What is Haskell?

- Last week:
 - built-in data types
 - base types, tuples, lists (and strings)
 - writing functions using pattern matching and recursion
- This week:
 - user-defined data types
 - and how to manipulate them using pattern matching and recursion
 - more details about recursion

Representing complex data

- We’ve seen:
 - base types: Bool, Int, Integer, Float
 - some ways to build up types: given types T_1, T_2
 - functions: $T_1 \rightarrow T_2$
 - tuples: (T_1, T_2)
 - lists: $[T_1]$
- Algebraic Data Types: a single, powerful technique for building up types to represent complex data
 - lets you define your own data types
 - subsumes tuples and lists!
Product types

- Tuples can do the job but there are two problems...

```plaintext
deadlineDate :: (Int, Int, Int)
deadlineDate = (2, 4, 2019)

deadlineTime :: (Int, Int, Int)
deadlineTime = (11, 59, 59)

-- | Deadline date extended by one day
extension :: (Int, Int, Int) -> (Int, Int, Int)
extension = ...
```

- Can you spot them?

1. Verbose and unreadable

```plaintext
type Date = (Int, Int, Int)
type Time = (Int, Int, Int)

deadlineDate :: Date
deadlineDate = (2, 4, 2019)

deadlineTime :: Time
deadlineTime = (11, 59, 59)

-- | Deadline date extended by one day
extension :: Date -> Date
extension = ...
```

2. Unsafe

- We want this to fail at compile time!!!

  ```plaintext
extension deadlineTime
```

- Solution: construct two different datatypes

  ```plaintext
data Date = Date Int Int Int
data Time = Time Int Int Int
  -- constructor^  ^parameter types
  ```````
Record Syntax

- Haskell’s record syntax allows you to name the constructor parameters:
- Instead of

```haskell
data Date = Date Int Int Int
```
- You can write:

```haskell
data Date = Date {
  month :: Int,
  day :: Int,
  year :: Int
}
```

```haskell
deadlineDate = Date 2 4 2019
deadlineMonth = month deadlineDate
```

Use the field name as a function to access part of the data

Building data types

- Three key ways to build complex types/values:
 1. **Product types (each-of):** a value of T contains a value of T1 and a value of T2
 2. **Sum types (one-of):** a value of T contains a value of T1 or a value of T2
 3. **Recursive types:** a value of T contains a sub-value of the same type T

Example: NanoMD

- Suppose I want to represent a text document with simple markup. Each paragraph is either:
 - plain text (String)
 - heading: level and text (Int and String)
 - list: ordered? and items (Bool and [String])
- I want to store all paragraphs in a list

```haskell
doc = [(1, "Notes from 130") -- Lvl 1 heading
      , "There are two types of languages:" -- Plain text
      , (True, ["purely functional", "purely evil"])
          --^^ Ordered list
      ] -- But this doesn't type check!!!
```
Sum Types

- Solution: construct a new type for paragraphs that is a sum (one-of) the three options!
 - plain text (String)
 - heading: level and text (Int and String)
 - list: ordered? and items (Bool and [String])

- I want to store all paragraphs in a list

```haskell
data Paragraph =
  Text String -- 3 constructors,
  Heading Int String -- each with different
  List Bool [String] -- parameters
```

Constructing datatypes

```haskell
data T =
  C1 T11 .. T1k |
  C2 T21 .. T2l |
  .. |
  Cn Tn1 .. Tnm
T is the new datatype
C1 .. Cn are the constructors of T

A value of type T is
- either C1 v1 .. vk with vi :: T1i
- or C2 v1 .. vl with vi :: T2i
- or ...
- or Cn v1 .. vm with vi :: Tni
```

Constructing datatypes

- You can think of a T value as a box:
 - either a box labeled C1 with values of types T11 .. T1k inside
 - or a box labeled C2 with values of types T21 .. T2l inside
 - or ...
 - or a box labeled Cn with values of types Tn1 .. Tnm inside

- Apply a constructor = pack some values into a box (and label it)
 - Text "Hey there!"
 - put "Hey there!" in a box labeled Text
 - Heading 1 "Introduction"
 - put 1 and "Introduction" in a box labeled Heading
 - Boxes have different labels but same type (Paragraph)
Example: NanoMD

```haskell
data Paragraph =
    Text String | Heading Int String | List Bool [String]
```

Now I can create a document like so:

```haskell
doc :: [Paragraph]
doc = [
    Heading 1 "Notes from 130"
    , Text "There are two types of languages:
      , List True ["purely functional", "purely evil"]
]
```

Example: NanoMD

Now I want convert documents in to HTML.

