Online Learning

Avrim Blum
Carnegie Mellon University

[Machine Learning Summer School 2012]

"No-regret" algorithms for repeated decisions:
- Algorithm has N options. World chooses cost vector. Can view as matrix like this (maybe infinite # cols)
- At each time step, algorithm picks row, life picks column.
 - Alg pays cost (or gets benefit) for action chosen.
 - Alg gets column as feedback (or just its own cost/benefit in the "bandit" model).
 - Goal: do nearly as well as best fixed row in hindsight.

Recap
- World – life – fate
- Guarantee: Expected cost \(\leq \text{OPT} + 2(\text{OPT} \cdot t)^{1/2} \)
 - Since OPT \(\leq T \), this is at most OPT + 2(Tlog n)^{1/2}.
 - So, regret/time step \(\leq 2(T\log n)^{1/2}/T \rightarrow 0 \).

[ACFS02]: applying RWM to bandits
- What if only get your own cost/benefit as feedback?
 - Use of RWM as subroutine to get algorithm with cumulative regret \(O((TN \log N)^{1/2}) \).
 - [Average regret \(O((N \log N)/T)^{1/2}) \].
 - Will do a somewhat weaker version of their analysis (same algorithm but not as tight a bound).
 - For fun, talk about it in the context of online pricing...

Online pricing
- Say you are selling lemonade (or a cool new software tool, or bottles of water at the world cup).
- For \(t=1,2,...,T \)
 - Seller sets price \(p_t \)
 - Buyer arrives with valuation \(v_t \)
 - If \(v_t \geq p_t \), buyer purchases and pays \(p_t \), else doesn’t.
 - Repeat.
- Assume all valuations \(\leq h \).
- Goal: do nearly as well as best price in hindsight.

Multi-armed bandit problem
Exponential Weights for Exploration and Exploitation (exp3)
(Auer, Cesa-Bianchi, Freund, Schapire)

1. RWM believes gain is: \(g_t \cdot \hat{g} = p_t \cdot (g_t/q_t) = g_t^{\text{RWM}} \)
2. \(\sum g_t^{\text{RWM}} \geq \text{OPT}/(1+\epsilon) - O(\epsilon^2 \log n) \)
3. Actual gain is: \(g_t = g_t^{\text{RWM}} (q_t/p_t) = g_t^{\text{RWM}} (1-\epsilon) \)
4. \(E[g_t] \geq \text{OPT} \). Because \(E[g_t] = (1-\epsilon)^2 + q_t(g_t/q_t) = g_t \),
 so \(E[\max(g_t)] \geq \max_t E[g_t] = \text{OPT} \).
A natural generalization

- A natural generalization of our regret goal is: what if we also want that on rainy days, we do nearly as well as the best route for rainy days.
- And on Mondays, do nearly as well as best route for Mondays.
- More generally, have N "rules" (on Monday, use path P).
- Goal: simultaneously, for each rule, guarantee to do nearly as well as it on the time steps in which it fires.
- For all i, want E[\text{cost}(\text{alg})] \leq (1+\epsilon)\text{cost}(i) + O(\epsilon^2 \log N).
- (\text{cost}(X) = \text{cost of X on time steps where rule i fires.})
- Can we get this?

A simple algorithm and analysis

- Start with all rules at weight 1.
- At each time step, of the rules i that fire, update weights:
 - If didn't fire, leave weight alone.
 - If did fire, raise or lower depending on performance compared to weighted average:
 - \(\rho_i = [1 + \text{cost}(i)] / (1+\epsilon) - \text{cost}(i) \)
 - \(w_i = w_i / \rho_i \)
 - So, if rule i does exactly as well as weighted average, its weight drops a little. Weight increases if does better than weighted average by more than a (1+\epsilon) factor. This ensures sum of weights doesn't increase.
- Final \(w_i = (1+\epsilon)^{E[\text{cost}(\text{alg})]/(1+\epsilon) - \text{cost}(i)} \). So, \(w_i \) may do more than \(\epsilon^2 \log N \).
- So, \(E[\text{cost}(\text{alg})] \leq (1+\epsilon)\text{cost}(i) + O(\epsilon\log N) \).

