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Abstract 

The problem of determining if a graph is 2-colourable (i.e., bipartite) has long been known to 
have a simple polynomial time algorithm. Being 2-colourable is equivalent to having a bipartition 
of the vertex set where each cell is &-free. We extend this notion to determining if there exists 
a bipartition where each cell is G-free for some fixed graph G. One might expect that for some 
graphs other than K2, K2 there also exist polynomial time algorithms. Rather surprisingly WC 
show that for UZ~ graph G on more than two vertices the problem is NP-complete. 

1. Introduction 

A vertex k-colouring of a graph is an assignment of one of k colours to each vertex 

such that adjacent vertices receive different colours. Such colourings have been studied 
extensively and form one of the oldest and deepest areas of graph theory. In this 
course of study many generalisations of the colouring concept have been suggested. 
The following two notions, introduced in [13], appear to be useful in expressing such 
generalisations in a uniform fashion: 

Let a property on graphs be a subset of the set of all graphs. Given a property 71, 
a nonnegative integer k and a graph H, a z k-colouring of H is a function col from 
the vertex set of H to { 1,. . , k} such that the subgraph induced by each colour class 
has (belongs to) property rc. The 7~ chromatic number of H, zn(H), is the least k for 
which H has a TC k-colouring. 

Using the notion of 7-c-colourings we see that colouring problems have been studied 
for a wide range of 7~. In standard colouring n is an independent set. In [9] 7-c is having 
no path of length greater than some fixed m, while in [15] a similar bound is imposed 
on the size of any clique. The case where n is a forest has been studied in [lo]. In 
[5] 7~ is perfect and the corresponding chromatic number provides a new measure 01‘ a 
graph’s imperfection. 
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The fundamental property for which we would like to examine r-t-colourings is being 
G-free, i.e., having no induced subgraph isomorphic to G, for some fixed graph G. Note 
that all the properties mentioned above can be expressed as the intersection of some 
G-free properties. In fact, any hereditary property can be expressed as the, perhaps 
infinite, intersection of G-free properties. In this paper we examine the complexity of 
deciding whether a graph has a G-free k-colouring, captured by the following problem: 

Definition 1. G-free k-Colourability. 
Instance: A graph H. 
Question: Is there a G-free k-colouring of H? 

The complexity of G-free k-colourability has been studied for various cases of G 
and k in [2,3]. The following comprises all the cases for which the problem has been 
shown to be NP-complete: 
?? G=P4 and k33. 
?? G is the disjoint union of two graphs and k 33. 
?? G is 2-connected and k 22. 

We focus on the k = 2 case. The machinery we develop for this case makes the 
extension of our hardness result for k > 3 easy (Appendix A). When k = 2 and G has 
two vertices G-free k-colourability is the problem of deciding if the input graph (or its 
complement) is bipartite. The simple algorithm for solving this problem is based on 
the fact that a graph is bipartite iff it has no odd length cycles. On the other hand, by 
the last of the above results, we should not expect to find a polynomial time algorithm 
when G is 2-connected. We show that the structure of G is irrelevant as the problem 
is NP-complete for any graph other than K2, K2 for all k 3 2. 

We prove this rather surprising result by using an approach very different from that 
used to prove NP-completeness when k = 2 and G is 2-connected. In that proof a 
reduction of Hypergraph 2-Colorability [l I], for a special class of hypergraphs, to 
G-free 2-colourability is used by applying the Nesetril-Rod1 construction [14] to the 
input hypergraph and G. The result is a graph whose G-free chromatic number is 
equal to the chromatic number of the hypergraph. For this, non-trivial equality to hold 
along with the hypergraph’s special structure, the 2-connectivity of G is essential. Our 
reduction depends only on 1 Vcl > 2 and for every graph G it assumes the existence of 
a special graph, called a G-gadget. This allows for a uniform reduction for all graphs. 
To conclude the proof we reduce the construction of G-gadgets to the provision of 
uniquely G-free colourable graphs. 