I need to write a function:

```haskell
html :: Paragraph -> String
html p = ??? -- depends on the kind of paragraph!
```

How to tell what’s in the box?

- Look at the label!

Pattern Matching

Pattern matching = looking at the label and extracting values from the box

- we’ve seen it before
- but now for arbitrary datatypes

```haskell
html :: Paragraph -> String
html (Text str) = ...
    -- It's a plain text! Get string
html (Heading lvl str) = ...
    -- It's a heading! Get level and string
html (List ord items) = ...
    -- It's a list! Get ordered and items
```
Dangers of pattern matching (1)

html :: Paragraph -> String
html (Text str) = ...
html (List ord items) = ...

What would GHCi say to:
html (Heading 1 "Introduction")

Answer: Runtime error (no matching pattern)

Dangers of pattern matching (1)

Beware of missing and overlapped patterns

- GHC warns you about overlapped patterns
- GHC warns you about missing patterns when called with -W (use :set -W in GHCi)

Pattern matching expression

We’ve seen: pattern matching in equations

You can also pattern-match inside your program using the case expression:

html :: Paragraph -> String
html p =
 case p of
 Text str -> unlines [open "p", str, close "p"]
 Heading lvl str -> ...
 List ord items -> ...

Pattern matching expression: typing

The case expression

\[
\text{case } e \text{ of } \\
\text{ pattern1 } \to e1 \\
\text{ pattern2 } \to e2 \\
\vdots \\
\text{ patternN } \to eN
\]

has type \(T \) if

- each \(e1 \ldots eN \) has type \(T \)
- \(e \) has some type \(D \)
- each \(\text{pattern1} \ldots \text{patternN} \) is a valid pattern for \(D \)
 - i.e. a variable or a constructor of \(D \) applied to other patterns

The expression \(e \) is called the match scrutinee!

Building data types

- Three key ways to build complex types/values:
 1. Product types (each-of): a value of \(T \) contains a value of \(T1 \) and a value of \(T2 \) \[done\]
 2. Sum types (one-of): a value of \(T \) contains a value of \(T1 \) or a value of \(T2 \) \[done\]
 3. Recursive types: a value of \(T \) contains a sub-value of the same type \(Ts \)

Recursive types

Let’s define natural numbers from scratch:

\[\text{data Nat} = ???\]
Recursive types

data Nat = Zero | Succ Nat

A Nat value is:
 • either an empty box labeled Zero
 • or a box labeled Succ with another Nat in it!

Some Nat values:

<table>
<thead>
<tr>
<th>Nat value</th>
<th>Int value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>0</td>
</tr>
<tr>
<td>Succ Zero</td>
<td>1</td>
</tr>
<tr>
<td>Succ (Succ Zero)</td>
<td>2</td>
</tr>
<tr>
<td>Succ (Succ (Succ Zero))</td>
<td>3</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Functions on recursive types

Principle: Recursive code mirrors recursive data

1. Recursive type as a parameter

data Nat = Zero -- base constructor
 | Succ Nat -- inductive constructor

Step 1: add a pattern per constructor

toInt :: Nat -> Int
toInt Zero = ... -- base case
toInt (Succ n) = ... -- inductive case
 -- (recursive call goes here)
1. Recursive type as a parameter

```haskell
data Nat = Zero -- base constructor 
| Succ Nat -- inductive constructor

Step 2: fill in base case

toInt :: Nat -> Int
toInt Zero = 0 -- base case
toInt (Succ n) = ... -- inductive case 
  -- (recursive call goes here)
```

1. Recursive type as a parameter

```haskell
data Nat = Zero -- base constructor 
| Succ Nat -- inductive constructor

Step 3: fill in inductive case using a recursive call:

toInt :: Nat -> Int
toInt Zero = 0 -- base case
toInt (Succ n) = 1 + toInt n -- inductive case
```

