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THE THRESHOLD FOR RANDOM k-SAT IS 2k log 2−O(k)

DIMITRIS ACHLIOPTAS AND YUVAL PERES

1. Introduction

Call a disjunction of k Boolean variables a k-clause. For a set V of n Boolean
variables, let Ck(V ) denote the set of all 2knk possible k-clauses on V . A random
k-CNF formula Fk(n,m) is formed by selecting uniformly, independently and with
replacement m clauses from Ck and taking their conjunction.1 The study of such
random k-CNF formulas has attracted substantial interest in logic, optimization,
combinatorics, the theory of algorithms and, more recently, statistical physics.

We will say that a sequence of events En occurs with high probability (w.h.p.) if
limn→∞P[En] = 1 and with uniformly positive probability if lim infn→∞P[En] > 0.
We emphasize that throughout the paper k is arbitrarily large but fixed, while
n→∞. For each k ≥ 2, let

rk ≡ sup{r : Fk(n, rn) is satisfiable w.h.p.} ,
r∗k ≡ inf{r : Fk(n, rn) is unsatisfiable w.h.p.} .

Clearly, rk ≤ r∗k. The Satisfiability Threshold Conjecture asserts that rk = r∗k
for all k ≥ 3. Our main result establishes an asymptotic form of this conjecture.

Theorem 1. As k →∞,
rk = r∗k(1− o(1)) .

As we will see in Section 1.1, a classical and very simple argument gives r∗k ≤
2k log 2. The following theorem implies that this bound is asymptotically tight.
The theorem also sharpens the o(1) term in Theorem 1.

Theorem 2. There exists a sequence δk → 0 such that for all k ≥ 3,

rk ≥ 2k log 2− (k + 1)
log 2

2
− 1− δk .

Theorem 2 establishes that rk ∼ 2k log 2, in agreement with the predictions of
Monasson and Zecchina [23] based on the “replica method” of statistical mechanics.
Like most arguments based on the replica method, the approach in [23] is math-
ematically sophisticated but far from rigorous. To the best of our knowledge, our

Received by the editors September 4, 2003.
2000 Mathematics Subject Classification. Primary 68R99, 82B26; Secondary 05C80.
Key words and phrases. Satisfiability, random formulas, phase transitions.
This research was supported by NSF Grant DMS-0104073, NSF Grant DMS-0244479 and a

Miller Professorship at UC Berkeley. Part of this work was done while visiting Microsoft Research.
1Our results hold in all common models for random k-SAT, e.g., when clause replacement is

not allowed. See Section 3.

c©2004 American Mathematical Society
Reverts to public domain 28 years from publication

947



948 DIMITRIS ACHLIOPTAS AND YUVAL PERES

result is the first rigorous proof of a replica method prediction for any NP-complete
problem at zero temperature.

Obtaining tight bounds for rk and r∗k is a benchmark problem for a number of
analytic and combinatorial techniques of wider applicability [11, 14, 17, 5]. The
best bounds prior to our work for general k, from [1] and [9] respectively, differed
roughly by a factor of 2:

2k−1 log 2−Θ(1) ≤ rk ≤ r∗k ≤ 2k log 2−Θ(1) .

Traditionally, lower bounds for rk have been established by analyzing algorithms
for finding satisfying assignments, i.e., by proving in each case that some specific
algorithm succeeds w.h.p. on Fk(n, rn) for r smaller than a certain value. Indeed,
until very recently, all lower bounds for rk were algorithmic and of the form Ω(2k/k).
The bound rk ≥ 2k−1 log 2−Θ(1) from [1], derived via a non-algorithmic argument,
was the first to break the 2k/k barrier.

Our proof of Theorem 2 is also non-algorithmic, based instead on a delicate
application of the second moment method. By not going after some particular
satisfying truth assignment, as algorithms do, our arguments offer some glimpses
of the “geometry” of the set of satisfying truth assignments. Also, the proof yields
an explicit lower bound for rk for each k ≥ 3. Already for k ≥ 4 this improves all
previously known lower bounds for rk. In Table 1, we compare our lower bound
with the best known algorithmic lower bound [15, 18] and the best known upper
bound [10, 9, 19] for some small values of k.

Table 1.

k 3 4 7 10 20 21
Upper bound 4.51 10.23 87.88 708.94 726, 817 1, 453, 635

Our lower bound 2.68 7.91 84.82 704.94 726, 809 1, 453, 626
Algorithmic lower bound 3.42 5.54 33.23 172.65 95, 263 181, 453

1.1. Background. Franco and Paull [13], in the early 1980s, observed that r∗k ≤
2k log 2. To see this, fix any truth assignment and observe that a random k-clause
is satisfied by it with probability 1 − 2−k. Therefore, the expected number of
satisfying truth assignments of Fk(n, rn) is [2(1−2−k)r]n = o(1) for r ≥ 2k log 2. In
1990, Chao and Franco [3] complemented this by proving that a simple algorithm,
called unit clause, finds a satisfying truth assignment with uniformly positive
probability for r < 2k/k.

At around the same time, experimental results by Cheeseman, Kanefsky and
Taylor [4] and Mitchell, Selman and Levesque [22] suggested that random k-SAT,
while a logical model, also behaves like a physical system in the sense that it appears
to undergo a phase transition. Perhaps the first statement of the satisfiability
threshold conjecture appeared about ten years ago in the work of Chvátal and
Reed [5] who proved r2 = r∗2 = 1 and, by analyzing an extension of the unit clause
algorithm, established that rk ≥ (3/8)2k/k. A few years later, Frieze and Suen [15]
improved this lower bound to rk ≥ ck2k/k, where limk→∞ ck = 1.817 . . ., and this
remained the best bound for rk until recently.

In a breakthrough paper, Friedgut [14] proved the existence of a non-uniform
threshold.
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Theorem 3 (Friedgut [14]). For each k ≥ 2, there exists a sequence rk(n) such
that for every ε > 0,

lim
n→∞

P[Fk(n, rn) is satisfiable] =

{
1 if r = (1− ε) rk(n) ,

0 if r = (1 + ε) rk(n) .

Recently, Moore and the first author [1] established that rk ≥ 2k−1 log 2 − 1.
Independently, Frieze and Wormald [16] proved that if k is allowed to grow with n,
in particular if k− log2 n→ +∞, then random k-SAT has a sharp threshold around
m = n(2k +O(1)) log 2. See [1] for further background.

The rest of the paper is organized as follows. In the next section we recall the
argument in [1], highlight its main weakness and discuss how we overcome it. Our
main idea can be implemented either by a simple weighting scheme or by a more
refined large deviations argument. Both approaches yield 2k log 2 as the leading
term in the lower bound for rk. The weighting scheme argument is more compact
and technically simpler. However, it gives away a factor of four in the Θ(k) second-
order term. The large deviations analysis, on the other hand, is tight for our
method, up to an additive O(1). We present the weighting scheme argument in
Sections 3—6. The additional material for the large deviations argument appears
in Sections 7—9. In Section 10 we describe our derivation of explicit lower bounds
for small values of k. We conclude with some discussion and open problems.

2. Outline and heuristics

For any non-negative random variable X one can get a lower bound on P[X > 0]
by the following inequality.

Lemma 1. For any non-negative random variable X,

(1) P[X > 0] ≥ E[X ]2

E[X2]
.

In particular, if X denotes the number of satisfying assignments of a random
formula Fk(n, rn), one can get a lower bound on the probability of satisfiability by
applying (1) to X . We will refer to this approach as the “vanilla” application of the
second moment method. Indeed, the following immediate corollary of Theorem 3
implies that if P[X > 0] > 1/C for any constant C > 0, then rk ≥ r.
Corollary 1. Fix k ≥ 2. If Fk(n, rn) is satisfiable with uniformly positive proba-
bility, then rk ≥ r.

Thus, if for a given r we have E[X2] = O(E[X ]2), then rk ≥ r. Unfortunately, as
we will see, this is never the case: for every constant r > 0, there exists β = β(r) > 0
such that E[X2] > (1 + β)n E[X ]2.

2.1. The vanilla second moment method fails. Given a CNF formula F on n
variables let S(F ) = {σ : σ satisfies F} ⊆ {0, 1}n denote the set of satisfying truth
assignments of F and let X = X(F ) = |S(F )|. Then, for a k-CNF formula with
independent clauses c1, c2, . . . , cm,

E[X2] = E

(∑
σ

1σ∈S(F )

)2
 = E

[∑
σ,τ

1σ,τ∈S(F )

]

=
∑
σ,τ

E

[∏
ci

1σ,τ∈S(ci)

]
=
∑
σ,τ

∏
ci

E[1σ,τ∈S(ci)] .