2. Background 

All the graphs considered are simple and loopless. The vertex and edge sets of a 
graph G are denoted by VG and E G, respectively. The complement of a graph G is 
denoted by ??. The term subgruph will always be taken to mean induced subgraph; 
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that is, H is a subgraph of G iff V, C Vo and {ut, ~2) E EH _ {VI, Q} E EG, 
‘d u1,u2 E VH. For a given set of vertices U C V G, we let G[U] denote the subgraph 
of G with vertex set U. We refer the subgraph of G induced by U by G[ U]. The 
neighhourhood of a vertex u in a graph G is denoted by To(v) where the subscript 
will be omitted when it is clear from the context. 

The operation of removing a set of vertices I C Vc from a graph G is denoted by 
G - I and results in G[VG - I]. The disjoint union of vertex disjoint graphs G and H 
is the graph with vertex set Vc U V, and edge set EG U EH. 

A property n is a subset of the set of all graphs (closed under isomorphism) that 
contains Ko and K,. The property of being G-free, where /V, I>2, is the set of all 
graphs that contain no subgraph isomorphic to G. If n is a property, then the com- 
plement of n, rcc = {c: G E rc} is also a property. For example, if rt = G-free 
then rcc = G-free. Given a property n, a nonnegative integer k and a graph G, a rt 
k-colouring of G is a function col: V, --t { 1,. . , k} such that the subgraph induced 
by each colour class has property rr. If W is a set of vertices, we take col(W) = 
U wed {col(w)}. We say that G is rr k-colourable if it has a z k-colouring. Note that 
including Ko in every property guarantees that a 71 k-colouring is a rc I-colouring for 
any 13 k and including K1 guarantees that xX(G) d 1 VG~. We say that two colourings 
~011, co12 are equivalent if there exists a permutation cr of { 1,. . . , k} such that coli = 
cr o ~012. A graph is uniquely 7~ k-colourable if it has only one 71 k-colouring up to 
equivalence. 

3. The reduction 

3.1. Preliminaries 

A fact following from the definition of a property and its complement is that 

Fact 1. A G-free k-colouring of a graph H is a G-free k-colouring of H. 

As mentioned above, when 1 VG I = 2 the problem is solvable in polynomial time. 
We show that, if PfNP, this is the only case for which this is true: 

Theorem 1. If I VG I > 2 then G-free 2-colourability is NP-complete. 

A first step in proving Theorem 1 is suggested by Fact 1. Since for any graph G at 
least one of G, ?? is connected, it suffices to examine the complexity of the problem 
for connected graphs. Thus in the following, G is assumed to be connected and on 
more than two vertices. 

Our reduction treats all graphs in a uniform fashion. This uniformity comes from 
assuming for each graph G the existence of a special graph G, which we call a G- 
gadget, defined as follows: 
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Fig. 1. An ad hoc q-gadget. (Observe that vertices ~2 and q it must receive the Same colour in any &free 
2-zolouring, even if we remove vertices s and t) 

Definition 2. A G-free 2-colourable graph 9 is called a G-gadget if Vg contains fixed 
vertices s, t such that in every G-free 2-colouring of 9: 
0 col(s) # col(t). 
?? col(s) +z’ col(r(s)) and col(t) @ col(r(t)). 
Note that since we discuss 2-colourability the statement col(v) 9 col(r(v)) implies that 
l?(v) is monochromatic. 

To prove Theorem 1 we will reduce Distinct NOT-ALL-EQUAL k-SAT (denoted Dis- 
tinct NAE k-SAT and defined below) to G-free 2-colourability, where k = 1 VG / > 2. 
We prove that Distinct NAE k-SAT is NP-complete by reducing NAE 3SAT [l l] to 
it (Appendix B). An ad hoc PJ-gadget is shown in Fig. 1. 

Definition 3. Distinct NOT-ALL-EQUAL k-SAT 
Instance: Set U of variables, collection C of clauses over U such that for each clause 
c E C, ICI = k and all the literals in c are distinct. 
Question: Is there a truth assignment for U such that each clause in C has at least one 
true literal and at least one false literal? 
Note: We call such a truth assignment a NAE one. 

