Online Learning
And Other Cool Stuff

Your guide:
Avrim Blum
Carnegie Mellon University

[Machine Learning Summer School 2012]

Itinerary

• Stop 1: Minimizing regret and combining advice.
 - Randomized Wtd Majority / Multiplicative Weights alg
 - Connections to game theory

• Stop 2: Extensions
 - Online learning from limited feedback (bandit algs)
 - Algorithms for large action spaces, sleeping experts

• Stop 3: Powerful online LTF algorithms
 - Winnow, Perceptron

• Stop 4: Powerful tools for using these algorithms
 - Kernels and Similarity functions

• Stop 5: Something completely different
 - Distributed machine learning

Powerful tools for learning:
Kernels and Similarity Functions

2-minute version

• Suppose we are given a set of images , and want to learn a rule to distinguish men from women. Problem: pixel representation not so good.

• A powerful technique for such settings is to use a kernel: a special kind of pairwise function .

 ➢ Can think about & analyze kernels in terms of implicit mappings, building on margin analysis we just did for Perceptron (and similar for SVMs).

 ➢ Can also directly analyze directly as similarity functions, building on analysis we just did for Winnow. [Balcan-B’06] [Balcan-B-Srebro’08]

Kernel functions and Learning

• Back to our generic classification problem. E.g., given a set of images , labeled by gender, learn a rule to distinguish men from women. [Goal: do well on new data]

• Problem: our best algorithms learn linear separators, but might not be good for data in its natural representation.

 ➢ Old approach: use a more complex class of functions.

 ➢ More recent approach: use a kernel.
What's a kernel?

- A kernel K is a legal def of dot-product: fn s.t. there exists an implicit mapping Φ_K such that $K(x,y) = \Phi_K(x) \cdot \Phi_K(y)$.
- E.g., $K(x,y) = (x \cdot y + 1)^d$.
- $\Phi_K: \mathbb{R}^n \to \mathbb{R}^d$.
- Point is: many learning algos can be written so only interact with data via dot-products.
 - E.g., Perceptron: $w = x^{(1)} + x^{(2)} - x^{(5)} + x^{(9)}$.
 - $w \cdot x = (x^{(1)} + x^{(2)} - x^{(5)} + x^{(9)}) \cdot x$.
- If replace $x \cdot y$ with $K(x,y)$, it acts implicitly as if data was in higher-dimensional Φ-space.

Kernel should be pos. semi-definite (PSD)

- E.g., for the case of $n=2$, $d=2$, the kernel $K(x,y) = (1 + x \cdot y)^d$ corresponds to the mapping:

```
Example
```

Moreover, generalize well if good margin

- If data is lin. separable by margin γ in Φ-space, then need sample size only $\tilde{O}(1/\gamma^2)$ to get confidence in generalization.

 Assume $|\Phi(x)| \leq 1$.

- E.g., follows directly from mistake bound we proved for Perceptron.

- Kernels found to be useful in practice for dealing with many, many different kinds of data.

Defn satisfying (1) and (2):

- Say have a learning problem P (distribution D over examples labeled by unknown target f).
- Sim fn $K(x,y) \to [-1,1]$ is (ϵ,γ)-good for P if at least a $1-\epsilon$ fraction of examples x satisfy:

```
Goal: notion of "good similarity function"
```

for a learning problem that...

1. Talks in terms of more intuitive properties (no implicit high-diml spaces, no requirement of positive-semidefiniteness, etc)
2. If K satisfies these properties for our given problem, then has implications to learning
3. Includes usual notion of "good kernel" (one that induces a large margin separator in Φ-space).

```
Moreover, generalize well if good margin
```

But there is a little bit of a disconnect...

- In practice, kernels constructed by viewing as a measure of similarity: $K(x,y) \in [-1,1]$, with some extra reqts.
 - $K(x,y) = \Phi(x) \cdot \Phi(y)$.
 - Can we give an explanation for desirable properties of a similarity function that doesn't use implicit spaces?
 - And even remove the PSD requirement?

```
Moreover, generalize well if good margin
```

"most x are on average more similar to points y of their own type than to points y of the other type"
Defn satisfying (1) and (2):
• Say have a learning problem P (distribution D over examples labeled by unknown target f).
• Sim fn $K: (x,y) \rightarrow [-1,1]$ is (ε, γ)-good for P if at least a $1-\varepsilon$ fraction of examples x satisfy:

\[
E_{y \sim D}[K(x,y) | \ell(y) = \ell(x)] \geq E_{y \sim D}[K(x,y) | \ell(y) \neq \ell(x)] + \gamma
\]

Note: it’s possible to satisfy this and not be PSD.

