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This article is concerned with choosing a mix of weapons, subject to constraints, when
the targets to be attacked are known imprecisely. It is shown that the correct method for
optimizing the mix of weapons involves a pair of nested optimization problems (two-stage
optimization). Two methods for optimizing the expected utility of a mix are discussed.
The first involves a simultaneous attack model, in which it is implicitly assumed that all
weapons are used at once. The second involves a sequential attack model, in which targets
appear in random order and are attacked one at a time. Particular attention is given to the
question of the appropriate mix of general-purpose and special-purpose weapons.

1. INTRODUCTION

“The history of warfare shows that war is highly unpredictable in almost every facet
(see, e.g., [2,6]). On the other hand, the complexity of modern warfare is so great
that one must plan well in advance, even if there is considerable uncertainty. For
example, most modern weapons have production lead times that exceed 1 year. This
means that the first year (and subsequent years for many kinds of weapons) of the war
will be fought with the ordnance on hand. An important question is then: how should
one build up a supply of ordnance when the targets that will be attacked are unknown?
This problem occurs at a number of different levels in the command structure. The
highest level involves procurement decisions; that is, how should the Navy acquire
ordnance when the targets are unknown? Once the ordnance is acquired, the same
question arises in regard to different regions; that is, what kinds of weapons should
be stocked at supply bases in the Western Pacific, Atlantic, and so on? After a given
region is supplied, the problem arises one more time when an aircraft carrier is loaded
for deployment. One solution to these problems would be to purchase such vast amounts
of ordnance that any situation can be covered. Fiscal constraints prohibit such a solution.
In addition, space constraints at supply bases and especially on the carrier make such
a solution infeasible. That is, one must choose a mix of ordnance subject to some very
serious space constraints.

This kind of question is not limited to ordnance. Johnson and Loane [4], for example,
studied the problem of force composition with uncertainty in the missions that the
forces are needed for. A similar problem is described in Mamer and Smith [7,8]. In
this problem, one must select a repair kit consisting of a set of tools and subject to a
budget constraint with uncertainty in the kind of repair that will be performed.

In this article, particular attention is paid to the problem of selecting general-purpose
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and special-purpose weapons.* Without providing a rigorous definition, a general-
purpose (GP) weapon is one that can be used against a variety of targets under a variety
of environmental conditions and defensive countermeasures. A special-purpose (SP)
weapon is one that can be used against only a few targets, requires special environmental
conditions, and may be susceptible to defensive countermeasures but has a higher
probability of destroying the target than the SP weapon when the correct circumstances
prevail. A typical example of a GP weapon is an unguided, ‘‘dumb’’ bomb that follows
a simple ballistic trajectory after release while an example of an SP weapon is a laser-
or television-guided bomb. The fundamental question then involves the proportion of
SP and GP weapons in a stockpile of size N, given that the targets to be attacked are
uncertain.

In order to help fix ideas, the following canonical problem is used throughout the
article as a computational example (a more realistic problem is treated in [9]). In this
example, there are three target types, with 7, denoting the number of targets of type
iand T = (T,T,,T;). There are four weapon types. Subscript O. indicates the GP
weapon and subscript i # O represents the SP weapon for a target of type i. The term
N; denotes the number of weapons of type i and N = (No,N,,N,,N3). The total number
of weapons is N = X}.y N,. The effectiveness of the various weapons against targets
is summarized in a matrix that shows the probability that a single weapon to type i
will destroy a target of type j. For the canonical problem, this matrix is :

Targets T, T, T,
Ny fpo Po Do
N 0 0
Weapons{ ' P 1. M
N. 2 0 D 0
N;\0 0 p

Here p, > p, (so that the SP weapons are more effective). The final element in the
canonical problem is the uncertainty in the distribution of targets. It is modeled in the
following simple fashion. Let t = (#;,5,,;) be the vector representing the proportions
of various kinds of targets, so that 1, = T,/2 T,. Assume that ¢ can take exactly four
values,

t= (4,39 with probability p,

t = (§,40,90) with probability (1 — p)/3,

t = (35,38,30) with probability (1 — p)/3, (2)
t = (35,30,38) with probability (1 — p)/3.