(2)
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We claim that E[1σ,τ∈S(ci)], i.e., the probability that a fixed pair of truth assign-
ments σ, τ satisfy the ith random clause, depends only on the number of variables
z to which σ and τ assign the same value. Specifically, if the overlap of σ and τ is
z = αn, we claim that this probability is

(3) P[σ, τ ∈ S(ci)] = 1− 21−k + 2−kαk ≡ fS(α) .

This follows by observing that if ci is not satisfied by σ, the only way for it to also
not be satisfied by τ is for all k variables in ci to lie in the overlap of σ and τ . Thus,
fS quantifies the correlation between σ being satisfying and τ being satisfying as a
function of their overlap. In particular, observe that truth assignments with overlap
n/2 are uncorrelated since fS(1/2) = (1− 2−k)2 = P[σ is satisfying]2.

Since the number of ordered pairs of assignments with overlap z is 2n
(
n
z

)
, we see

that (2) and (3) imply

E[X2] = 2n
n∑
z=0

(
n

z

)
fS(z/n)m .

Writing z = αn and approximating
(
n
z

)
= (αα(1− α)1−α)−n × poly(n) we get

E[X2] ≥ 2n
(

max
0≤α≤1

[
fS(α)r

αα(1 − α)1−α

])n
× poly(n) ≡

(
max

0≤α≤1
ΛS(α)

)n
× poly(n) .

E(α) = 1/(αα(1 − α)1−α) fS(α) = 1− 21−k + 2−kαk

ΛS(α) = 2E(α)fS(α)r

Figure 1. k = 5, r = 14, 16, 20 (top to bottom).

Note now that E[X ]2 =
(
2n(1− 2−k)rn

)2 = (4fS(1/2)r)n = ΛS(1/2)n. There-
fore, if there exists some α ∈ [0, 1] such that ΛS(α) > ΛS(1/2), then the second
momentis exponentially greater than the square of the expectation and we only
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get an exponentially small lower bound for P[X > 0]. Put differently, unless the
dominant contribution to E[X2] comes from uncorrelated pairs of satisfying as-
signments, i.e., pairs with overlap n/2, the second moment method fails. Indeed,
for any constant r > 0 this is precisely what happens as the function ΛS is max-
imized at some α > 1/2. The reason for this is as follows: while the entropic
factor E(α) = 1/(αα(1 − α)1−α) is maximized when α = 1/2, the function fS has
a positive derivative in (0, 1). Therefore, the derivative of ΛS is never 0 at 1/2,
instead becoming 0 only when the correlation benefit balances with the penalty of
decreasing entropy at some α > 1/2.

2.2. Random NAE k-SAT and balance. In [1], the second moment method
was applied successfully by considering only those satisfying truth assignments
whose complement is also satisfying. Observe that this is equivalent to interpreting
Fk(n,m) as an instance of Not All Equal k-SAT, where σ is a solution iff under σ
every clause has at least one satisfied literal and at least one unsatisfied literal. In
particular, if σ, τ have overlap z = αn and c is a random clause, then

P[σ, τ NAE-satisfy c] = 1− 22−k + 21−k(αk + (1− α)k) ≡ fN (α) .

The key point is that fN is symmetric around α = 1/2 and, as a result, the prod-
uct E(α)fN (α)r always has a local extremum at 1/2. In [1] it was shown that for
r ≤ 2k−1 log 2− 1 this extremum is a global maximum, implying that for such r,
Fk(n,m) is w.h.p. [NAE-] satisfiable. It is worth noting that for r ≥ 2k−1 log 2,
w.h.p. Fk(n,m) is not NAE-satisfiable, i.e., the second moment method determines
the NAE-satisfiability threshold within an additive constant. Intuitively, the sym-
metry of fN stems from the fact that NAE-satisfying assignments come in com-
plementary pairs and, thus, having overlap z with an NAE-satisfying assignment
σ (and n− z with σ) is indistinguishable from having overlap n− z with σ (and z
with σ).

The suspicion motivating this work is that the correlations behind the failure of
the vanilla second moment method are mainly due to the following form of populism:
satisfying assignments tend to lean towards the majority vote truth assignment.
Observe that truth assignments that satisfy many literal occurrences in the random
formula have significantly greater probability of being satisfying. At the same
time, such assignments are highly correlated since, in order to satisfy many literal
occurrences, they tend to agree with each other (and the majority truth assignment)
on more than half the variables.

Note that our suspicion regarding populism is consistent with the success of the
second moment method for random NAE k-SAT. In that problem, since we need to
have at least one satisfied and at least one dissatisfied literal in each clause, leaning
towards majority is a disadvantage. As intuition suggests, “middle of the road”
assignments have the greatest probability of being NAE-satisfying. Alternatively,
observe that conditioning on σ being NAE-satisfying does not increase the expected
number of satisfied literal occurrences under σ, whereas conditioning on σ being
only satisfying increases this expectation by a factor 2k/(2k − 1) relative to the
unconditional expectation km/2. To overcome these correlations, populism must
be discouraged, and the delicacy with which this is done determines the accuracy
of the resulting bound.

An example from a different area, which was another inspiration for our work,
is the recent proof of the Erdős-Taylor conjecture from 1960 for the simple random
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walk in the planar square lattice (see [12], [7] and for a popular account [24]). The
conjecture was that the number of visits to the most frequently visited lattice site
in the first n steps of the walk is asymptotic to (logn)2/π. Erdős and Taylor [12]
obtained a (sharp) upper bound via an easy calculation of the expectation of the
number Xa of vertices visited at least a(logn)2 times. The lower bound they
obtained was four times smaller than the conjectured value. In that setting the
vanilla second moment method fails, since the events that two vertices u, v are
visited frequently are highly correlated. The conjecture was proved in [7] by first
recognizing the main source of the correlation in a certain “populism” (when the
random walk spends a long time in the smallest disk containing both u and v).
Replacing Xa by a weighted count that discourages such loitering confirmed that
this was indeed the source of excessive correlations as the weighted second moment
was successful.

In a nutshell, our plan is to apply the second moment method to balanced satis-
fying truth assignments, i.e., truth assignments that satisfy, approximately, half of
all km literal occurrences. As it turns out, choosing a concrete range to represent
“approximately half” and only counting the satisfying assignments that fall within
the range leads to analytic difficulties due to the polynomial corrections in certain
large deviations estimates. Fortunately, these issues can be avoided by i) introduc-
ing a scheme that weights satisfying truth assignments according to their number
of satisfied literal occurrences, and ii) tuning the scheme’s control parameter so as
to concentrate the weight on balanced assignments.

2.3. Weighted second moments: a transform. Recall that for a CNF formula
F on n variables, S = S(F ) ⊆ {0, 1}n denotes the set of satisfying truth assignments
of F . An attractive feature of the second moment method is that we are free to
apply it to any random variable X = X(F ) such that X > 0 implies that S 6= ∅.
Sums of the form

X =
∑
σ

w(σ, F )

clearly have this property if w(σ, F ) = 0 for σ 6∈ S(F ).
Weighting schemes as above can be viewed as transforms of the original prob-

lem and can be particularly effective in exploiting insights into the source of cor-
relations. In particular, if w(σ, F ) has product structure over the clauses, then
clause-independence allows one to replace expectations of products with products
of expectations. With this in mind, let us consider random variables of the form

X =
∑
σ

∏
c

w(σ, c) ,

where w is some arbitrary function. (Eventually, we will require that w(σ, c) = 0
if σ falsifies c.) For instance, if w(σ, c) is the indicator that c is satisfied by σ,
then X simply counts the number of satisfying truth assignments. By linearity of
expectation and clause-independence we see that for any function w,

E[X ] =
∑
σ

∏
c

E[w(σ, c)] ,(4)

E[X2] =
∑
σ,τ

∏
c

E[w(σ, c)w(τ, c)] .(5)
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Since we are interested in random formulas where the literals are drawn uni-
formly, we will restrict attention to functions that are independent of the variable
labels. That is, for every truth assignment σ and every clause c = `1 ∨ · · · ∨ `k, we
require that w(σ, c) = w(v), where vi = +1 if `i is satisfied under σ and −1 if `i is
falsified under σ. With that assumption, (4) and (5) simplify to

E[X ] = 2n (E[w(σ, c)])m ,(6)

E[X2] =
∑
σ,τ

(E[w(σ, c)w(τ, c)])m .(7)

Let A = {−1,+1}k. Since literals are drawn uniformly and independently, we
see that for every σ,

E[w(σ, c)] =
∑
v∈A

w(v) 2−k .