Lots of uses

- Can combine multiple if-then rules
- Can combine multiple learning algorithms:
 - Back to driving, say we are given N "conditions" to pay attention to (is it raining?, is it a Monday?, ...).
 - Create N rules: "if day satisfies condition i, then use output of Alg", where Alg is an instantiation of an experts algorithm you run on just the days satisfying that condition.
 - Simultaneously, for each condition i, do nearly as well as Alg, which itself does nearly as well as best path for condition i.

Adapting to change

- What if we want to adapt to change - do nearly as well as best recent expert?
- For each expert, instantiate copy who wakes up on day t for each 0 \leq t \leq T-1.
- Our cost in previous t days is at most (1+\epsilon)(best expert in last t days) + O(\epsilon^2 \log(NT)).
- (Not best possible bound since extra log(T) but not bad).
Summary
Algorithms for online decision-making with strong guarantees on performance compared to best fixed choice.

• Application: play repeated game against adversary. Perform nearly as well as fixed strategy in hindsight.

Can apply even with very limited feedback.

• Application: which way to drive to work, with only feedback about your own paths: online pricing, even if only have buy/no buy feedback.

More general forms of regret
1. "best expert" or "external" regret:
 - Given n strategies. Compete with best of them in hindsight.

2. "sleeping expert" or "regret with time-intervals":
 - Given n strategies, k properties. Let S be set of days satisfying property i (might overlap). Want to simultaneously achieve low regret over each Si.

3. "internal" or "swap" regret: like (2), except that Si = set of days in which we chose strategy i.

Internal/swap-regret

E.g., each day we pick one stock to buy shares in.

- Don't want to have regret of the form "every time I bought IBM, I should have bought Microsoft instead".

- Formally, regret is wrt optimal function f: {1,...,n} → {1,...,n} such that every time you played action j, it plays f(j).

More general forms of regret

Internal/swap-regret, contd

Algorithms for achieving low regret of this form:

- Foster & Vohra, Hart & Mas-Colell, Fudenberg & Levine.

- Will present method of [BM05] showing how to convert any "best expert" algorithm into one achieving low swap regret.

Weird... why care?

“Correlated equilibrium”

- Distribution over entries in matrix, such that if a trusted party chooses one at random and tells you your part, you have no incentive to deviate.

- E.g., Shapley game.

\[
\begin{array}{c|ccc}
& R & P & S \\
\hline
R & -1,1 & -1,1 & 1,-1 \\
P & 1,-1 & -1,1 & -1,1 \\
S & -1,1 & 1,-1 & -1,1 \\
\end{array}
\]

In general-sum games, if all players have low swap-regret, then empirical distribution of play is apx correlated equilibrium.

Can convert any "best expert" algorithm A into one achieving low swap regret. Idea:

- Instantiate one copy Aj responsible for expected regret over times we play j.

- Allows us to view pj as prob we play action j, or as prob we play alg Aj.

- Give Aj feedback of pj.cj.

- Aj guarantees \(\sum_i (p_i/c_i)q_i^j \leq \min \sum_i p_i c_i^j + \text{[regret term]} \)

- Write as: \(\sum_i p_i q_i^j (c_i/c^j) \leq \min \sum_i p_i c_i^j + \text{[regret term]} \)
Can convert any "best expert" algorithm A into one achieving low swap regret. Idea:
- Instantiate one copy A_j responsible for expected regret over times we play j.

\[\text{Alg} \]
\[p = p_Q \]
\[\text{Cost vector } c \]
\[q_A \]
\[q_2 \]
\[q_{A_j} \]

\[\sum_j p_j^t q_j^t c^t \leq \sum_j \min_i \sum_j p_j^t c_i^t + n \text{(regret term)} \]

- Sum over j, get:
\[\sum_j p_j^t (q_j^t c^t) \leq \min_i \sum_j p_j^t c_i^t + \text{[regret term]} \]
- Write as:
\[\sum_j p_j^t (q_j^t c^t) \leq \min, \sum_j p_j^t c_i^t = \text{[regret term]} \]

Our total cost
For each j, can move our prob to its own i=f(j)

Transition...
- So far, we have been examining problems of selecting among choices/algorithms/experts given to us from outside.
- Now, turn to design of online algorithms for learning over data described by features.

