text{let } x = v \text{ in } e_2 \Rightarrow e_2[x := v] \\
 \]
Nano1: Operational Semantics

Here \(e[x := v] \) is a value substitution:

\[
\begin{align*}
x[x := v] &= v \\
y[x := v] &= y \quad \text{-- assuming } x \neq y \\
n[x := v] &= n \\
(e1 + e2)[x := v] &= e1[x := v] + e2[x := v] \\
(\text{let } x = e1 \text{ in } e2)[x := v] &= \text{let } x = e1[x := v] \text{ in } e2 \\
(\text{let } y = e1 \text{ in } e2)[x := v] &= \text{let } y = e1[x := v] \text{ in } e2 \\
e2[x := v] &= v
\end{align*}
\]

Do not have to worry about capture, because \(v \) is a value (has no free variables!)

Nano1: Operational Semantics

A reduction is valid if we can build its derivation by “stacking” the rules:

\[
\begin{align*}
\text{[Add]} & \quad \text{------------------------} \\
1 + 2 & \Rightarrow 3 \\
\text{[Add-L]} & \quad \text{------------------------} \\
(1 + 2) + 5 & \Rightarrow 3 + 5
\end{align*}
\]

Do we have rules for all kinds of expressions?

Nano1: Operational Semantics

We define the step relation inductively through a set of rules:

\[
\begin{align*}
\text{[Add-L]} & \quad \text{------------------------} \\
e1 & \Rightarrow e1' \quad \text{-- premise} \\
e1 + e2 & \Rightarrow e1' + e2 \quad \text{-- conclusion} \\
\text{[Add-R]} & \quad \text{------------------------} \\
n1 + e2 & \Rightarrow n1 + e2' \\
\text{[Add]} & \quad \text{------------------------} \\
n1 + n2 & \Rightarrow n \quad \text{where } n = n1 + n2 \\
\text{[Let-Def]} & \quad \text{------------------------} \\
e1 & \Rightarrow e1' \\
\text{[Let]} & \quad \text{------------------------} \\
\text{let } x = e1 \text{ in } e2 & \Rightarrow \text{let } x = e1' \text{ in } e2 \\
\text{let } x = v \text{ in } e2 & \Rightarrow e2[x := v]
\end{align*}
\]
1. Normal forms

There are no reduction rules for:

- \(n \)
- \(x \)

Both of these expressions are normal forms (cannot be further reduced), however:

- \(n \) is a value
 - intuitively, corresponds to successful evaluation
- \(x \) is not a value
 - intuitively, corresponds to a run-time error!
 - we say the program \(x \) is stuck!

2. Evaluation order

In \(e_1 + e_2 \), which side should we evaluate first?

In other words, which one of these reductions is valid (or both)?

1. \((1 + 2) + (4 + 5) \Rightarrow 3 + (4 + 5)\)
2. \((1 + 2) + (4 + 5) \Rightarrow (1 + 2) + 9\)

Reduction (1) is valid because we can build a derivation using the rules:

\[
\begin{align*}
\text{Add} & \quad \text{----------} \\
1 + 2 & \Rightarrow 3 \\
\text{Add-L} & \quad \text{----------------------} \\
(1 + 2) + (4 + 5) & \Rightarrow 3 + (4 + 5)
\end{align*}
\]

Reduction (2) is invalid because we cannot build a derivation:

- there is no rule whose conclusion matches this reduction!

\[
\begin{align*}
??? & \quad \text{----------------------} \\
(1 + 2) + (4 + 5) & \Rightarrow (1 + 2) + 9
\end{align*}
\]

Evaluation relation

Like in \(\lambda \)-calculus, we define the multi-step reduction relation \(e \rightarrow^* e' \):

\[e \rightarrow^* e' \text{ iff there exists a sequence of expressions } e_1, \ldots, e_n \text{ such that} \]

- \(e = e_1 \)
- \(e_n = e' \)
- \(e_i \Rightarrow e(i+1) \text{ for each } i \text{ in } [0..n] \)

Example:

\[
(1 + 2) + (4 + 5) \]

\[=^* 3 + 9 \]

because

\[
(1 + 2) + (4 + 5) \]

\[\Rightarrow 3 + (4 + 5) \]

\[\Rightarrow 3 + 9 \]
Evaluation relation

Now we define the evaluation relation $e \Rightarrow e'$:

\[e \Rightarrow e' \iff \begin{cases} e \Rightarrow^* e' \\ e' \text{ is in normal form} \end{cases} \]

Example:

\[
(1 + 2) + (4 + 5) \\
\Rightarrow 3 + (4 + 5) \\
\Rightarrow 3 + 9 \\
\Rightarrow 12
\]

and 12 is a value (normal form)

Theorems about Nano1

Let’s prove something about Nano1!

1. Every Nano1 program terminates
2. Closed Nano1 programs don’t get stuck
3. Corollary ($1 + 2$): Every closed Nano1 program evaluates to a value

How do we prove theorems about languages?

By induction.

Mathematical induction in PL
1. Induction on natural numbers

To prove $\forall n. P(n)$ we need to prove:

- Base case: $P(0)$
- Inductive case: $P(n + 1)$ assuming the induction hypothesis (IH): that $P(n)$ holds

Compare with inductive definition for natural numbers:

```
data Nat = Zero  -- base case
          | Succ Nat -- inductive case
```

No reason why this would only work for natural numbers...