Similarly, for every pair of truth assignments σ, τ with overlap z = αn,

E[w(σ, c)w(σ, τ)] =
∑

u,v∈A
w(u)w(v) 2−k

k∏
i=1

(
α1ui=vi (1− α)1ui 6=vi

)
≡

∑
u,v∈A

w(u)w(v) Φu,v(α)

≡ fw(α) .(8)

In particular, observe that E[w(σ, c)]2 = fw(1/2), i.e., for every function w the
weights assigned to truth assignments with overlap n/2 are independent.

Recalling the approximation
(
n
z

)
= (αα(1− α)1−α)−n × poly(n) we see that (7)

and (8) imply

E[X2] = 2n
n∑
z=0

(
n

z

)
fw(z/n)m(9)

≤ 2n
(

max
0≤α≤1

[
fw(α)r

αα(1− α)1−α

])n
× poly(n)

≡
(

max
0≤α≤1

Λw(α)
)n
× poly(n) .(10)

Observe that Λw(1/2)n = (4fw(1/2)r)n = E[X ]2. Moreover, we will see later that
a more careful analysis of the sum in (9) allows one to replace the polynomial
factor in (10) by O(1). Therefore, if Λw(1/2) is the global maximum of Λw, then
E[X2]/E[X ]2 = O(1) and the second moment method succeeds.

A necessary condition for Λw(1/2) to be a global maximum is that Λ′w(1/2) = 0.
Since Λw(α) = 2E(α)fw(α)r and E ′(1/2) = 0, this dictates that f ′w(1/2) = 0.
Differentiating fw we get

f ′w(α) =
∑

u,v∈A
w(u)w(v) Φu,v(α) [ log Φu,v(α) ]′

=
∑

u,v∈A
w(u)w(v) Φu,v(α)

k∑
i=1

(
1ui=vi
α

− 1ui 6=vi
1− α

)
.
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In particular, letting u · v denote the inner product of u and v, we see that

(11) 22k−1 f ′w(1/2) =
∑

u,v∈A
w(u)w(v) u · v =

(∑
u∈A

w(u)u

)
·
(∑

v∈A
w(v)v

)
.

Therefore, for any function w,

(12) f ′w(1/2) = 0⇐⇒
∑
v∈A

w(v)v = 0 .

We can interpret the vanilla application of the first moment method as using a
function w = wS which assigns 0 to (−1, . . . ,−1) and 1/(2k−1) to all other vectors.
(It is convenient to always normalize w so that

∑
v w(v) = 1.) The fact that wS

violates the r.h.s. of (12) implies that this attempt must fail. In [1], on the other
hand, w = wN assigns 0 both to (−1, . . . ,−1) and to (+1, . . . ,+1) (and 1/(2k − 2)
to all other vectors), thus satisfying (12) and enabling the second moment method.
Nevertheless, this particular rebalancing of the vectors is rather heavy-handed since
it makes it twice as likely to assign zero to a random clause.

To achieve better results we would like to choose a function w that is “as close
as possible” to wS while satisfying (12). That is, we would like w to have minimal
relative entropy with respect to wS subject to (12) (see Definition 2.15 of [8]).
Since wS is constant over all v 6= (−1, . . . ,−1) and we must have w(−1, . . . ,−1) =
wS(−1, . . . ,−1) = 0, this means that w should have maximum entropy over v 6=
(−1, . . . ,−1) while satisfying (12). So, all in all, we are seeking a maximum-entropy
collection of weights for the vectors in A such that i) the vector of all -1s has weight
0, ii) the weighted vectors cancel out.

For x ∈ A, let |x| denote the number of +1s in x. By summing the r.h.s. of (12)
over the coordinates we see that a necessary condition for the optimality of w is

(13)
∑

v 6=(−1,...,−1)

w(v)(2|v| − k) = 0 .

Maximizing entropy subject to (13) is a standard Lagrange multipliers problem.
Its unique solution is

(14) w(v) =
1
Z
λ|v| ,

where Z is a normalizing constant and λ satisfies (1+λ)k−1 = 1/(1−λ) so that (13)
is satisfied, i.e.,

(15)
k∑
j=1

(
k

j

)
λj(2j − k) = k

(
1− (1 + λ)k−1(1− λ)

)
= 0 .

Note now that for w given by (14), symmetry ensures that all coordinates of∑
v w(v)v are equal. Since, by (15), the sum over these coordinates vanishes,

we see that in fact (12) must hold as well. Therefore, w is indeed the optimal
solution for our original problem.
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fw(α) Λw(α) = 2E(α)fw(α)r

Figure 2. k = 5, r = 14, 16, 20 (top to bottom).

In Figure 2 we plot the functions fw and Λw corresponding to this weighting,
for the values of k, r in Figure 1 (with a normalization for

∑
uw(u) which makes

the plot scale analogous to that in Figure 1 and which will be more convenient for
computing fw and Λw in the next section).

So, if L(σ, F ) is the number of satisfied literal occurrences in F under σ, we take

(16) w(σ, F ) ∝
∏
c

λL(σ,c)1σ∈S(c) ,

where (1 + λ)k−1 = 1/(1 − λ). The above weighting scheme yields Theorem 4,
below, which we will prove in Sections 3—6. Theorem 4 has the same leading
term as Theorem 2 but a linear correction term 4 times greater. This lost factor
of 4 is due to our insistence that w(σ, F ) factorizes perfectly over the clauses. In
Sections 7—9 we go beyond what can be achieved with perfect factorization by
performing a truncation. This will allow us to prove Theorem 2, which gives a
lower bound for rk that is within an additive constant of the upper bound for the
existence of balanced satisfying assignments.

Theorem 4. There exists a sequence βk → 0 such that for all k ≥ 3,

rk ≥ 2k log 2− 2(k + 1) log 2− 1− βk .

3. Groundwork

Given a k-CNF formula F on n variables, recall that S(F ) is the set of satisfying
truth assignments of F . Given σ ∈ {0, 1}n, let H = H(σ, F ) be the number
of satisfied literal occurrences in F under σ less the number of unsatisfied literal
occurrences in F under σ. For any 0 < γ ≤ 1, let

X =
∑
σ

γH(σ,F )1σ∈S(F ) .

(Note that γH(σ,F ) = γ2S(σ,F )−km, so this is consistent with (16) for γ2 = λ.)
Recall that in Fk(n,m) the m clauses {ci}mi=1 are i.i.d. random variables, ci being

the conjunction of k i.i.d. random variables {`ij}kj=1, each `ij being a uniformly
random literal. Clearly, in this model a clause may be improper, i.e., it might
contain repeated and/or contradictory literals. At the same time, each clause is
improper with probability bounded by k2/n implying that w.h.p. the number of
improper clauses is o(n). Moreover, the proper clauses are uniformly selected from
among all proper clauses. Therefore, if Fk(n, rn) is satisfiable w.h.p, then for
m = rn − o(n), the same is true in the model where we only select among proper
clauses. The issue of selecting clauses without replacement is completely analogous
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since w.h.p. there are o(n) clauses that contain the same k variables as some other
clause.

3.1. The first moment. For any fixed truth assignment σ and a random k-clause
c = `1 ∨ · · · ∨ `k, since the literals `1, . . . , `k are i.i.d., we have

E[γH(σ,c)1σ∈S(c)] = E[γH(σ,c)]−E[γ−k1σ 6∈S(c)]

= E

[∏
`i

γH(σ,`i)

]
− (2γ)−k

=
(
γ + γ−1

2

)k
− (2γ)−k

≡ ψ(γ) .

Thus, since the m = rn clauses c1, c2, . . . , cm are i.i.d.,

E[X ] = E

[∑
σ

γH(σ,F )1σ∈S(F )

]

=
∑
σ

E

[∏
ci

γH(σ,ci)1σ∈S(ci)

]
=

∑
σ

∏
ci

E
[
γH(σ,ci)1σ∈S(ci)

]
= (2ψ(γ)r)n .(17)

3.2. The second moment. Let σ, τ be any pair of truth assignments that agree
on z = αn variables. If `1, `2, . . . , `k are i.i.d. uniformly random literals and c =
`1 ∨ `2 ∨ · · · ∨ `k, then

E
[
γH(σ,`i)+H(τ,`i)

]
= α

(
γ2 + γ−2

2

)
+ 1− α ,

E
[
γH(σ,`i)+H(τ,`i)1σ 6∈S(c)

]
= 2−k

(
αγ−2 + (1− α)

)
,

E
[
γH(σ,`i)+H(τ,`i)1σ,τ 6∈S(c)

]
= 2−k

(
αγ−2

)
.