How to use it
At least a $1-\varepsilon$ prob mass of x satisfy:

\[
E_{y \sim D}[K(x,y) | \ell(y) = \ell(x)] \geq E_{y \sim D}[K(x,y) | \ell(y) \neq \ell(x)] + \gamma
\]

Algorithm
• Draw sets S^+, S^- of positive and negative examples.
• Classify x based on average similarity to S^+ versus to S^-.

Theorem If $|S^+|$ and $|S^-|$ are $\Omega(1/\varepsilon^2 \ln(1/\delta^2))$, then with probability $\geq 1-\delta$, error $\leq \varepsilon + \delta$.

But not broad enough
• $K(x,y) = x \cdot y$ has good separator but doesn’t satisfy defn. (half of positives are more similar to negs that to typical pos)
Broader defn...

- Ask that exists a set R of "reasonable" y (allow probabilistic) s.t. almost all x satisfy

$$E_y[K(x,y)|\ell(y)\neq\ell(x),R(y)] > E_y[K(x,y)|\ell(y)=\ell(x),R(y)] + \gamma$$

- Formally, say K is (ϵ,γ).good if have hinge-loss ϵ, and $Pr(R_x,Pr(R_x) \geq \tau_x$.

- Claim 1: this is a legitimate way to think about good (large margin) kernels:
 - If γ-good kernel then (τ,γ^2)-good here.
 - If γ-good here and PSD then γ-good kernel

How to use such a sim fn?

- Ask that exists a set R of "reasonable" y (allow probabilistic) s.t. almost all x satisfy

$$E_y[K(x,y)|\ell(y)\neq\ell(x),R(y)] > E_y[K(x,y)|\ell(y)=\ell(x),R(y)] + \gamma$$

- Draw $S = \{y_1, ..., y_n\}$, $n=1/(\gamma^2 \tau)$ — could be unlabeled
- View as "landmarks", use to map new data:
 $$F(x) = [K(x,y_1), ..., K(x,y_n)]$$

- Whp, exists separator of good L_1 margin in this space: $w^* = [0,0,1/n,1/n,0,0,0,-1/n,0,0]$ — could be unlabeled

- So, take new set of examples, project to this space, and run good L_1 alg (e.g., Winnow)

Learning with Multiple Similarity Functions

- Let $K_1, ..., K_r$ be similarity functions s. t. some (unknown) convex combination of them is (ϵ,γ)-good.

Algorithm

- Draw $S = \{y_1, ..., y_n\}$ set of landmarks. Concatenate features.
 $$F(x) = [K_1(x,y_1), ..., K_1(x,y_n), ..., K_r(x,y_1), ..., K_r(x,y_n)]$$

- Run some L_1 optimization algorithm as before (or Winnow) in this new feature space.

Broader defn...

- Ask that exists a set R of "reasonable" y (allow probabilistic) s.t. almost all x satisfy

$$E_y[K(x,y)|\ell(y)\neq\ell(x),R(y)] > E_y[K(x,y)|\ell(y)=\ell(x),R(y)] + \gamma$$

- Formally, say K is (ϵ,γ).good if have hinge-loss ϵ, and $Pr(R_x,Pr(R_x) \geq \tau_x$.

- Claim 2: even if not PSD, can still use for learning.
 - So, don't need to have implicit-space interpretation to be useful for learning.
 - But, maybe not with SVM/Perceptron directly...

How to use such a sim fn?

If K is (ϵ,γ).good, then can learn to error $\epsilon' = O(\epsilon)$ with $O((1/(\epsilon' y^2)) \log(n))$ labeled examples.

$$\text{minimize} \sum_{i=1}^n \left[1 - \sum_{j=1}^n \alpha_j f(x_i) K(x_i, x_j) \right] +$$

$$\text{s.t.} \sum_{j=1}^n [\alpha_j] \leq 1/\gamma$$

- Whp, exists separator of good L_1 margin in this space: $w^* = [0,0,1/n,1/n,0,0,0,-1/n,0,0]$ — could be unlabeled

- So, take new set of examples, project to this space, and run good L_1 alg (e.g., Winnow)

Learning with Multiple Similarity Functions

- Let $K_1, ..., K_r$ be similarity functions s. t. some (unknown) convex combination of them is (ϵ,γ)-good.

Algorithm

- Draw $S = \{y_1, ..., y_n\}$ set of landmarks. Concatenate features.
 $$F(x) = [K_1(x,y_1), ..., K_1(x,y_n), ..., K_r(x,y_1), ..., K_r(x,y_n)]$$

Guarantee: Whp the induced distribution $F(P)$ in R^n has a separator of error $\leq \epsilon + \delta$ at L_1 margin at least $t/4$.

Sample complexity is roughly: $O((1/(\epsilon' y^2)) \log(nr))$

Only increases by log(r) factor!
Learning with Multiple Similarity Functions

- Interesting fact: because property defined in terms of L_1, no change in margin.
 - Only $\log(r)$ penalty for concatenating feature spaces.
 - If L_2, margin would drop by factor $r^{1/2}$, giving $O(r)$ penalty in sample complexity.
- Algorithm is also very simple (just concatenate).

