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1 I n t r o d u c t i o n  

Determining bounds for the random k-SAT thresh- 
old has been an active area of research in recent 
years [1, 3]. Yet, in spite of significant efforts, nei- 
ther a tight analysis nor the structural properties of 
this threshold have been determined. 

In this paper we study random instances of two 
other canonical variations of satisfiability, 1-in-k SAT 
and Not-All-Equal 3-SAT. Like random k-SAT, each 
generative model has one parameter c = m / n ,  the ra- 
tio of clauses to variables. Also similarly to random 
k-SAT, we focus on "threshold phenomena" occur- 
ring in these models and how they might relate to 
computational hardness. 

For 1-in-k SAT, k ~ 3, we obtain the exact location 
of the threshold: 

T h e o r e m  1.1 For all k > 3, Cl,k = 1/(2k). 

This is the first exact analysis of an NP-complete 
version of satisfiability. More importantly, the phe- 
nomenon underlying this sharp threshold is a varia- 
tion of percolation (the emergence of a giant com- 
ponent) in random k-uniform hypergraphs. This 
allows us to prove the following result on the size 
of the "backbone" above the threshold. (A vari- 
able is in the backbone if every truth assignment 
satisfying a maximum number of clauses assigns 
the variable the same value [2]). Let B(c) = 
limn-~co E ( #  of variables in the backbone)/n. 

T h e o r e m  1.2 For all k > 3, limc,cl.~ B(c) = O. 
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Theorem 1.2 has significant implications for the 
Statistical Mechanics approach to random satisfiabil- 
ity. In [6, 5] it was suggested that  there exists a 
connection between the "order" of phase transitions 
and computational complexity. The canonical anal- 
ogy offered is that  the backbone of random 2-SAT 
exhibits a "second-order" (continuous) phase transi- 
tion [2], while the backbone of random 3-SAT exhibits 
a "first-order" (discontinuous) phase transition. 

Theorem 1.2 implies that  random 1-in-k SAT has a 
second-order phase transition, i.e. limc,cl,~ B(c)  = O. 
As we saw, this is also true for random 2-SAT. Since 
1-in-k SAT is NP-complete, while 2-SAT is solvable 
in polynomial time this demonstrates that:  

There is no direct connection between the order of 
phase transitions and computational complexity. 

For NAE 3-SAT we prove that  a (non-uniform) 
sharp threshold exists and provide upper and lower 
bounds for its location: 

T h e o r e m  1.3 1.514 < c~ AE < 2.215. 

Furthermore in Figure 1 we show the results of a 
numerical experiment. We generated random NAE 
3-SAT expressions and used the Davis-Putnam al- 
gorithm to test whether or not they are satisfiable. 
The three curves are for formulas of 50, 100 and 
200 variables. Each point represents the average of 
100 trials. The transition seems to lie between 2 
and 2.1. Note now that  a NAE 3-SAT formula is 
equivalent to a 3-SAT formula with twice as many 
clauses, since the NAE clause (a, b, c) is equivalent to 
(a V b V c) A (a V b V ~). It would be truly remark- 
able if in spite of the tremendous correlation between 
the clauses that  result from translating random NAE 
3-SAT instances to 3-SAT instances, we have: 

2 x cg AE = c~ AT ,~, 4.2 . 
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Figure 1: The probabili ty tha t  a random NAE 3-SAT 
formula is satisfiable. 

2 1- in-k S A T  

Sa t i s f i ab i l i t y :  We analyze the performance of the 
UNIT CLAUSE (UC) algorithm on random instances of 
1-in-k SAT. UC satisfies a random unit clause if one 
exists, otherwise it picks an unset variable at random 
and assigns it 0/1 with equal probability. 

Satisfying a literal x in a k-clause w creates k - 1 
unit clauses demanding tha t  the remaining literals of 
w be false; dissatisfying x creates a 1-in-(k - 1) clause 
on the remaining literals of w. For each 2 < i < k, we 
use differential equations to approximate  the num- 
ber of /-clauses that  remain after t variables have 
been set. This allows us to show tha t  the number  of 
unit clauses generated per any step is asymptotical ly 
dominated by a Poisson random variable with mean 

= (~)c. As long as ~ < 1, with constant proba- 
bility v c  will never create an empty  clause, and thus 
succeeds in finding a satisfying assignment. Along 
with the existence of a non-uniform sharp threshold, 
proved separately, this implies cl,k > 1/(~). 

U n s a t i s f i a b i l i t y :  We prove tha t  for any e > 0, if 
c = (1 + c)/(k2) then with high probabil i ty the back- 
bone of a random 1-in-k SAT formula has size at 
least an ,  for some a = c~(e). This immediately im- 
plies cl,k < 1/(2 k) since, in the presence of a linear 
size backbone, adding a single new clause causes un- 
satisfiability with constant probability. 

To see tha t  the size of the backbone is at least an ,  
consider the effect of satisfying a literal x. As seen 
above, this implies that  k - 1 other literals must be 
dissatisfied and, thus, the complements of these lit- 
erals must  be satisfied. Since every literal appears,  

on average, in ck/2 clauses we see that  the expected 
number of literals "implied" by satisfying x is c(k2). 

Thus, for any e > 0, if c = (1 + e)/(k2), we can con- 
struct a branching process to show tha t  with proba- 
bility bounded below by a constant,  the set of literals 
implied by x contains a contradictory pair. Hence, 
with constant probability, x must  always be dissat- 
isfied, i.e. its underlying variable is in the backbone. 
Since this argument  works for every literal x, the ex- 
pected backbone size is linear. Applying a reasoning 
similar to the one used to prove Markov's  inequality 
then yields the desired result. 

3 N A E  3 S A T  

Sa t i s f i ab i l i t y :  We analyze the performance of an 
algorithm related to SHORT CLAUSE resolution, SC. 
As in so, whenever there are no unit clauses, we 
choose a random 2-clause, and a random literal in 
it. Unlike sc,  though, we set the underlying variable 
so as to minimize the number  of unit clauses gener- 
ated, rather  than  so as to satisfy the chosen literal. 
Again, the analysis is via differential equations. 

U n s a t i s f i a b i l i t y :  We apply the refinement of the 
first moment  method introduced by Kirousis et al. [4] 
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