If p were 1, then there would be no uncertainty in the distribution of targets. It is
shown in Section 2 that if there is no uncertainty in the distribution of targets, the
usual kinds of models lead to an optimal mix (optimal to be specified) involving only
SP weapons. : .

When there is uncertainty in the distribution of targets, a mix of ordnance that

*The words ordnance and weapon will be used interchangeably, although this use is not
completely correct. That is, weapons are built up from ordnance components. There is no trouble
with the interchangeable use here, since the problems studied are relatively simple. In the
application of the method to detailed scenarios [9], special care is given to these issues.
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involves only SP weapons also involves a high level of risk: there may be a considerable
probability that a target cannot be attacked because there are no weapons available for
it. In this sense, GP weapons provide a kind of *‘insurance’” when there are high levels
of uncertainty. The main analytical problem is then to be able to develop models that
capture this idea and can then be used to determine optimal acquisition policies.

In the next section, various modeling issues are discussed. These include single-
and multiple-shot probabilities of kill, an introduction of the concept of risk aversion,
and a summary of some of the current approaches to this problem. It is argued that
the optimal mix should be chosen to optimize an expected utility. In Section 3, a
simultaneous attack model is used to determine the optimal mix. Section 4 contains a
description of a sequential attack model that captures the order of battle more realist-
ically than the simultaneous attack model. Section 5 contains some concluding com-
ments, as well as indications of directions for additional work.

2. MODELING ISSUES
This section contains a discussion of a variety of issues essential to the formulation
and solution of the problem.
Single-Shot Probability of Kill
The fundamental operational variable is f’,‘j defined as follows:

P% = Pr{a single weapon of type i destroys

a target of type j}. 3

For some kinds of weapons, dumb bombs for example, f’,‘] is known with reasonable

* accuracy from historical data. For newer, more sophisticated weapons, Isf-‘j itself may

be uncertain. The methods introduced here can be used to deal with uncertainty in
P} as well.

Multiple-Shot Probability of Kill

Imagine that m; weapons to type i are used to attack one target of type j. Assuming
independence of shots, the probability that the m; weapons destroy the target is

1 — Pr{none of the weapons destroys the target} =1-0 - Btyms, 4)

Now suppose that there are 7 targets of type j and a total of n; weapons of type i to
be applied to targets of type j. It is easily shown that the uniform allocation of weapons
to targets (so that m; = n;/T,) maximizes the expected number of j-kind targets
destroyed. With this uniform allocation, the probability of destroying a j-type target
is

pyn;,T) = 1 — H(l — ﬁg.)"u/T,-_ )
Setting P& = —log(1 — P%), Equation (5) can be rewritten as
1
py(npT) =1 — CXP<_F. 2 ”UPE')‘ (6)
J i
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The expected number of targets destroyed, EK, is then

EK = Y T;py(n;T)
J

j Tj i

Equations (3)—(7) are the starting points for a number of ordnance acquisition programs
in current use. For example, the nonnuclear ordnance requirement (NNOR) is roughly
determined as follows. For a given target type, one uses 13,‘, to find the weapon i* with
the most kills per dollar. The number of that weapon purchased for use against targets
of type j is then ny; = T/ Pk,

The Naval Weapons Center (NWC) at China Lake, California, advocates an approach
in which the exponential term in (7) is expanded to order 1/7;. This gives

(Ta)

EK ~ > n,P% (7b)

i

and leads to a linear programming problem for the optimal mix of weapons.