Since `1, `2, . . . , `k are i.i.d., writing γ2 = 1− ε, we have

E [ γH(σ,c)+H(τ,c)1σ,τ∈S(c)

]
= E

[
γH(σ,c)+H(τ,c)

(
1− 1σ 6∈S(c) − 1τ 6∈S(c) + 1σ,τ 6∈S(c)

)]
= E

[∏
i

γH(σ,`i)+H(τ,`i)
(
1− 1σ 6∈S(c) − 1τ 6∈S(c) + 1σ,τ 6∈S(c)

)]

=
(
α

(
γ2 + γ−2

2

)
+ 1− α

)k
− 21−k (αγ−2 + (1− α)

)k
+ 2−k

(
αγ−2

)k
=

(2 − 2ε+ αε2)k − 2(1− ε+ αε)k + αk

2k(1− ε)k(18)

≡ f(α)
2k(1− ε)k ,(19)
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where the dependence of f on ε = 1 − γ2 is implicit. (Taking ε = 1 − λ in (18)
yields the fw of Figure 2.)

Thus, for a random k-CNF formula whose m = rn clauses c1, c2, . . . , cm are
constructed independently,

E[X2] = E

[∑
σ

γH(σ,F )1σ∈S(F )

]2

=
∑
σ,τ

E
[
γH(σ,F )+H(τ,F )1σ,τ∈S(F )

]
=

∑
σ,τ

E

[∏
ci

γH(σ,ci)+H(τ,ci)1σ,τ∈S(ci)

]
=

∑
σ,τ

∏
ci

E
[
γH(σ,ci)+H(τ,ci)1σ,τ∈S(ci)

]
.(20)

Since the number of ordered pairs of assignments with overlap z is 2n
(
n
z

)
and

since the m = rn clauses are identically distributed, (20) and (19) imply

(21) E[X2] = 2n
n∑
z=0

(
n

z

)(
f(z/n)

2k(1− ε)k

)rn
.

Observe now that for any fixed value of ε, f r is a real, positive and twice-
differentiable function. Thus, to bound the sum in (21) we can use the following
lemma of [1]. The idea is that sums of this type are dominated by the contribution
of Θ(n1/2) terms around the maximum term, and the proof follows by applying the
Laplace method of asymptotic analysis [6].

Lemma 2. Let φ be any real, positive, twice-differentiable function on [0, 1] and
let

Sn =
n∑
z=0

(
n

z

)
φ(z/n)n .

Letting 00 ≡ 1, define g on [0, 1] as

g(α) =
φ(α)

αα (1− α)1−α .

If there exists αmax ∈ (0, 1) such that g(αmax) ≡ gmax > g(α) for all α 6= αmax,
and g′′(αmax) < 0, then there exist constants B,C > 0 such that for all sufficiently
large n,

B × gnmax ≤ Sn ≤ C × gnmax .

With Lemma 2 in mind, let us define

(22) gr(α) =
f(α)r

αα(1− α)1−α .

Let
sk = 2k log 2− 2 log 2(k + 1)− 1− 3/k .

We will prove the following.
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Lemma 3. Let ε ∈ (0, 1) be such that

(23) ε(2− ε)k−1 = 1 .

For all k ≥ 22, if r ≤ sk, then gr(1/2) > gr(α) for all α 6= 1/2, and g′′r (1/2) < 0.

As a result, for r, k, ε as in Lemma 3 we have

(24) E[X2] < C ×
(

2gr(1/2)
(2(1− ε))kr

)n
,

where C = C(k) is independent of n. Observe now that (17) and the fact that
γ2 = 1− ε imply

E[X ]2 = [(2ψ(γ)r)n]2

= 4n
(

f(1/2)
2k(1− ε)k

)rn
=

(
2gr(1/2)n

(2(1− ε))kr

)n
.(25)

Therefore, by (24) and (25) we see that for r, k, ε as in Lemma 3 we have

E[X2] < C ×E[X ]2.

By Lemma 1, this implies P[X > 0] > 1/C and, hence, Lemma 3 along with
Corollary 1 imply Theorem 4.

To prove Lemma 3 we will prove the following three lemmata. The first lemma
holds for any ε ∈ [0, 1) and reduces the proof to the case α ≥ 1/2. The second
lemma controls the behavior of f (and thus gr) around α = 1/2 and demands the
judicious choice of ε specified by (23). We note that this is the only value of ε for
which gr has a local maximum at 1/2, for any r > 0. The third lemma deals with
α near 1. That case needs to be handled separately because gr has another local
maximum in that region. The condition r ≤ sk aims precisely at keeping the value
of gr at this other local maximum smaller than gr(1/2).

Lemma 4. For all ε, x > 0, we have gr(1/2 + x) > gr(1/2− x).

Lemma 5. Let ε satisfy (23). For all k ≥ 22, if r ≤ 2k log 2, then gr(1/2) > gr(α)
for all α ∈ (1/2, 4/5] and g′′r (1/2) < 0.

Lemma 6. Let ε satisfy (23). For all k ≥ 22, if r ≤ sk, then gr(1/2) > gr(α) for
all α ∈ (4/5, 1].

We begin by proving the following bound for the value of ε satisfying (23).

Lemma 7. For all k ≥ 3, if ε ∈ (0, 1) satisfies ε(2− ε)k−1 = 1, then

(26) 21−k + k4−k < ε < 21−k + 3k4−k .

Proof. If q(x) = x(2 − x)k−1, then q′(x) = (2 − x)k−2(2 − kx) and q(1) = 1.
Therefore, it will suffice to demonstrate one root of q(x) − 1. Let θ = ε2k−1 and
s(x) = x(1− x/2k)k−1 so that (23) reads q(ε) = s(θ) = 1. Let θ1 = 1 + k/2k+1 and
θ2 = 1 + 3k/2k+1. We will prove s(θ1) < 1 and s(θ2) > 1, yielding (26). Clearly,

s(θ1) =
(

1 +
k

2k+1

) (
1− θ1

2k

)k−1

<

(
1 +

1
2k

)k−1(
1− 1

2k

)k−1

< 1 .
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For k = 3, direct computation gives s(θ2) > 1. The inequality (1 + x)j > 1 + jx
valid for all x > −1 gives

s(θ2) = θ2

(
1− θ2

2k

)k−1

> θ2

(
1− (k − 1)θ2

2k

)
≡ τ(k) .

It is straightforward to verify that τ(k) > 1 for all k > 3. �

4. Proof of Lemma 4

Observe that αα(1−α)1−α is symmetric around 1/2 and that r > 0. Therefore,
it suffices to prove that f(1/2 + x) > f(1/2− x), for all x > 0. To do this we first
note that, for all x 6= 0,

2kf(1/2 + x) =
(
(2− ε)2 + 2xε2

)k − 2 (2− ε+ 2xε)k + (1 + 2x)k

=
k∑
j=0

(
k

j

)[
(2− ε)2(k−j)(2xε2)j − 2(2− ε)k−j(2xε)j + (2x)j

]

=
k∑
j=0

(
k

j

)
(2x)j

[
(2− ε)2(k−j)ε2j − 2(2− ε)k−jεj + 1

]

=
k∑
j=0

(
k

j

)
(2x)j [(2− ε)k−jεj − 1]2 .(27)

Thus, for all x > 0,

f(1/2 + x)− f(1/2− x) = 2−k
k∑
j=0

(
k

j

)
2j [(2− ε)k−jεj − 1]2(xj − (−x)j) > 0 .

5. Proof of Lemma 5

We will prove that for all k ≥ 22 and r ≤ 2k log 2, gr is strictly decreasing in
(1/2, 4/5]. We have

f ′(α) = k
[
(2− 2ε+ αε2)k−1ε2 − 2(1− ε+ αε)k−1ε+ αk−1

]
,

g′r(α) =
f(α)r−1 (rf ′(α) + f(α)(log(1− α)− logα))

αα(1− α)1−α .(28)

So, f ′(1/2) = k2−k+1
(
(2− ε)k−1ε− 1

)2 and since, by (23), we have (2−ε)k−1ε = 1,
we get

(29) g′r(1/2) = f ′(1/2) = 0 .

Since g′r(1/2) = 0 and, by (27), f(α) > 0 for all α > 1/2 we see that (28)
implies that to prove that gr is decreasing in (1/2, 4/5] it suffices to prove that the
derivative of

(30) rf ′(α) + f(α)(log(1− α)− logα)

is negative in (1/2, 4/5]. We will actually prove this claim for α ∈ [1/2, 4/5]. Since
f ′(1/2) = 0, this also establishes the claim g′′r (1/2) < 0. The derivative of (30) is

(31) rf ′′(α) + f ′(α)(log(1− α)− logα) − f(α)
(

1
α

+
1

1− α

)
.
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By considering (27), we see that f is non-decreasing in [1/2, 1]. Since log(1− α) ≤
logα for α ∈ [1/2, 1), it follows that in order to prove that the expression in (31) is
negative it suffices to show that

rf ′′(α) ≤ f(α)
(

1
α

+
1

1− α

)
.