Applications/extensions

 - If use directly this way rather than converting to PSD kernel, comparable performance and models much sparser. (They use L_1-normalized SVM).
- Bellet, A.; Habrard, A.; Sebban, M. MLJ 2012, ICML 2012: efficient algorithms for learning (ϵ,γ,τ)-good similarity functions in different contexts.

Summary

- Kernels and similarity functions are powerful tools for learning.
 - Can analyze kernels using theory of L_2 margins, plug in to Perceptron or SVM
 - Can also analyze more general similarity fns (not nec. PSD) without implicit spaces, connecting with L_1 margins and Winnow, L_1-SVM.
 - Second notion includes 1st notion as well (modulo some loss in parameters).
 - Potentially other interesting suffic. conditions too. E.g., [WangYangFeng07] motivated by boosting.

Itinerary

- Stop 1: Minimizing regret and combining advice.
 - Randomized Wtd Majority / Multiplicative Weights alg
 - Connections to game theory
- Stop 2: Extensions
 - Online learning from limited feedback (bandit alg)
 - Algorithms for large action spaces, sleeping experts
- Stop 3: Powerful online LTF algorithms
 - Winnow, Perceptron
- Stop 4: Powerful tools for using these algorithms
 - Kernels and Similarity functions
- Stop 5: Something completely different
 - Distributed machine learning

Distributed PAC Learning

Distributed Learning

Many ML problems today involve massive amounts of data distributed across multiple locations.

Maria-Florina Balcan
Avrim Blum
Shai Fine
Yishay Mansour

Georgia Tech
CMU
IBM
Tel-Aviv

[In COLT 2012]
Distributed Learning
Many ML problems today involve massive amounts of data distributed across multiple locations.

Click data

Customer data

Scientific data

Each has only a piece of the overall data pie

In order to learn over the combined D, holders will need to communicate.

Classic ML question: how much data is needed to learn a given class of functions well?
Distributed Learning
Many ML problems today involve massive amounts of data distributed across multiple locations.

These settings bring up a new question: how much communication? Plus issues like privacy, etc.

The distributed PAC learning model
- Goal is to learn unknown function $f \in C$ given labeled data from some distribution D.
- However, D is arbitrarily partitioned among k entities (players) $1, 2, \ldots, k$. ($k=2$ is interesting)

Players can sample $(x, f(x))$ from their own D_i.

The distributed PAC learning model
Assume learning a class C of VC-dimension d.
Some simple baselines. [viewing $k \ll d$]
- Baseline #1: based on fact that can learn any class of VC-dim d to error ϵ from $O(d/\epsilon \log 1/\epsilon)$ samples
 - Each player sends $1/k$ fraction to player 1.
 - Player 1 finds consistent $h \in C$, whp has error $\leq \epsilon$ with respect to D. Sends h to others.
 - Total: 1 round, $O(d/\epsilon \log 1/\epsilon)$ examples communcate.
The distributed PAC learning model

- **Baseline #2:**
 - Suppose \(C \) is learnable by an online algorithm \(A \) with mistake-bound \(M \).
 - Player 1 runs \(A \), broadcasts current hypothesis.
 - If any player has a counterexample, sends to player 1. Player 1 updates, re-broadcasts.
 - At most \(M \) examples and hypotheses communicated.

Dependence on \(1/\epsilon \)

- Had linear dependence in \(d \) and \(1/\epsilon \), or \(M \) and no dependence on \(1/\epsilon \).

- Can you get \(O(d \log 1/\epsilon) \) examples of communication?
 - Yes! Distributed boosting.

Recap of Adaboost

- Weak learning algorithm \(A \).
 - For \(t=1,2, \ldots, T \)
 - Construct \(D_t \) on \(\{x_1, \ldots, x_m\} \)
 - Run \(A \) on \(D_t \) producing \(h_t \)
 - \(D_1 \) uniform on \(\{x_1, \ldots, x_m\} \)
 - \(D_t+1 \) increases weight on \(x_i \) if \(h_t \) makes a mistake on \(x_i \); decreases it on \(x_i \) if \(h_t \) correct.

Key points:
- \(D_{t+1}(x_i) \) depends on \(h_1(x_i), \ldots, h_t(x_i) \) and normalization factor that can be communicated efficiently.
- To achieve weak learning it suffices to use \(O(d) \) examples.