Finally, the Air Force uses a functional similar to (7) in its computer programs which
determine ordnance mixes [1]. It is worthwhile to note that optimization problems
designed around (7a) will end up with solutions that have only SP weapons in them.
To see this, consider the problem

1
r?a}x > Tj[l - exp(—; > n,-jPﬁ}):I
e i

subject to > > n; =N, n; = 0. (8)
i
This problem is solved by standard Lag;ange multiplier methods. The Lagrangian is
£=2 T,[l - exp(—% 2 nUPf;)]
I P
Dz ) 33

In this equation, the multipliers u; are such that u; = 0 with u; > 0 if and only if
n; = 0. Setting 0£/dn; = 0 gives

9

1
N =u; + P% exp(—F_Z n,.,Pg.), Lj=12,... (10)

7o
Observe that for fixed j, the exponential is constant over i. Thus,
set c,-. = exp(— /T, 2; nyP};
to obtain _
A = u; + Pic;, j=12,... (11)

Now order the effectiveness of the weapons against the jth kind of target so that P¥; >
P4 > P4, . . . Itis easily shown that n); > 0, that is, that the most effective weapon
is used against target type j. To do this, simply consider the case of N = 1; then
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proceed by induction from (8), using the derivative of the functional to estimate
improvements as one goes from N to N + | weapons. Then, for any other i, Equation
(11) implies that (ny; > 0 implies u,; = 0) ‘

N = Plc; = uy + Picy, (12)

so that u; = (P{; — Pf)c; > @ and thus n; = 0. We have thus shown that the solution
to the optimization problem (8) involves only SP weapons. In particular, this means
that one cannot take uncertainty in targets into account by solving (8) for each target
vector and then performing some ‘‘suitable average’’ over target vectors. Such a
procedure will produce weapon mixes that are devoid of GP weapons and thus very
risky.

Another serious problem associated with (8) is that (8) implies a very unrealistic
operational picture. That is, the operational view associated with (8) is that one pur-
chases n; weapons of type i for use against targets of type j and puts them aside until
a target of type j appears. In reality, one purchases weapons of type i and uses them
as targets appear. A'good model should capture this fact. That is, targets appear and
weapons are used sequentially, not simultaneously, as is assumed in the formulation
leading to (8).

Two-Stage Optimization Problems

The proper approach to the general problem of weapon acquisition and allocation,
and one which takes the uncertainty in the target distribution into account, is the
following. Assume that there is a function f({rn;},T) that describes the effectiveness
of the set of weapons {n;} against target vector T. It is reasonable to assume that
f(n;},T) is a sum of such functions, one for each target type:

fdnd D = 2 fn} T). (13)
j
Now consider a mix of weapons {N},i=0,1,2,...,with 2N, = N. The value of
this mix of weapons against a given target vector is defined by
VANYT) = max 3, f({n;}.T) (14)

such that
> n;=N, n;=0.

j
When the distribution of targets is uncertain, the value of the mix {N;} is determined
by averaging (14) over the distribution on T

VAND = EA[VANIT). (15)

Equation (15) represents the first step in the two-stage optimization problem. ’
The optimal mix of a given size N is then determined by

V = max V{N} (16)
N}

such that
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Rewriting (16) by using (14) and (15), one clearly sees the two-range nature of the
optimization problem:

I

V max ET[max 2 fj({nij}’T‘j)7 E n[j = N,', I’l,j = 0],
i ("ij} j B

N,

>N, =N, N =0.

It will be seen that (17) provides the proper approach to incorporating uncertainty
into the weapons allocation problem. Before proceeding, a few comments about (17)
are appropriate. For fixed {N;}, the inner optimization problem provides a measure of
the value of that given mix of weapons. In particular, if the target vector has a discrete
distribution, then V({N,-}IT), as defined in (14), allows one to see how the given mix
performs against each fixed target vector. The ability to do this is actually quite
important when one tries to understand the results of the full two-stage optimization
problem.

The difference between (8) and (17) is an example of the more general phenomenon
in which

E_\.[max h(x,u)] = max E.[h(x,u)]

u i

for an arbitrary function A(x,u). Although this point may be ‘‘obvious,” with the
exception of [4], it seems to have gone unnoticed for problems associated with munitions
allocation and acquisition.