Since, by definition, ε < 1 it follows that αε2 ≤ 2ε, implying that we can bound
f ′′ as

f ′′(α) = k(k − 1)
(
(2− 2ε+ αε2)k−2ε4 − 2(1− ε+ αε)k−2ε2 + αk−2

)
≤ k2

(
2k−2ε4 + (4/5)k−2

)
.(32)

At the same time, 1/α + 1/(1 − α) ≥ 4 and f(α) ≥ f(1/2) = 2−k((2 − ε)k − 1)2.
Therefore, if εu is any upper bound on ε, it suffices to establish

(33) r × k2
(
2k−2ε4

u + (4/5)k−2
)
≤ 4× 2−k((2 − εu)k − 1)2 .

Invoking (26) to take εu = 21−k + 3k4−k, it is easy to verify that (33) holds for
k ≥ 22 and r = 2k log 2.

Corollary 2. For all k ≥ 65, if r ≤ 2k log 2, then gr(1/2) > gr(α) for all α ∈
(1/2, 9/10] and g′′r (1/2) < 0.

Proof. If in (33) we replace 4/5 with 9/10 and take r = 2k log 2, then the inequality
is valid for all k ≥ 65. �

6. Proof of Lemma 6

First observe that the inequality gr(1/2) > gr(α) is equivalent to

(34)
(
f(α)
f(1/2)

)r
< 2αα(1 − α)1−α .

Recall now that, by (27), f is increasing in (1/2, 1], implying that f(α)−f(1/2) > 0
and that for all x ≥ 0, log(1 + x) ≤ x. Thus, the logarithm of the left-hand side
above can be bounded as

r log
(
f(α)
f(1/2)

)
= r log

(
1 +

f(α)− f(1/2)
f(1/2)

)
≤ r

(
f(α)− f(1/2)

f(1/2)

)
.

So, if we let h(α) = −α logα− (1− α) log(1− α), we see that (34) holds if

r < (log 2− h(α)) × f(1/2)
f(α)− f(1/2)

.

To get a lower bound on f(1/2) we use the upper bound for ε from (26), yielding

f(1/2) = (2− 2ε+ ε2/2)k − 2(1− ε/2)k + (1/2)k

> (2(1− ε))k − 2

> 2k(1− kε)− 2

> 2k(1− k(21−k + 3k4−k))− 2

= 2k − 2k − 2− 3k22−k .(35)



THE THRESHOLD FOR RANDOM k-SAT IS 2k log 2 −O(k) 961

To get an upper bound on f(α)−f(1/2) we let α = 1/2+x and consider the sum
in (27). By our choice of ε in (23) we see that: i) the term corresponding to j = 1
vanishes yielding (36), and ii) for all j > 1, 0 < (2 − ε)k−jεj < 1, yielding (37).
That is,

f(1/2 + x) = f(1/2) + 2−k
k∑
j=2

(
k

j

)
(2x)j [(2 − ε)k−jεj − 1]2(36)

≤ f(1/2) + 2−k
k∑
j=0

(
k

j

)
(2x)j(37)

= f(1/2) + αk .(38)

Therefore, we see that (34) holds as long as

r ≤ log 2− h(α)
αk

× f(1/2) ≡ φ(α) × f(1/2) .

We start by getting a lower bound for φ for all α ∈ (1/2, 1]. For that, we let
y = 1− α and observe that for all 0 < y ≤ 1/2,

(39) −h(1− y) > log(1− y) + y log y > −y − y2 + y log y

and
1

(1− y)k
> (1 + y)k > 1 + ky .

Therefore,

φ(1− y) =
log 2− h(1− y)

(1 − y)k

> (1 + ky)(log 2− y(1 + y − log y)) .(40)

Writing y = d/2k and substituting into (40) we get that for all 1/2 ≤ α < 1,

φ(α) = φ(1− d2−k)

>
(
1 + kd2−k

) (
log 2− d2−k

(
1 + d2−k − log(d2−k)

))
= log 2 + d(log d− 1)2−k − d2

4k
(
1 + k

(
1 + d2−k − log(d2−k)

))
≥ log 2− 2−k − d2

4k
(
1 + k

(
1 + d2−k − log(d2−k)

))
= log 2− 2−k − (1 − α)2 (1 + k (2− α− log(1− α)))
≡ b(α) .(41)

Since φ is differentiable, to bound it in (4/5, 1] it suffices to consider its value at
4/5, 1 and wherever

(42) φ′(α) =
α logα− α log(1 − α)− k log 2 + kh(α)

αk+1
= 0 .

We start by observing that for k ≥ 6,

φ′(4/5) < 0 .
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At the other end, we see that

lim
α→1

φ′(α)
log(1− α)

= −1 ,

implying that the derivative of φ becomes positively infinite as we approach 1.
Therefore, we can limit our search to the interior of (4/5, 1) for k ≥ 6.

By setting φ′ to zero, (42) gives

log(1− α) = logα− k log 2− kh(α)
α

,

which, since 1/2 < α < 1, implies

(43) log(1− α) ≤ −k(log 2− h(α)) .

Moreover, since log 2 − h(4/5) > 1/6, we see that (43) implies α > 1 − e−k/6 for
all k. Note now that if α > 1 − e−ck for any c > 0, then (39) implies h(α) <
e−ck(1 + e−ck + ck). Since α > 1− e−k/6, we thus get

h(α) < e−k/6(1 + e−k/6 + k/6) < e−k/6(2 + k/6) ≡ Q(k) .(44)

Plugging (44) into (43), we conclude that

(45) α > 1− e−k(log 2−Q(k)) ≡ α∗k .

Since for k ≥ 12 we have α∗k > 4/5, this means that φ is decreasing in (4/5, α∗k] for
k ≥ 12.

Note now that the function b bounding φ from below in (41) is increasing in
[0, 1]. Combined with the fact that φ is decreasing in (4/5, α∗k], this implies that
b(α∗k) is a lower bound for φ in (4/5, 1], i.e.,

φ(α) > b(α∗k)

> log 2− 2−k − 2/(k2k) ,(46)

where (46) holds for all k ≥ 22. Combining (46) with (35), we get that for all
k ≥ 22, if

r < 2k log 2− 2(k + 1) log 2− 1− 3/k ,

then g(1/2) > g(α) for all α 6= 1/2.

7. Further refinement: truncation and weighting

Given a k-CNF formula F on n variables, recall that S = S(F ) ⊆ {0, 1}n is
the set of satisfying truth assignments of F . Recall also that for σ ∈ {0, 1}n, by
H(σ, F ) we denote the number of satisfied literal occurrences in F under σ minus
the number of unsatisfied literal occurrences. Let S+ = {σ ∈ S : H(σ, F ) ≥ 0}.

For any 0 < γ ≤ 1, let

X =
∑
σ∈S

γH(σ,F ) ,

X+ =
∑
σ∈S+

γH(σ,F ) .

In computing the second moment of X in the previous sections, it becomes clear
that one needs to control the contribution to E[X2] from pairs of truth assignments
with high overlap. Close examination of these pairs shows that the dominant con-
tributions come from those pairs amongst them that have fewer than half of their
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literals satisfied. If we compute the second moment of X+ instead, these highly cor-
related pairs are avoided. Our argument for this is motivated by Cramer’s classical
“change of measure” technique in large deviation theory.

Specifically, let ε0 < 1 satisfy

(47) ε0 =
1

(2 − ε0)k−1
.

Lemma 8 below asserts that if γ2 = 1 − ε0, where ε0 is specified by (47), then the
first moments of X and X+ are comparable.

Lemma 8. If γ2 = 1− ε0, then as n→∞,
E[X+]
E[X ]

→ 1/2 .

Let σ, τ be any pair of truth assignments that agree on z = αn variables. If we
write θ2 = 1− ε, then from (18) we have

E
[
θH(σ,c)+H(τ,c)1σ,τ∈S(c)

]
=

(2− 2ε+ αε2)k − 2(1− ε + αε)k + αk

2k(1− ε)k
≡ f(α, ε) .(48)

(Observe that the function f(α, ε) in (48) above is identical to f(α)(2(1 − ε))−k,
where f(α) is as in (19). In the earlier sections, since ε was fixed, this dependence
on ε was suppressed to simplify notation.)

Thus, if F is a random formula consisting of m = rn independent clauses, then
for any θ2 = 1− ε ≥ γ2,

E
[
γH(σ,F )+H(τ,F )1σ,τ∈S+(F )

]
≤ E

[
θH(σ,F )+H(τ,F )1σ,τ∈S+(F )

]
≤ E

[
θH(σ,F )+H(τ,F )1σ,τ∈S(F )

]
= f(α, ε)m .(49)

The crucial point is that (49) holds for any ε ≤ 1 − γ2, allowing us to optimize
ε with respect to α. In particular, if γ2 = 1− ε0, then (49) implies

E
[
γH(σ,F )+H(τ,F )1σ,τ∈S+(F )

]
≤

[
inf
ε≤ε0

f(z/n, ε)
]m

.