Itinerary
- **Stop 1:** Minimizing regret and combining advice.
 - Randomized Wtd Majority / Multiplicative Weights alg
 - Connections to game theory
- **Stop 2:** Extensions
 - Online learning from limited feedback (bandit alg)
 - Algorithms for large action spaces, sleeping experts
- **Stop 3:** Powerful online LTF algorithms
 - Winnow, Perceptron
- **Stop 4:** Powerful tools for using these algorithms
 - Kernels and Similarity functions
- **Stop 5:** Something completely different
 - Distributed machine learning

A typical ML setting
- Say you want a computer program to help you decide which email messages are urgent and which can be dealt with later.
- Might represent each message by n features.
 (e.g., return address, keywords, header info, etc.)
- On each message received, you make a classification and then later find out if you messed up.
- Goal: if there exists a "simple" rule that works (is perfect? low error?) then our alg does well.

Simple example: disjunctions
- Suppose features are boolean: \(X = \{0,1\}^n \).
- Target is an OR function, like \(x_3 \lor x_9 \lor x_{12} \).
- Can we find an on-line strategy that makes at most n mistakes? (assume perfect target)
 - Sure.
 - Start with \(h(x) = x_1 \lor x_2 \lor \ldots \lor x_n \).
 - Invariant: \{vars in h\} \supset \{vars in f\}
 - Mistake on negative: throw out vars in h set to 1 in x. Maintains invariant and decreases |h| by 1
 - No mistakes on positives. So at most n mistakes total.

Simple example: disjunctions
- Suppose features are boolean: \(X = \{0,1\}^n \).
- Target is an OR function, like \(x_3 \lor x_9 \lor x_{12} \).
- Can we find an on-line strategy that makes at most n mistakes? (assume perfect target)
 - Compare to "experts" setting:
 - Could define \(2^n \) experts, one for each OR fn.
 - \#mistakes \leq \log(\# experts)
 - This way is much more efficient...
 - ...but, requires some expert to be perfect.
Simple example: disjunctions

- But what if we believe only \(r \) out of the \(n \) variables are relevant?
- I.e., in principle, should be able to get only \(O(\log n^r) = O(r \log n) \) mistakes.
- Can we do it efficiently?

Winnow algorithm

- Winnow algorithm for learning a disjunction of \(r \) out of \(n \) variables. \(e.g., \ f(x) = x_3 \lor x_9 \lor x_{12} \)
- \(h(x) \): predict \(\text{pos} \) iff \(w_1 x_1 + \cdots + w_n x_n \geq n \).
- Initialize \(w_i = 1 \) for all \(i \).
 - Mistake on \(\text{pos} \): \(w_i \leftarrow 2w_i \) for all \(x_i=1 \).
 - Mistake on \(\text{neg} \): \(w_i \leftarrow 0 \) for all \(x_i=1 \).

A generalization

- Winnow algorithm for learning a linear separator with non-negative integer weights: \(e.g., \ 2x_3 + 4x_9 + x_{10} + 3x_{12} \geq 5 \).
- \(h(x) \): predict \(\text{pos} \) iff \(w_1 x_1 + \cdots + w_n x_n \geq n \).
- Initialize \(w_i = 1 \) for all \(i \).
 - Mistake on \(\text{pos} \): \(w_i \leftarrow w_i(1+\epsilon) \) for all \(x_i=1 \).
 - Mistake on \(\text{neg} \): \(w_i \leftarrow w_i/(1+\epsilon) \) for all \(x_i=1 \).
 - Use \(\epsilon = O(1/W) \), \(W \) = sum of wts in target.