Utility and Risk Aversion

The function fj({n,-j},Tj) must still be specified. One natural choice is the number of
J-type targets destroyed when there are n; weapons of type i allocated to the T, targets
of type j. A more general formalism, however, that allows one to capture the effects
of uncertainty in the outcome of the attack involves the use of a utility function (see,
e.g., [3], for a general discussion of utility theory). To do this, proceed as follows.
Let K; denote the number of targets of type j destroyed. Rather than working with the
expectation of K;, one works with the expectation of a function u(K;), where u(*) is a
utility function that indicates preferences in outcomes. Discussions with naval officers
indicate that u(-) should have the property of risk aversion. That is, if K} and K? are
two choices for K; occurring with probability p and 1 — p, respectively, then

puK}) + (1 — p)u(K}) = ulpK] + (1 — p)K?]. (18)

If the equality holds, then the decision maker is called risk neutral; otherwise, the
decision maker is called risk averse. The utility function chosen for this work is

uky = 1 — ok (19)

where p; is a parameter. Clearly (18) is satisfied with a strict inequality if u(K;) is
given by (19). The parameter p; is determined as follows. One asks by how much must
pKj + (1 — p)K} be reduced to achieve equality in (18). If AK; is this amount (called
the risk premium), then for (19), (18) becomes

pexp(—p,K}) + (1 — p) exp(—pK})
= exp{—p,[pK] + (1 — p)K} — AK]}. (20)

a7
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Equation (20) is an equation for p;. Table 1 shows the value of p; for a variety of
choices of the other parameters. In particular, (20) provides a way to elicit the value
of p; from naval officers.

The utility function given in (19) has a number of useful properties. First observe

that
1
lim — M(Kj) = K @21
o0 P

so that the expectation of (1/p)u(K)) is an implicit measure of the expected number of
targets destroyed. Second, suppose that K} = K and K? = 0. Then the function

Au = u(@PK) — [pu) + (1 — p)u(0)]
= (1 — p) — exp(—ppK) + p exp(—pK)

(22)

is a monotonically increasing function of p;, rising to 1 — p as p; —> ®. Thus, (21)
and (22) show that increasing p; corresponds to increasing risk aversion. Third, observe
that p; is nearly linear in both the K; and AK;. It will be seen that these properties Jead
to considerable robustness in the optimal mix, with respect to p;. Fourth, observe that
the risk aversion measured by p; concerns outcomes against targets of type j only and
does not provide information about risk aversion of the total (scenario-dependent)
outcome. (This possibility is discussed in Section 5.)
With the utility function (19), one suitable choice for fidn},T)) is

Fnd.T) = ExluK)l, 23)
where Ex, denotes the expectation over possible values of K;. These possible values
are X; = 0,1,2,...,T; and are taken according to the binomial distribution

T; ! T;=1
Pr{K; = = ) Pl — pi)'i ' (24)

where py; is given by (6). Using (24) in (23) gives

T T.
fidng},T) = > - e—p/l)< lj)pij(l A (25)

=0

i

1= [1 = py(1 — e )7

Table 1. Determination of p;, the parameter in the utility function.

K p K 1-p AK, P,
0 0.5 100 0.5 5 0.004
10 0.008
15 0.0127
20 0.018
25 0.024
0 0.5 1000 0.5 50 0.0004
100 0.0008
150 0.00127
200 0.0018
250 0.0024
300 0.0033
350 0.0046
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The last equation follows by use of the moment-generating function for a binomial
random variable. Observe from (25) that as p—=> o, f{n},T) -1 - (1 - Pi)",
which is the probability that at least one target is destroyed.

The two-stage optimization problem now becomes

subject to

V = max Er[max 2 {1 =1 = py1 = e®)]7} E n; = N, n; = 0),
\ j

Wi {n i J

where

1
py=1-— exp(—; > n,-,-P{;-) (26)

Joi

and subject to

2N =N, N=0
The problem posed in (26) is solved in the next section.