Thus, following the derivation of (21), we deduce that

(50) E[X2
+] ≤ 2n

n∑
z=0

(
n

z

)[
inf
ε≤ε0

f(z/n, ε)
]rn

.

Let us define

gr(α, ε) =
f r(α, ε)

αα(1− α)1−α .

Observe that by Lemma 8 and (25),

(51) 5E[X+]2 > E[X ]2 = gr(1/2, ε0)n .

Assume now that there exists a piecewise-constant function ξ such that for some
value of r we have gr(1/2, ε0) > gr(α, ξ(α)) for all α 6= 1/2. Then, by decomposing
the sum in (50) along the pieces of ξ and applying Lemma 2 to each piece, we can
conclude that E[X2

+] < C×E[X+]2, for some C = C(k). Lemma 1 and Corollary 1
then imply rk ≥ r.
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Let

ρk = 2k log 2− log 2
2

(k + 1)− 1− 50k3 2−k .

We will prove

Lemma 9. Let

ξ(α) =


ε0 if α ∈ [1/10, 9/10] ,

ε0/2 otherwise.

For all k ≥ 166, if r ≤ ρk, then gr(1/2, ε0) > gr(α, ξ(α)) for all α 6= 1/2, and the
second derivative of gr with respect to α is negative at α = 1/2.

To prove Lemma 9 we first observe that since ξ is symmetric around 1/2,
Lemma 4 implies that we only need to consider the case α ≥ 1/2. Also, since
ξ(α) = ε0 for α ∈ [1/2, 9/10], Corollary 2 establishes both our claim regarding the
second derivative of gr at α = 1/2 and gr(1/2, ε0) > gr(α, ξ(α)) for α ∈ (1/2, 9/10].
Thus, besides Lemma 8, it suffices to prove that

Lemma 10. For all k ≥ 166, if r ≤ ρk, then for all α ∈ (9/10, 1] we have
gr(1/2, ε0) > gr(α, ε0/2).

8. Proof of Lemma 8

By linearity of expectation and symmetry, it suffices to prove that for γ2 = 1−ε0

and every σ,

(52)
E[γH(σ,F )1σ∈S+(F )]
E[γH(σ,F )1σ∈S(F)]

→ 1
2
.

Recalling that formulas in our model are sequences of i.i.d. random literals
`1, . . . , `km, let P(·) denote the probability assigned by our distribution to any
such sequence, i.e., (2n)−km. Now, fix any truth assignment σ and consider an
auxiliary distribution Pγ on k-CNF formulas where the km literals are again i.i.d.,
but where now for each fixed literal `0,

Pγ [H(σ, `0) = 1] =
γ

γ + γ−1
=

2γ
γ + γ−1

P[H(σ, `0) = 1] .

Observe that since γ ≤ 1, this probability is at most 1/2. Thus,

Eγ [H(σ, `)] =
γ − γ−1

γ + γ−1
=

γ2 − 1
γ2 + 1

=
−ε0

2− ε0
.

So, for a random k-clause c,

Eγ [H(σ, c)1σ∈S(c)] = Eγ [H(σ, c)]−Eγ [−k1σ 6∈S(c)]

=
−kε0

2− ε0
+ k

(
γ−1

γ + γ−1

)k
= k

(
− ε0

2− ε0
+
(

1
2− ε0

)k)
.

Since ε0 = 1/(2− ε0)k−1, we see that Eγ [H(σ, c)1σ∈S(c)] = 0.
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By literal independence, for any specific clause c0,

(53) Pγ(c0) =
2kγH(σ,c0)P(c0)

(γ + γ−1)k
.

Let Z(γ) = Eγ [1σ∈S(c)] and Z1(γ) = Z(γ)(γ+γ−1

2 )k. For any clause c0, define

(54) P̃γ(c0) =
Pγ(c0)1σ∈S(c0)

Z(γ)
=
γH(σ,c0)P(c0)1σ∈S(c0)

Z1(γ)
,

where the second equality follows from (53). Now pick m i.i.d. clauses with the
distribution in (54). Any fixed formula F0 will be obtained with probability

(55) P̃γ(F0) =
γH(σ,F0)P(F0)1σ∈S(F0)

Z1(γ)m
.

Since Ẽγ [H(σ, c)] = 0, the central limit theorem yields

P̃γ [H(σ, F ) ≥ 0]→ 1
2

as n→∞. By (55), this is equivalent to (52).

9. Proof of Lemma 10

Write ε1 = ε0/2 (to simplify notation). Observe that the inequality gr(1/2, ε0) >
gr(α, ε1) is equivalent to

(56)
(
f(α, ε1)
f(1/2, ε0)

)r
< 2αα(1− α)1−α,

which we want to establish for all k ≥ 166 and r < ρk. Clearly, we only need to
consider the case

w =
f(α, ε1)
f(1/2, ε0)

> 1 .

Letting h(α) = −α logα − (1 − α) log(1 − α) denote the entropy function, (56)
is equivalent to

r <
log 2− h(α)

logw
.

By expanding into Taylor series one sees that for all x > 1,
1

log x
≥ 1
x− 1

+
1
2
− x− 1

2
.

Therefore, we see that (56) holds if

r

log 2− h(α)
<

f(1/2, ε0)
f(α, ε1)− f(1/2, ε0)

+
1
2
− w − 1

2
.

In (66) we will prove f(α, ε1) − f(1/2, ε0) < 21−k implying 0 < w−1
2 < 1

2kf(1/2,ε0) .
Thus, to prove that (56) holds for all k ≥ 166 and r < ρk it will suffice to prove
that for all such k, r we have

(57)
r

log 2− h(α)
<

f(1/2, ε0)
f(α, ε1)− f(1/2, ε0)

+
1
2
− 1

2kf(1/2, ε0)
.

To establish this last claim we will first prove a lower bound on f(1/2, ε0) in
terms of k and an upper bound on f(α, ε1) − f(1/2, ε0) in terms of k and α. To
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get a lower bound on f(1/2, ε0), we use the upper bound for ε0 from (26). That is,
for all k ≥ 5,

2kf(1/2, ε0) =
(2− 2ε0 + ε2

0/2)k − 2(1− ε0/2)k + (1/2)k

(1− ε0)k

>
(2− 2ε0)k − 2

(1 − ε0)k

= 2k − 2
(1− ε0)k

> 2k − 2− 2(1 + kε0)

> 2k − 2− k2−k+3 .(58)

To get an upper bound on f(α, ε1)− f(1/2, ε0), we let α = 1/2 + x and consider
the sum in (27) (recall that (27) holds for all ε and that f(α) in (27) is merely
2k(1− ε)kf(α, ε)). First, we observe that for all ε ∈ [0, 1),

2k(1− ε)kf(α, ε) = 2−k
k∑
j=0

(
k

j

)
(2α− 1)j [(2− ε)k−jεj − 1]2

≡ T2(α, ε) + 2−k
k∑
j=2

(
k

j

)
(2α− 1)j [(2− ε)k−jεj − 1]2

≤ T2(α, ε) + 2−k
k∑
j=2

(
k

j

)
(2α− 1)j

= T2(α, ε) + αk − k2−k(2α− 1)− 2−k .(59)

Next, we will prove that

T2(α, ε1)
2k(1− ε1)k

− f(1/2, ε0)

=

(
(2 − ε1)k − 1

)2
4k(1− ε1)k

+
k(2α− 1)

(
(2− ε1)k−1ε1 − 1

)2
4k(1 − ε1)k

−
(
(2− ε0)k − 1

)2
4k(1− ε0)k

< αk2−2k−1(1− ε0)−k−1 .(60)

For this, we define Υ1(ε) = 1− (2− ε)k−1ε so that Υ1(ε0) = 0. For ε < ε0 we infer
that

(61) 0 < Υ1(ε) ≤ 1− (2− ε0)k−1ε = 1− ε/ε0 .

Therefore, the function

Υ2(ε) =
k(2α− 1)Υ1(ε)2

(1 − ε)k
satisfies

(62) Υ2(ε1) ≤ k(2α− 1)
4(1− ε1)k

<
k(α− 1/2)

2(1− ε0)k+1
.

Next, define

Υ3(ε) =

(
(2− ε)k − 1

)2
(1− ε)k .
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Differentiation gives

−Υ′3(ε) = k
(2− ε)k − 1
(1− ε)k+1

Υ1(ε) ≤ k

(
2− ε
1− ε

)k Υ1(ε)
1− ε0

.