2. Recursive type as a result

```haskell
data Nat = Zero -- base constructor 
| Succ Nat -- inductive constructor

fromInt :: Int -> Nat
fromInt n
  | n <= 0 = Zero -- base case
  | otherwise = Succ (fromInt (n - 1)) -- inductive 
    -- case
```
2. Putting the two together

```haskell
data Nat = Zero -- base constructor
    | Succ Nat -- inductive constructor

add :: Nat -> Nat -> Nat
add Zero m = m -- base case
add (Succ n) m = Succ (add n m) -- inductive case

sub :: Nat -> Nat -> Nat
sub n Zero = n -- base case 1
sub Zero _ = Zero -- base case 2
sub (Succ n) (Succ m) = sub n m -- inductive case
```

Lessons learned:

- Recursive code mirrors recursive data
- With multiple arguments of a recursive type, which one should I recurse on?
- The name of the game is to pick the right inductive strategy!

Lists

Lists aren’t built-in! They are an algebraic data type like any other:

```haskell
data List = Nil -- base constructor
    | Cons Int List -- inductive constructor
```

- List [1, 2, 3] is represented as Cons 1 (Cons 2 (Cons 3 Nil))
- Built-in list constructors [] and (:) are just fancy syntax for Nil and Cons

Functions on lists follow the same general strategy:

```haskell
length :: List -> Int
length Nil = 0 -- base case
length (Cons _ xs) = 1 + length xs -- inductive case
```
Lists

What is the right inductive strategy for appending two lists?

\[\text{append} :: \text{List} \to \text{List} \to \text{List} \]
\[\text{append} \quad \text{Nil} \quad \text{ys} = \text{ys} \]
\[\text{append} \quad (\text{Cons} \ x \ \text{xs}) \quad \text{ys} = \text{Cons} \ x \ (\text{append} \ \text{xs} \ \text{ys}) \]
Trees

Lists are *unary trees* with elements stored in the nodes:

```
1 - 2 - 3 - ()
```

data List = Nil | Cons Int List

How do we represent *binary trees* with elements stored in the nodes?

```
1 - 2 - 3 - ()
   |   | \ ()
   |   \ ()
   \ 4 - ()
      \ ()
```

data Tree = Leaf | Node Int Tree Tree

```
t1234 = Node 1
      (Node 2 (Node 3 Leaf Leaf) Leaf)
      (Node 4 Leaf Leaf)
```

Functions on trees

```
depth :: Tree -> Int
depth Leaf = 0
depth (Node _ l r) = 1 + max (depth l) (depth r)
```
Binary trees

\[
\begin{array}{c}
- () - () - 1 \\
\mid \mid \ 2 \\
\mid \ 3 \\
\ 4 \\
\ 5 \\
data \ Tree = \text{Leaf Int | Node Tree Tree}
\end{array}
\]

t12345 = Node
\[
\begin{array}{c}
(\text{Node} \ (\text{Node} \ (\text{Leaf} \ 1) \ (\text{Leaf} \ 2)) \ (\text{Leaf} \ 3)) \\
(\text{Node} \ (\text{Leaf} \ 4) \ (\text{Leaf} \ 5))
\end{array}
\]

Example: Calculator

I want to implement an arithmetic calculator to evaluate expressions like:

- \(4.0 + 2.9\)
- \(3.78 - 5.92\)
- \((4.0 + 2.9) \times (3.78 - 5.92)\)

What is a Haskell datatype to represent these expressions?

data \ Expr = ???

Example: Calculator

data \ Expr = Num Float
\mid Add Expr Expr
\mid Sub Expr Expr
\mid Mul Expr Expr

How do we write a function to evaluate an expression?

eval :: Expr -> Float
Example: Calculator

data Expr = Num Float
 | Add Expr Expr
 | Sub Expr Expr
 | Mul Expr Expr

How do we write a function to evaluate an expression?

eval :: Expr -> Float
eval (Num f) = f

eval (Add e1 e2) = eval e1 + eval e2

Example: Calculator

data Expr = Num Float
 | Add Expr Expr
 | Sub Expr Expr
 | Mul Expr Expr

How do we write a function to evaluate an expression?