3.2. The construction 

Given an instance I of Distinct NAE k-SAT, (i.e., a set U of variables and a 
collection C of clauses) we will construct a graph F-(Z) as follows: 

The vertex set of p(Z) and most of its edges depend only on / UI and / = 21CI. 
We consider the graph defined by these two parameters as the Skeleton of F(I) and 
denote it by S. The rest of g(Z)‘s edges, the Connections, are a result of adding 
IEGl edges for each clause c E C. We will describe the construction of 9(Z) in two 
separate parts, as suggested by its structure. 
Skeleton: The skeleton Y is the disjoint union of IUI copies of a graph R/. To describe 
R/ we define the Join operation between two graphs: 

Definition 4. Given vertices ~1, vz of graphs HI, HZ, respectively, we define the function 
Join(H1, ~1, Hz, ~2) = H such that: 
?? VH = (V,, - {VI}) U (VH, - (212)) U {u}, where u is a new vertex. 

?? EH =&-{Gl} u’%-{u,} U{{W’) :w E rH,h)urH&Z)}~ 
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Fig. 2. R( 

We say that vertex v is the result of identifying ui with ~2. Let Hi, Hi be the subgraphs 
of H induced by ( VH, -h)U{f)), (~Hz-~2)u{~}, respectively. It is easy to see that 

the former is isomorphic to HI and the latter to Hz. 

In view of Definition 4, the graph Rf can be seen as a “chain” of e G-gadgets joined 
together by identifying the t vertex of each G-gadget with the s vertex of its successor 
(see Fig. 2). Formally, Rf is defined by 

where RI = Yi = 59 is some G-gadget and si, t, are the s, t vertices, respectively, of 
the ith copy of B used (Yj). The vertex resulting by identifying t, with si+l is labelled 
as u’, and we will refer to all dj vertices, collectively, as outer vertices. We also label 
t/ as d/ making it an outer vertex while vertex sl is labelled as “switch” and is not 
an outer vertex. 

Before we proceed to the construction of the Connections we prove the following 
two lemmata. They demonstrate the role of S as a provider of vertices that will receive 
consistent colours in any of its G-free 2-colourings. 

Lemma 1. S is G-free 2-colourable. 

Proof. Since G is connected and 9 is the disjoint union of copies of R/ it suffices 
to prove that RF is G-free 2-colourable. We will prove, inductively, that R; is G-free 
2-colourable for all i 3 1. The base case, i = 1, holds by the definition of a G-gadget. 
We claim that if R; is G-free 2-colourable, for i = n then R,+l = Join(R,, tn, gn+l, s,,l) 
is also G-free 2-colourable. To see this, we G-free 2-colour R, and %,+I before we 
Join them so that col(tn) = CO~(S,+~). Th is is feasible by the inductive hypothesis 
and the base case, respectively. In R,+, all the vertices retain their “pre-Join” colours 
while d, takes the common pre-Join colour of tn and s,,+i. The graph induced by 

(I?,, - +A) u {A1 IS isomorphic to and identically coloured as R,. Since the latter 
was G-free 2-coloured and G is connected, any monochromatic copy of G in R,+l 
must contain d, and at least one vertex u E I’(d,) n V:q,+, By the definition of a 
G-gadget and Y,,+i ‘s pre-Join colouring, col(d,) # col(v) for any such I: and thus 
R ,,+I is G-free 2-colourable. 0 

Lemma 2. In any G-free 2-colouring of Rf: 

col(di) = col(switch) iff i mod 2 = 0. 