Distributed Adaboost

- Each player has a sample \(S_i \) from \(D_i \).
 - For \(t=1,2, \ldots, T \)
 - Each player sends player 1, enough data to produce hypothesis \(h_t \) of error \(1/2 \). (For \(t=1, O(d/k) \) examples each.)
 - Player 1 broadcasts \(h_t \) to all other players.
 - Each player reweights its own distribution on \(S_i \) using \(h_t \) and sends the sum of its weights \(w_{i,t} \) to player 1.
 - \(h_t \) may do better on some than others
 - Player 1 determines the #of samples to request next from each \(i \) (samples \(O(d) \) times from the multinomial given by \(w_{i,t}/W_t \)).

Final result:
- \(O(d) \) examples of communication per round
 - \(O(k \log d) \) extra bits to send weights & request
 - 1 hypothesis sent per round
 - \(O(\log 1/\epsilon) \) rounds of communication.
- So, \(O(d \log 1/\epsilon) \) examples of communication in total plus low order extra info.

Agnostic learning

- Recent result of [Balcan-Hanneke] gives robust halving alg that can be implemented in distributed setting.
 - Get error \(2 \text{OPT}(C) + \epsilon \) using total of only \(O(k \log|C| \log(1/\epsilon)) \) examples.
 - Not computationally efficient in general, but says \(O(\log(1/\epsilon)) \) possible in principle.
Can we do better for specific classes of interest?
E.g., conjunctions over \(\{0,1 \}^d \). \(f(x) = x_2 x_5 x_9 x_{15} \)
• These generic methods give \(O(d) \) examples, or \(O(d^2) \) bits total. Can you do better?
• Again, thinking of \(k \ll d \).

Can we do better for specific classes of interest?
E.g., conjunctions over \(\{0,1 \}^d \). \(f(x) = x_2 x_5 x_9 x_{15} \)
• These generic methods give \(O(d) \) examples, or \(O(d^2) \) bits total. Can you do better?
• Sure: each entity intersects its positives. Sends to player 1.
• Player 1 intersects & broadcasts.

Can we do better for specific classes of interest?
E.g., conjunctions over \(\{0,1 \}^d \). \(f(x) = x_2 x_5 x_9 x_{15} \)
• These generic methods give \(O(d) \) examples, or \(O(d^2) \) bits total. Can you do better?

Only \(O(k) \) examples sent. \(O(kd) \) bits.

Can we do better for specific classes of interest?
General principle: can learn any intersection closed class (well-defined "tightest wrapper" around positives) this way.

Interesting class: parity functions
Examples \(x \in \{0,1 \}^d \). \(f(x) = x \cdot v_f \mod 2 \), for unknown \(v_f \).
• Interesting for \(k=2 \).
• Classic communication LB for determining if two subspaces intersect.
• Implies \(O(d^2) \) bits LB for proper learning.
• What if we allow hyps that aren’t parities?

Interesting class: parity functions
Examples \(x \in \{0,1 \}^d \). \(f(x) = x \cdot v_f \mod 2 \), for unknown \(v_f \).
• Parity has interesting property that:
 (a) Can be properly PAC-learned. [Given dataset \(S \) of size \(O(d^2) \), just solve the linear system]
 (b) Can be non-properly learned in reliable-useful model of Rivest–Sloan’88. [if \(x \) in subspace spanned by \(S \), predict accordingly, else say ??]
Interesting class: parity functions

Examples $x \in \{0,1\}^d$. $f(x) = x \cdot v_f \mod 2$, for unknown v_f.

- **Algorithm:**
 - Each player i properly PAC-learns over D_i to get parity function g_i. Also improperly R-U learns to get rule h_i. Sends g_i to other player.
 - Uses rule: "if h_i predicts, use it; else use g_{3i}.
 - Can one extend to $k=3$??

Linear Separators

Thm: Over any non-concentrated D [density bounded by $c \cdot \text{unif}$], can achieve #vectors communicated of $O((d \log d)^{1/2})$ rather than $O(d)$ (for constant k, ϵ).

- **Algorithm:**
 - Run a margin-version of perceptron in round-robin.
 - Player i receives h from prev player.
 - If $\text{err}(h) \geq \epsilon$ on D_i, then update until $f(x)(w \cdot x) \geq 1$ for most x from D_i.
 - Then pass to next player.

Proof idea:

- Non-concentrated $D \Rightarrow$ examples nearly-orthogonal whp

 \[|\text{cos}(x,x')| = O((\log(d)/d)^{1/2})\]

- So updates by player j don’t hurt i too much: after player i finishes, if less than $(d/\log(d))^{1/2}$ updates by others, player i is still happy.

- Implies at most $O((d \log d)^{1/2})$ rounds.

Conclusions and Open Questions

As we move to large distributed datasets, communication becomes increasingly crucial.

- Rather than only ask “how much data is needed to learn well”, we ask “how much communication do we need?”
- Also issues like privacy become more central.
 (Didn’t discuss here, but see paper)

Open questions:

- Linear separators of margin γ in general?
- Other classes? [parity with $k=3$?]
- Incentives?