eval :: Expr -> Float
eval (Num f) = f

eval (Add e1 e2) = eval e1 + eval e2

Example: Calculator

data Expr = Num Float
 | Add Expr Expr
 | Sub Expr Expr
 | Mul Expr Expr

How do we write a function to evaluate an expression?

eval :: Expr -> Float
eval (Num f) = f

eval (Add e1 e2) = eval e1 + eval e2

eval (Sub e1 e2) = eval e1 - eval e2
Example: Calculator

```haskell
data Expr = Num Float
  | Add Expr Expr
  | Sub Expr Expr
  | Mul Expr Expr
```

How do we write a function to evaluate an expression?

```haskell
eval :: Expr -> Float
eval (Num f) = f

eval (Add e1 e2) = eval e1 + eval e2

eval (Sub e1 e2) = eval e1 - eval e2

eval (Mul e1 e2) = eval e1 * eval e2
```

Recursion is...

Building solutions for *big problems* from solutions for *sub-problems*

- **Base case:** what is the *simplest version* of this problem and how do I solve it?
- **Inductive strategy:** how do I *break down* this problem into sub-problems?
- **Inductive case:** how do I solve the problem *given* the solutions for subproblems?

Why use Recursion?

1. Often far simpler and cleaner than loops
 - But not always...
2. Structure often forced by recursive data
3. Forces you to factor code into reusable units (recursive functions)
Why *not* use Recursion?

1. Slow
2. Can cause stack overflow

Example: factorial

```
Fac :: Int -> Int
Fac n
| n <= 1   = 1
| otherwise = n * fac (n - 1)

<fac 4>
==> <4 * fac 3>  -- recursively call 'fact 3'
==> <4 * <3 * fac 2>>  -- recursively call 'fact 2'
==> <4 * <3 * <2 * fac 1>>>  -- recursively call 'fact 1'
==> <4 * <3 * <2 * 1>>  -- multiply 2 to result
==> <4 * <3 * 2>>  -- multiply 3 to result
==> <4 * 6>  -- multiply 4 to result
==> 24
```

Each function call <> allocates a frame on the call stack
- expensive
- the stack has a finite size
Can we do recursion without allocating stack frames?
Tail recursion

Recursive call is the top-most sub-expression in the function body

- i.e. no computations allowed on recursively returned value
- i.e. value returned by the recursive call == value returned by function

Tail recursive factorial

Let’s write a tail-recursive factorial!

\[
\text{facTR :: Int -> Int} \\
\text{facTR n = loop 1 n} \\
\text{where} \\
\text{loop :: Int -> Int -> Int} \\
\text{loop acc n} \\
| \text{n <= 1} = acc \\
| \text{otherwise} = \text{loop (acc * n) (n - 1)}
\]

Tail recursive factorial

\[
\text{loop acc n} \\
| \text{n <= 1} = acc \\
| \text{otherwise} = \text{loop (acc * n) (n - 1)}
\]

<facTR 4>
==> <<loop 1 4>> -- call loop 1 4
==> <<<loop 4 3>>> -- rec call loop 4 3
==> <<<loop 12 2>>>> -- rec call loop 12 2
==> <<<<<loop 24 1>>>>>> -- rec call loop 24 1
==> 24 -- return result 24!

Each recursive call directly returns the result
- without further computation
- no need to remember what to do next!
- no need to store the “empty” stack frames!
Tail recursive factorial

Because the compiler can transform it into a fast loop

\[
\text{facTR } n = \text{ loop } 1 \ n \\
\text{ where }
\text{ loop acc n }
\begin{cases}
\mid n \leq 1 & = \text{acc} \\
\mid \text{otherwise} & = \text{loop } (\text{acc } \times n) \ (n - 1)
\end{cases}
\]

\[
\text{function facTR(n){} }
\text{ var acc } = 1; \\
\text{ while (true) { } }
\text{ if } (n \leq 1) \{ \text{ return acc } ; \} \\
\text{ else } \{ \text{ acc = acc } \times n; n = n - 1; \} \\
\}
\]

- Tail recursive calls can be optimized as a loop
 - no stack frames needed!
- Part of the language specification of most functional languages
 - compiler guarantees to optimize tail calls

That’s all folks!