Since 2−ε
1−ε is increasing in ε, we deduce using (61) that for ε < ε0,

−Υ′3(ε) ≤ k (2− ε0)k

(1− ε0)k+1

(
1− ε

ε0

)
.

As
∫ ε0
ε1

(1− ε/ε0) dε = ε0/8, we conclude that

(63) Υ3(ε1)−Υ3(ε0) ≤ k (2 − ε0)kε0

8(1− ε0)k+1
≤ k

4(1− ε0)k+1
.

Adding the inequalities (62) and (63), then dividing by 4k, yields (60).
Combining (59) and (60) and requiring k ≥ 6 for (64) we get

f(α, ε1)− f(1/2, ε0) <
T2(α, ε1) + αk − k2−k(2α− 1)− 2−k

2k(1− ε1)k
− f(1/2, ε0)

<
αk2−2k−1

(1 − ε0)k+1
+
αk − k2−k(2α− 1)− 2−k

2k(1 − ε1)k

=
αk − αk2−k−1

(
4− (1−ε1)k

(1−ε0)k+1

)
+ 2−k(k − 1)

2k(1− ε1)k

<
αk − αk2−k−1

(
3− k2−k+1

)
+ 2−k(k − 1)

2k(1− ε1)k
(64)

<
αk − 3αk2−k−1 + 2−k(k − 1) + 4−kk2

2k(1 − ε1)k
.(65)

Observe now that for k ≥ 3, by (65), we get

(66) f(α, ε1)− f(1/2, ε0) < 2−k+1 .

Moreover, combining (58) and (65) we get (67), while the facts α > 9/10 and k ≥ 30
imply (68):

f(1/2, ε0)
f(α, ε1)− f(1/2, ε0)

>
(1− ε1)k × (2k − 2− k2−k+3)

αk − 3αk2−k−1 + 2−k(k − 1) + k24−k
(67)

>
(1− ε1)k × (2k − 2)

αk − 3αk2−k−1 + 2−k(k − 1)
− (3/4)k .(68)

Recall now that for any 0 < α < 1 and 0 ≤ q < αk,
1

αk − q ≥ 1 + k(1− α) + q .

Observe that 3αk2−k−1 − 2−k(k − 1) < αk for α ≥ 2/3. Since α > 9/10, we thus
have

1
αk − 3αk2−k−1 + 2−k(k − 1)

≥ 1 + k(1− α) + 3αk2−k−1 − 2−k(k − 1) .

By (57), (58) and (68) we see that (56) holds as long as r < (1−ε1)kφ(α)−2×(3/4)k

where

φ(α) ≡
(
log 2− h(α)

) (
2k(k + 1)− 3k − 1

2
− αk

(
2k − 7

2

))
.
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We are thus left to minimize φ in (9/10, 1]. It will be convenient to define

B = 2k(k + 1)− 3k − 1
2
,(69)

C = k

(
2k − 7

2

)
(70)

and rewrite
φ(α) =

(
log 2− h(α)

)
(B − αC) .

Since φ is differentiable, its minima can only occur at 9/10, 1 or where

(71) φ′(α) = log
(

α

1− α

)
(B − αC)− (log 2− h(α))C = 0 .

Note now that

lim
α→1

φ′(α)
log(1 − α)

= −(B − C) < 0

and, thus, the derivative of φ becomes positively infinite as we approach 1. At the
same time,

φ′(9/10) < 2.2B − 2.3C ,

which is negative for k ≥ 23. Therefore, φ is minimized in the interior of (9/10, 1]
for all k ≥ 23. Setting the derivative of φ to zero gives

− log(1− α) = (log 2− h(α))× C

B − αC − logα

= (log 2− h(α))× k

1 + k(1− α) + k+6
2k+1−7

− logα .(72)

By “bootstrapping” we will derive a tightening series of bounds on the solution
of (72) in α ∈ (9/10, 1). Note first that we have an easy upper bound,

(73) − log(1− α) < k log 2− logα .

At the same time, if k ≥ 3, then (k + 6)/(2k+1 − 7) ≤ 1, implying

(74) − log(1− α) ≥ k (log 2− h(α))
2 + k(1 − α)

− logα .

If we write k(1− α) = D, then (74) becomes

(75) − log(1− α) ≥ log 2− h(α)
1− α

(
D

D + 2

)
− logα .

By inspection, if D ≥ 3 the right-hand side of (75) is greater than the left-hand
side for all α > 9/10, yielding a contradiction. Therefore, k(1−α) < 3 for all k ≥ 3.
Since log 2− h(α) > 0.36 for α > 9/10, we see that for k ≥ 3, (74) implies

− log(1− α) > 0.07 k(76)

or, equivalently,

1− α < e−0.07k .(77)

Observe now that (77) implies

(78) k(1− α) < k e−0.07k ,

and, hence, as k increases, the denominator of (72) actually approaches 1.
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To bootstrap, we first note that since α > 1/2 we have

h(α) ≤ −2(1− α) log(1− α)(79)

< 2 e−0.07k(k log 2− log 0.9)(80)

< 2 k e−0.07 k(81)

where (80) relies on (77) and (73). Moreover, α > 1/2 implies − logα ≤ 2(1 − α),
which, by (77), implies − logα < 2 e−0.07k. Thus, starting with (72), using (78),
taking k ≥ 3 and using (81), and finally using 1/(1 + x) > 1 − x for all x > 0 we
get

− log(1− α) >
k (log 2− h(α))

1 + k e−0.07 k + k+6
2k+1−7

>
k (log 2− 2 k e−0.07 k)

1 + 2 k e−0.07 k

> k (log 2− 2 k e−0.07k)(1 − 2 k e−0.07 k)

> k log 2− 4 k2 e−0.07 k .(82)

For k ≥ 166, 4 k2 e−0.07 k < 1. Thus, for such k, (82) implies 1−α < 3×2−k. This,
in turn, implies − logα ≤ 2(1 − α) < 6 × 2−k and so, by (79) and (73), we have
that for all k ≥ 166 and α > 9/10,

(83) h(α) < 6× 2−k(k log 2− logα) < 5 k 2−k .

Plugging (83) into (72) to bootstrap again, we get (analogously to the derivation
of (82)) that

− log(1− α) >
k (log 2− 5 k 2−k)

1 + 3 k 2−k + k+6
2k+1−7

>
k (log 2− 5 k 2−k)

1 + 6 k 2−k

> k (log 2− 5 k 2−k)(1− 6 k 2−k)

> k log 2− 11 k2 2−k .

Since ex < 1 + 2x for x < 1 and 11 k2 2−k < 1 for k > 10, we see that

1− α < 2−k + 22 k2 2−2k .

Plugging into (73) the fact that − logα < 6×2−k we get − log(1−α) < k log 2+
6 × 2−k. Using that e−x ≥ 1 − x for x ≥ 0, we get the closely matching upper
bound,

1− α > 2−k − 6× 2−2k .

Thus, we see that for k ≥ 166, φ is minimized at an αmin which is within δ of
1 − 2−k, where δ = 22 k2 2−2k. Let T be the interval [1 − 2−k − δ, 1 − 2−k + δ].
Clearly the minimum of φ is at least

φ(1 − 2−k)− δ ×max
α∈T
|φ′(α)| .

Using crude bounds, it is easy to see from (71) that if α ∈ T , then |φ′(α)| ≤ 2 k 2k.
Since for k ≥ 1 we have log(1− 2−k) > −2−k − 2−2k, a simple calculation gives

(84) φ(1 − 2−k) > 2k log 2 +
log 2

2
(k − 1)− 1− 2k2 2−k .
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Therefore,

φmin > 2k log 2 +
log 2

2
(k − 1)− 1− 46 k3 2−k .

Finally, recall that (56) holds as long as r < (1− ε1)kφmin − 2× (3/4)k. Using the
upper bound for ε0 from (26) we get

(1− ε1)k × φmin >

(
1− 2−k − 2k

4k

)k
×
(

2k log 2 +
log 2

2
(k − 1)− 1− 46k3

2k

)
>

(
1− k2−k − 2k2

4k

)
×
(

2k log 2 +
log 2

2
(k − 1)− 1− 46k3

2k

)
> 2k log 2− log 2

2
(k + 1)− 1− 50k3

2k
= ρk .

10. Bounds for specific values of k

Recall from our discussion in Section 3 that to establish r ≥ rk it suffices to
prove that there exists some ε ∈ [0, 1) for which the function gr defined in (22), i.e.,

(85) gr(α) =
f(α)r

αα(1− α)1−α =

(
(2− 2ε+ αε2)k − 2(1− ε+ αε)k + αk

)r
αα(1− α)1−α ,

has a unique global maximum at 1/2. Recall also that for any r the only choice of ε
for which g′′r (1/2) < 0 is the one mandated by (23). Thus, for any fixed k one can get
a lower bound for rk by: i) solving (23), ii) substituting the solution to (85), and iii)
plotting the resulting function to check whether gr(1/2) > gr(α) for all α 6= 1/2.
As gr never has more than three local maxima, this is very straightforward and
yields the lower bounds referred to as “simple” lower bounds in Table 2.