26 D. Achlioptasl Discrete Mathematics 165/166 (1997) 21-30 

Proof. By the definition of a G-gadget and the construction of R/, in any G-free 2- 
colouring of the latter, cOl(di) # col(di+l ), Vi E [l, . . . ,f - 11. Since, by the definition 
of a G-gadget, col(switch) # col(dl) the lemma follows. 0 

Connections: In the following by switch, and d,i we denote the switch and di vertices, 
respectively, of the copy of RJ associated with variable u (RJ) (Fig. 3). For a clause 
cj = Vf=, lj,i, let I(c,) = Ur=, image(Ij,i), where 

image(zj,i) = 
du,lj_l if lj,i = 1~ for some u E U, 
du,2j if 11, i = u for some u E U. (1) 

Since the literals in any clause c are distinct so are the vertices in I(c). For each 
clause c E C we connect the k = 1 V,l vertices in I(c) so as to induce a graph 
isomorphic to G. Taking 8 = 21CI guarantees that this is feasible for 
We are now ready to prove the main theorem of this section. 

all ICI clauses. 

Theorem 2. If there exists a G-gadget then G-free 2-colourability is NP-complete. 

Proof. Since G is fixed the problem belongs to NP and F(Z)‘s construction is poly- 
nomial. To prove hardness we will show that the answer for an instance I of Distinct 
NAE k-SAT is “Yes” iff J=(I) is G-free 2-colourable. 

switch 
. . . . . . . . . . . . . 

d 

Fig. 3. An example of reducing NAE 3-SAT to P3-free 2-colourability where c, = (q V ~2 V ~43) and 
c2 = (~1 v u2 V ~3). The P3-gadget (denoted by a rectangle with two external vertices) could be the 
graph of Fig. 1. 
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?? Given a G-free 2-colouring of F(Z ) we define a truth assignment for U where u is 
set to TRUE iff col(switch,) = 1. Note that for any truth assignment, inverting the 
truth value of every u E U does not affect the answer for I since there will be a 
true and a false literal in each clause iff this was true before the inversion. Thus, 
the choice of 1 is arbitrary. 
We have to prove that under this truth assignment for U there is a true and a false 

literal in each clause. Since we are given a G-free 2-colouring of 3(1) it must be 
that for any c E C the set I(c) is not monochromatic since, by the construction of 
the Connections, it induces a copy of G. Thus, by Lemma 2 and the construction of 
the truth assignment described above, in every clause c there will be a true and a false 
literal. 
?? Given a NAE truth assignment for U we define a G-free 2-colouring of .7=(I) by 

taking col(switch,) = 1 iff u is set to TRUE, and then extending this to a G-free 
2-colouring for each R,(. The latter can be done as in Lemma 1 where we proved 
constructively that Rt is G-free 2-colourable. 

We have to prove that under this colouring of .7=(Z) there is no monochromatic 
copy of G. The proof will be by contradiction, so let G* be such a copy. Since 
each R,t is G-free 2-coloured, Vp must contain vertices from at least two distinct 
copies of R,. We first claim that I’oG” can only contain outer vertices. If not, let 
t’ E VR,, , n vG* for some u while u # du,i, V i E { 1.. . ,!}. We pick any vertex 
1” E vc;* - VR,,,; this vertex exists by our previous observation. Since G is con- 
nected there is a path joining u with c’. By the construction of Rt this path in- 
cludes some outer vertex. Examining any such vertex, we get a contradiction since 

in Lemma 1 we showed that for all d,,;, u E (r(d,,,) n VR,~ ) implies col(r) f 

col(&,i). 
We also claim that {m : d,, E Vp} C{~Y- 1,2r}, for some r> 1 (i.e., G* can only 

“occur” between two successive columns of outer vertices, where the leftmost one is 
odd-numbered). To prove the claim we pick any vertex d,,, E VG= and let Y = ri/‘21. 
For any duo,k E VG* such that k @ { 2r - 1,2r} we examine the path joining d,,,, with 
du”,k. By the claim proved above, this path contains only outer vertices. Examining 
the first d,f,i vertex on the path for which j @ (2r - 1,2r} we get a contradiction 
with .?(l)‘s construction. This is because if u = u’, then j = i i I and by the 
construction of S, col(d,i) # col(d,/,j). If u # u’ then we contradict the second part 
of F(Z)‘s construction where we placed an edge between vertices d,,,i and d,,,,,, only 
if i’ E (2~ - 1,2~}. Thus, there must exist a c E C such that G* is induced by I(c) 
By _7=(l)‘s G-free colouring and Lemma 2 such a monochromatic copy of G would 
contradict that we were given a NAE truth assignment. C 

4. Gadgets and unique colourability 

The following lemma reduces the construction of G-gadgets to the provision of a 
special family of graphs: 
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F 

Fig. 4 

Lemma 3. Given a uniquely G-free 2-colourable graph we can construct a G-gadget. 