In fact we can do induction on any inductively defined mathematical object (= any datatype):

- lists
- trees
- programs (terms)
- etc

2. Induction on terms

$e ::= n | x$
```
          | e1 + e2
          | let x = e1 in e2
```

To prove $\forall e. P(e)$ we need to prove:

- Base case 1: $P(n)$
- Base case 2: $P(x)$
- Inductive case 1: $P(e1 + e2)$ assuming the IH: that $P(e1)$ and $P(e2)$ hold
- Inductive case 2: $P(\text{let } x = e1 \text{ in } e2)$ assuming the IH: that $P(e1)$ and $P(e2)$ hold

3. Induction on derivations

Our reduction relation \Rightarrow is also defined inductively!

- Axioms are bases cases
- Rules with premises are inductive cases

To prove $\forall e, e'. P(e \Rightarrow e')$ we need to prove:

- Base cases: [Add], [Let]
- Inductive cases: [Add-L], [Add-R], [Let-Def] assuming the IH: that P holds of their premise
Theorem: Termination

Theorem I [Termination]: For any expression e there exists e' such that $e \Rightarrow e'$.

Proof idea: let's define the size of an expression such that

- size of each expression is positive
- each reduction step strictly decreases the size

Then the length of the execution sequence for e is bounded by the size of e!

```
size n = ???
size x = ???
size (e1 + e1) = ???
size (let x = e1 in e2) = ???
```

Lemma 1: For any e, size $e > 0$.

Proof: By induction on the term e.

- **Base case 1**: $size n = 1 > 0$
- **Base case 2**: $size x = 1 > 0$
- **Inductive case 1**: $size (e1 + e2) = size e1 + size e2$
 - $e2 > 0$ because $size e1 > 0$ and $size e2 > 0$ by IH.
- **Inductive case 2**: similar.

QED.

Theorem: Termination

Term size:

```
size n = 1
size x = 1
size (e1 + e1) = size e1 + size e2
size (let x = e1 in e2) = size e1 + size e2
```

Lemma 2: For any e, e' such that $e \Rightarrow e'$, size $e' < size e$.

Proof: By induction on the derivation of $e \Rightarrow e'$.

Base case [Add].

- Given: the root of the derivation is
 - [Add]: $n1 + n2 \Rightarrow n$ where $n = n1 + n2$
- To prove: size $n < size (n1 + n2)$
- size $n = 1 < 2 = size (n1 + n2)$
Theorem: Termination

Lemma 2: For any e, e’ such that e => e’, size e’ < size e.

Inductive case [Add-L].
- Given: the root of the derivation is [Add-L]:
 e1 => e1’

 e1 + e2 => e1’ + e2
- To prove: size (e1’ + e2) < size (e1 + e2)
- IH: size e1’ < size e1

 size (e1’ + e2)
 = -- def. size
 size e1’ + size e2
 < -- IH
 size e1 + size e2
 = -- def. size
 size (e1 + e2)

Inductive case [Add-R]. Try at home.

Theorem: Termination

Base case [Let].
- Given: the root of the derivation
 is [Let]: let x = v in e2 => e2[x := v]
- To prove: size (e2[x := v]) < size (let x = v in e2)

 size (e2[x := v])
 = -- auxiliary lemma
 size e2
 < -- IH
 size v + size e2
 = -- def. size
 size (let x = v in e2)

QED.

Nano2: adding functions
Syntax

We need to extend the syntax of expressions and values:

\[
\begin{align*}
e & ::= n \mid x \quad \text{-- expressions} \\
& \quad \mid e_1 + e_2 \\
& \quad \mid \text{let } x = e_1 \text{ in } e_2 \\
& \quad \mid \lambda x \rightarrow e \quad \text{-- abstraction} \\
& \quad \mid e_1 \ e_2 \quad \text{-- application} \\

v & ::= n \quad \text{-- values} \\
& \quad \mid \lambda x \rightarrow e \quad \text{-- abstraction}
\end{align*}
\]

Operational semantics

We need to extend our reduction relation with rules for abstraction and application:

\[
\begin{align*}
e_1 & \Rightarrow e_1' \\
\text{[App-L]} & \hspace{1cm} e_1 \ e_2 \Rightarrow e_1' \ e_2 \\
\text{[App-R]} & \hspace{1cm} e \Rightarrow e' \\
\text{[App]} & \hspace{1cm} \lambda x \rightarrow e \ v \Rightarrow e[x := v]
\end{align*}
\]

Evaluation Order

\[
\begin{align*}
((\lambda x \rightarrow x + y) \ 1) \ (1 + 2) \\
\Rightarrow (\lambda y \rightarrow 1 + y) \ (1 + 2) \quad \text{-- [App-L], [App]} \\
\Rightarrow (\lambda y \rightarrow 1 + y) \ 3 \quad \text{-- [App-R], [Add]} \\
\Rightarrow 1 + 3 \quad \text{-- [App]} \\
\Rightarrow 4 \quad \text{-- [Add]}
\end{align*}
\]

Our rules define call-by-value:

1. Evaluate the function (to a lambda)
2. Evaluate the argument (to some value)
3. “Make the call”: make a substitution of formal to actual in the body of the lambda

The alternative is call-by-name:

- do not evaluate the argument before “making the call”
- can we modify the application rules for Nano2 to make it call-by-name?
Theorems about Nano2

Let’s prove something about Nano2!

1. Every Nano2 program terminates (?)
2. Closed Nano2 programs don’t get stuck (?)

What about \(\lambda x \to x \to x \lambda x \to x \to x \)?

1. Every Nano2 program terminates (?)
 What about \(\lambda x \to x \to x \lambda x \to x \to x \)?
2. Closed Nano2 programs don’t get stuck (?)
 What about \(\lambda x \to x \to x \lambda x \to x \to x \)?

Both theorems are now false!
To recover these properties, we need to add types:

1. Every well-typed Nano2 program terminates
2. Well-typed Nano2 programs don’t get stuck

We’ll do that next week!