As mentioned in the Introduction, the simple weighting scheme yielding Theo-
rem 4 does not yield the best possible lower bound afforded by applying the second
moment method to balanced satisfying assignments. For that, one has to use the
significantly more refined argument, which we presented in Sections 7—9. That
argument also eventually reduces to proving gr(1/2) > gr(α) for all α 6= 1/2. Now,
though, ε is allowed to depend on α, subject only to ε ≤ ε0, where ε0 is the solution
of (23). Naturally, at α = 1/2 one still has to take ε = ε0 so that the derivative
of gr vanishes, but for larger α (where the danger is) it turns out that decreasing
ε somewhat helps. The bounds reported in Table 1 in the Introduction (and repli-
cated below as the “refined” bounds) are, indeed, the result of such optimization
of ε as a function of α.

Specifically, for k ≤ 5 we considered 10,000 equally spaced values of α ∈ [0, 1]
and for each such value found ε ≤ ε0 such that the condition gr(α, ε) < gr(1/2, ε0)
holds with a bit of room. (For k > 4 we solved (23), defining ε0, numerically,
to 10 digits of accuracy. For the optimization we exploited convexity to speed up
the search.) Having determined such values of ε, we (implicitly) assigned to every
not-chosen point in [0, 1] the value of ε at the nearest chosen point. Finally, we
computed a (crude) upper bound on the derivative of gr with respect to α in [0, 1].
This bound on the derivative, along with our room factor, then implied that for
every point that we did not check, the value of gr was sufficiently close to its value at
the corresponding chosen point to also be dominated by gr(1/2, ε0). For k > 5, we
only partitioned [0, 1] into two intervals, namely [1/10, 9/10] and its complement.
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Assigning the values ε0 and ε0/2, respectively, to all the points in each interval
yielded the bounds for such k.

Table 2.

k 3 4 7 10 20 21

Upper bound 4.51 10.23 87.88 708.94 726, 817 1, 453, 635
Refined lower bound 2.68 7.91 84.82 704.94 726, 809 1, 453, 626
Simple lower bound 2.54 7.31 82.63 701.53 726, 802 1, 453, 619

11. Conclusions

We proved that the random k-SAT threshold satisfies rk ∼ 2k log 2. In particular,
we proved that random k-CNF formulas with density 2k log 2 − k(log 2)/2 − O(1)
have exponentially many balanced satisfying truth assignments. That is, truth
assignments that have at least one satisfied literal in every clause yet, in total,
satisfy only as many literal occurrences as a random truth assignment.

Our argument leaves a gap of order Θ(k) with the first moment upper bound,
rk ≤ 2k log 2. With respect to this gap it is worth pointing out that the best known
techniques [9, 19] for improving this upper bound only give rk ≤ 2k log 2 − bk
where bk → (1 + log 2)/2. At the same time, it is not hard to prove that for r =
2k log 2− k(log 2)/2, i.e., within an additive constant from our lower bound, w.h.p.
there are no satisfying truth assignments that satisfy only km/2 + o(km) literal
occurrences. Thus, any asymptotic improvement over our lower bound would mean
that tendencies toward the majority assignment become essential as we approach
the threshold.

The gap between the upper bound and the best algorithmic lower bound, rk =
Ω(2k/k), seems to us much more significant (and is certainly much bigger!). The
lack of progress in the last ten years suggests the possibility that no polynomial-
time algorithm can improve the lower bound asymptotically. At the same time, in
a completely different direction, Mézard and Zecchina [21] recently used the non-
rigorous cavity method of statistical physics to obtain detailed predictions for the
satisfiability threshold suggesting that rk = 2k log 2 − O(1). (See also [20] for an
overview.) Insights from this analysis led them to an intriguing algorithm called
“survey propagation” (described in [21, 2]) that seems to perform well on random
instances of k-SAT close to the threshold, at least for small k. (Its performance
is especially impressive for k = 3.) A rigorous analysis of this algorithm is still
lacking, though, and it remains unclear whether its success for values of r close to
the threshold extends to large k.

The success of the second moment method for balanced satisfying truth assign-
ments suggests that such assignments form a “mist” in {0, 1}n and, as a result,
they might be hard to find by algorithms based on local updates. Moreover, as k
increases the influence exerted by the majority vote assignment becomes less and
less significant as most literals occur very close to their expected kr/2 times. As a
result, the structure of the space of solutions may well be different for small k (e.g.
k = 3, 4) and for larger k. To summarize, the following key questions remain:

(1) Is 2k log 2− rk bounded?
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(2) Is there an algorithmic threshold λk = o(2k) so that for r > λk, no
polynomial-time algorithm can find a satisfying truth assignment for the
random formula Fk(n, rn) with uniformly positive probability?

Acknowledgments

We are grateful to Cris Moore for illuminating conversations and to Mike Molloy
for helpful suggestions. We are indebted to Chris Calabro and Asaf Nachmias for
careful readings and corrections to previous versions of this paper. We also thank
the referees for useful comments. Part of this work was done while the authors
participated in the focused research group on discrete probability at BIRS, July
12-26, 2003.

References

[1] D. Achlioptas and C. Moore. The asymptotic order of the random k-SAT threshold. In Proc.
43rd Annual Symposium on Foundations of Computer Science, pages 126–127, 2002.
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[12] P. Erdős and S. J. Taylor. Some problems concerning the structure of random walk paths.
Acta Sci. Hung. 11:137–162, 1960. MR0121870 (22:12599)

[13] J. Franco and M. Paull. Probabilistic analysis of the Davis–Putnam procedure for solving the
satisfiability problem. Discrete Appl. Math., 5(1):77–87, 1983. MR0678818 (84e:68038)

[14] E. Friedgut. Necessary and sufficient conditions for sharp thresholds of graph properties, and
the k-SAT problem. J. Amer. Math. Soc., 12:1017–1054, 1999.

[15] A. M. Frieze and S. Suen. Analysis of two simple heuristics on a random instance of k-SAT.
J. Algorithms, 20(2):312–355, 1996. MR1379227 (97c:68062)

[16] A. Frieze and N. C. Wormald. Random k-SAT: a tight threshold for moderately growing k.
In Proc. 5th International Symposium on Theory and Applications of Satisfiability Testing,
pages 1–6, 2002.

[17] S. Janson, Y. C. Stamatiou, and M. Vamvakari. Bounding the unsatisfiability threshold of ran-

dom 3-SAT. Random Structures Algorithms, 17(2):103–116, 2000. MR1774746 (2001c:68065)
[18] A. Kaporis, L. M. Kirousis, and E. G. Lalas. The probabilistic analysis of a greedy satisfiability

algorithm. In Proc. 10th Annual European Symposium on Algorithms, volume 2461 of Lecture
Notes in Computer Science, pages 574–585. Springer, 2002.

http://www.ams.org/mathscinet-getitem?mr=1072035
http://www.ams.org/mathscinet-getitem?mr=1072035
http://www.ams.org/mathscinet-getitem?mr=0671583
http://www.ams.org/mathscinet-getitem?mr=0671583
http://www.ams.org/mathscinet-getitem?mr=1846031
http://www.ams.org/mathscinet-getitem?mr=1846031
http://www.ams.org/mathscinet-getitem?mr=1619036
http://www.ams.org/mathscinet-getitem?mr=1619036
http://www.ams.org/mathscinet-getitem?mr=1469655
http://www.ams.org/mathscinet-getitem?mr=1469655
http://www.ams.org/mathscinet-getitem?mr=0382050
http://www.ams.org/mathscinet-getitem?mr=0382050
http://www.ams.org/mathscinet-getitem?mr=0121870
http://www.ams.org/mathscinet-getitem?mr=0121870
http://www.ams.org/mathscinet-getitem?mr=0678818
http://www.ams.org/mathscinet-getitem?mr=0678818
http://www.ams.org/mathscinet-getitem?mr=1379227
http://www.ams.org/mathscinet-getitem?mr=1379227
http://www.ams.org/mathscinet-getitem?mr=1774746
http://www.ams.org/mathscinet-getitem?mr=1774746


THE THRESHOLD FOR RANDOM k-SAT IS 2k log 2 −O(k) 973

[19] L. M. Kirousis, E. Kranakis, D. Krizanc, and Y. Stamatiou. Approximating the unsatisfi-
ability threshold of random formulas. Random Structures Algorithms, 12(3):253–269, 1998.
MR1635256 (2000c:68069)
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