Proof. Let F be a uniquely G-free 2-colourable graph. In its unique G-free 2-colouring, 
let VF = S U T where S, T are monochromatic (Fig. 4). We pick an arbitrary v E T. 
For S’ = sU{v}, G[S’] must contain a copy of G because otherwise S’, T- {v} defines 
another G-free 2-colouring of F. Based on this observation we add a new vertex s to 
V, such that I’(S) = r(v) n S. By the choice of I’(S), in every G-free 2-colouring of 
the resulting graph col(s) # col(S) which implies, col(s) # col(l?(s)). By picking an 
arbitrary vertex from S and following a similar argument we can add a vertex t such 
that col(t) # col(l?(t)). Finally since col(S) # col(T) we see that F along with s, t is 
a G-gadget. 0 

We conclude that in order to prove our main theorem, using Theorem 2 and Lemma 3, 
all we need is the existence of uniquely G-free 2-colourable graphs for all G on more 
than two vertices. Results on the existence of uniquely G-free k-colourable graphs were 
known for various cases of G and k and constructions were given in [4,6,12]. In [l] 
it was shown that for all k> 1 and for all G with more than two vertices uniquely 
G-free k-colourable graphs exist. This, apart from providing for G-gadgets, fully settled 
a conjecture of [2]. 

5. Concluding remarks 

Theorem 1 shows that, if P#NP, the recognition of bipartite graphs and of graphs that 
we can partition into two cliques, are the only cases where G-free 2-colourability can be 
solved in polynomial time. This makes for a very sharp boundary between the tractable 
and the intractable cases. If we turn to the edge analogue of G-free 2-colourability, the 
few results that are known seem to establish a different picture. There, we wish to colour 
the edges of the input graph so that G does not appear as a monochromatic partial 
subgraph. In [7] it was shown that if G = K3, the problem is NP-complete (monochro- 
matic triangle [Ill). On the other hand, if G is a k-star (a single vertex of degree k 
adjacent to k vertices of degree one, where k 23) the problem is solvable in polyno- 
mial time as proved in [8]. An interesting observation is that uniquely (edge) G-free 
2-colourable graphs exist when G = K3 but not when G is a k-star, as proved in [12]. In 
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Theorem 2 and Lemma 3, in a sense, we reduced the complexity of G-free 2-colour- 
ability for the vertex case to the existence of uniquely G-free 2-colourable graphs. It 
might be worthwhile to investigate if this rather intriguing relationship carries over 
to the edge case. 
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Appendix A. Three or more colours 

To prove that G-free k-colourability is NP-complete when k > 2 we reduce Chro- 
matic number [ 1 l] to it. A Gk-gadget is a G-free k-colourable graph with the same 
properties as a G-gadget in every G-fLee k-colouring of it. Thus, G-gadgets are merely 
G2-gadgets. Given an instance I of Chromatic number (a graph) and a Gk-gadget Yk 
we get an instance I’ of G-free k-colourability by “replacing” each edge of the graph 
with a copy of gk; i.e., by removing the edge and identifying its endpoints with the 
s, t vertices of the copy of gk. To prove that this, clearly, polynomial transformation 
is a reduction the following two observations suffice: 
?? Given a G-free k-colouring of I’ we trivially have a colouring of I since the end- 

points of each copy of ?Yk are assigned different colours. 
?? In the reverse direction, a k-colouring of the original graph gives rise to a G-free 

k-colouring of I’ by G-free k-colouring the “interior” of each copy of Yk. This is 
feasible since the “endpoints” s, t of each such copy are assigned different colours 
in the colouring of I. All the neighbours of a vertex z! E VI have a colour other 
than col(c) and G can be assumed to be connected (as before). This completes the 
argument. 
In order to provide a Gk-gadget given a uniquely G-free k-colourable graph wc 

merely mimic Lemma 3 by repeating the argument for s and t for all k - 1 “other” 
colour classes. 