Thm: Winnow makes at most \(O(W^2 \log n) \) mistakes.

Winnow for general LTFs

More generally, can show the following:

Suppose \(\exists w^* \) s.t.:
- \(w^* \cdot x \geq c \) on positive \(x \),
- \(w^* \cdot x \leq c - \gamma \) on negative \(x \).

Then mistake bound is
- \(O((L_1(w^*)/\gamma)^2 \log n) \)

Multiply by \(L_2(X) \) if features not \(\{0,1\} \).

Perceptron algorithm

An even older and simpler algorithm, with a bound of a different form.

Suppose \(\exists w^* \) s.t.:
- \(w^* \cdot x \geq \gamma \) on positive \(x \),
- \(w^* \cdot x \leq -\gamma \) on negative \(x \).

Then mistake bound is
- \(O((L_2(w^*)L_2(x)/\gamma)^2) \)

\(L_2 \) margin of examples.
Perceptron algorithm

Thm: Suppose data is consistent with some LTF $w^* \cdot x > 0$, where we scale so $L_2(w^*)=1$, $L_2(x) \leq 1$.

Then $\# \text{ mistakes} \leq 1/\gamma^2$.

Algorithm:
- Initialize $w=0$.
- Use $w^* \cdot x > 0$.
 - Mistake on pos: $w \leftarrow w+x$.
 - Mistake on neg: $w \leftarrow w-x$.

Analysis

Thm: Suppose data is consistent with some LTF $w^* \cdot x > 0$, where $||w^*||=1$ and $\gamma = \min_x |w^* \cdot x|$ (after scaling so all $||x|| \leq 1$).

Then $\# \text{ mistakes} \leq 1/\gamma^2$.

Proof: consider $|w \cdot w^*|$ and $||w||$.

- Each mistake increases $|w \cdot w^*|$ by at least γ.

 $(w + x) \cdot w^* = w \cdot w^* + x \cdot w^* \geq w \cdot w^* + \gamma$.

- Each mistake increases $w \cdot w$ by at most 1.

 $(w + x) \cdot (w + x) = w \cdot w + 2(w \cdot x) + x \cdot x \leq w \cdot w + 1$.

- So, in M mistakes, $\gamma M \leq |w \cdot w^*| \leq ||w|| \leq M^{1/2}$.

- So, $M \leq 1/\gamma^2$.

What if no perfect separator?

In this case, a mistake could cause $|w \cdot w^*|$ to drop.

Impact: magnitude of $x \cdot w^*$ in units of γ.

$\text{Mistakes}(\text{perceptron}) \leq 1/\gamma^2 + O(\text{how much, in units of } \gamma, \text{ you would have to move the points to all be correct by } \gamma)$

Proof: consider $|w \cdot w^*|$ and $||w||$.

- Each mistake increases $|w \cdot w^*|$ by at least γ.

 $(w + x) \cdot w^* = w \cdot w^* + x \cdot w^* \geq w \cdot w^* + \gamma$.

- Each mistake increases $w \cdot w$ by at most 1.

 $(w + x) \cdot (w + x) = w \cdot w + 2(w \cdot x) + x \cdot x \leq w \cdot w + 1$.

- So, in M mistakes, $\gamma M \leq |w \cdot w^*| \leq ||w|| \leq M^{1/2}$.

- So, $M \leq 1/\gamma^2$.

Note that γ was not part of the algorithm.

So, mistake-bound of Perceptron $\leq \min_\gamma$ (above).

Equivalently, $\text{mistake bound} \leq \min_\gamma ||w^*||^2 + O(\text{hinge loss}(w^*))$.

In this case, a mistake could cause $|w \cdot w^*|$ to drop.

Impact: magnitude of $x \cdot w^*$ in units of γ.

$\text{Mistakes}(\text{perceptron}) \leq 1/\gamma^2 + O(\text{how much, in units of } \gamma, \text{ you would have to move the points to all be correct by } \gamma)$