Appendix B. Distinct NAE k-SAT 

We prove that Distinct NAE k-SAT is NP-complete by reducing NAE 3SAT to il. 
The following elementary mechanism “extends” a clause of length / to two clauses of 
length / + 1: Gicen a clause c/ = xl Vx2 V.. . Vx/ on the set oj’oariables VI, NY dqjine 
two new clauses cf,,c~, on the set qf z;ariables Vf+l = V/ U {u/+1} (where r/+1 4 Vi) 
as: c/,, = c/ v z’f+l,cf, = Cf v 3lf+[. 
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It is easy to see that there exists a truth assignment for V, under which c( has a 
true and a false literal ifs there exists an assignment for V/+1 under which the same is 
true for both CL” and c/, . Moreover, if all the literals in CL are distinct, the same will 
be true for both c/, and cy,. Starting from a clause with 1 < k literals and applying 
the above mechanism 2k-’ - 1 times, using new variables in each application, we get 
a set of 2k-’ clauses. By induction there is a truth assignment (for the original set of 
variables) under which the original clause has a true and a false literal ifs there is a 
truth assignment (for the new set of variables) under which the same is true for all 
2k-’ clauses. 

Note that given an instance I of NAE 3SAT, we can safely remove all but one 
appearance of a literal in a clause. From this last remark and the above mechanism, 
a reduction of NAE 3SAT to Distinct NAE k-SAT is straightforward. Since k is not 
part of the input, such a reduction is polynomial. 

References 

[I] D. Achlioptas, J.I. Brown, D.G. Comeil and M.S.O. Molloy, The existence of uniquely -G colourable 
graphs, Discrete Math., to appear. 

[2] J.I. Brown, A Theory of Generalized Graph Colouring, Ph.D. dissertation, Dept. of Mathematics, 
University of Toronto, 1987. 

[3] J.I. Brown, The complexity of generalized graph coloring problems, submitted. 
[4] J.1. Brown and D.G. Comeil, On generalized graph colorings, Graph Theory 11 (1987) 87-99. 
[5] J.I. Brown and D.G. Comeil, Perfect colourings, Ars Combin. 30 (1990) 141-159. 
[6] J.I. Brown and D.G. Comeil, On uniquely -G k-colourable graphs, Quaestiones Math. 15 (1992) 477- 

487. 
[7] S. Burr, Private communication with authors of [ll], 1976. 
[S] S. Burr, P. ErdGs and L. Lovisz, On graphs of Ramsey type, Ars Combin. 1 (1976) 167-190. 
[9] G. Chartrand, D.P. Geller and S. Hedetniemi, A generalization of the chromatic number, in: Proc. 

Cambridge Philos. Sot. 64 (1968) 265-271. 
[IO] G. Chartrand, H.V. Kronk and C.E. Wall, The point-arboricity of a graph, Israel J. Math. 6 (1968) 

169-175. 
[I l] M.R. Gamy and D.S. Johnson, Computers and Intractability; A Guide to the Theory of NP-completeness 

(Freeman, New York, 1979). 
[12] J.W. Grossman, Graphs with unique Ramsey colorings, J. Graph Theory 7 (1983) 85-90. 
[13] F. Harary, Conditional colorability of graphs, in: F. Harary and J. Maybee, eds., Proc. Cal. Symp. 

Graph Theory (Wiley, New York, 1985) 1277136. 
[14] J. Nisetril and V. Riidl, Partitions of vertices, Comm. Math. Univ. Carolinae 17 (1976) 85-95. 
[ 151 H. Sachs, Finite Graphs (Investigations and Generalizations concerning the construction of finite graphs 

having given chromatic number and no triangle), Recent Progress in Combinatorics (Academic Press, 
New York, 1968). 