Two Operational Considerations

The mix that solves (26) is one that optimizes the expected utility. Two operational
considerations are worth discussing at this point. The first concerns an alternate way
of viewing the problem. That is, according to (26), all weapons are used and, in a
sense, all targets are attacked simultaneously. Thus, (26) can be called a simultaneous
attack model (SIAM). In an alternate picture, targets appear one at a time (with
probabilities determined by the vector £) and can be attacked if one still has a weapon
that can be used against the target that most recently appeared. The attack process
stops when a target appears and cannot be attacked. A justification for this approach
is discussed in Section 4, where a simulation for the sequential viewpoint is described.
With the sequential viewpoint, one can make at least N, + min, N, aitacks and at most
N attacks. In this case, the order in which targets appear is quite important. In particular,
the attack process may stop with a considerable number of weapons remaining. This
can be called a sequential attack model (SEAM). In this sense, the SIAM (26) may
overestimate the value of SP weapons. The sequential view of the attack process will
generally lead to results that favor more GP weapons than the expected utility model.
The sequential view of the problem is especially well suited to a simulation approach.
Such an approach is described in Section 4.

The second operational consideration concerns the meaning of the term weapon. In
the naval context especially, a weapon involves a large number of components (e.g.,
an aircraft loaded with a certain combination of bombs; the bombs themselves are
created by selecting a kind of fin to go with the basic bomb body). Thus, instead of
working with weapons in (26), one should more realistically work with components.
This c_an easily be done using the simulation approach as well {9].

3. RESULTS USING THE SIMULTANEOUS ATTACK MODEL

The optimization of expected utility by a SIAM is obtained by solving problem (26).
In order to do that, one must first solve the inner optimization problem and then the
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outer optimization problem. The inner problem was solved using a nonlinear program-
ming algorithm [10]. The outer problem is then solved by a gradient method. It is
actually easier (and more instructive) to specify the mix of weapons and then simply
study V({N;}). For example, for the canonical problem, consider the following mixes

of size N = 40.

By solving the inner problem for each mix and each value of p [the probability that

Mix number N = (No,N,,N»,N3)

1 (37,1,1,1)
(31,3,3,3)
(25,5,5,5)
(19,7,7,7)
(13,9,9,9)
(7,11,11,11)
(1,13,13,13)

NN bW

the target mix is ¢ = (3,3,3)], one easily finds the range in which each mix dominates.

Figure 1 shows the results of such calculations for T = 30 targets, p, = 0.5 (the

2.4
2.2

2.0

Figure 1. Results of the

B p=.2

p=05

2 4 6 8 1.0
Y

simultaneous attack model for the canonical problem. The value

function V and dominating mix are shown as a function of p, the probability that the target
vector is ¢ = (3,3,5). Other parameter values: T = 30, p, = 0.5, p, = 0.7.
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single-shot kill probability of the GP weapon) and p, = 0.7 (the single-shot kill prob-
ability of the SP weapon), and all p; = p.

Figure 1 clearly shows the shift toward more general-purpose weapons as the un-
certainty about the target vector increases. A mix of all SP weapons never dominates
in this example.

A study of the results obtained in the inner optimization problem in (26) leads to
the following approximate solution of the inner problem:

1. Apply SP weapons only to the target they were designed for.

2. Divide GP weapons uniformly among the targets.

Table 2 shows the results obtained using the approximate solution of the inner

problem. The maximum error is 1.6% [corresponding to mix 3, T = (28,1,1), and

p = 0.05]. The great advantage of the approximate solution to the inner problem is
that one no longer needs to solve an optimization problem. Instead, the inner problem
is reduced to the evaluation of a functional.

The approximate method was used to solve the inner problem for N = 1000 weapons
and 750 targets. The following weapon mixes were considered:

Mix number N = (Ng,Ni,N2,N3)

1 0,333,333,334
100,300,300,300
250,250,250,250
400,200,200,200
550,150,150,150
700,100,100,100
850,50,50,50

N R WN

Figure 2 shows the dominating mix and value as a function of p for p, = 0.5,
p; = 0.7, and p = 0.0003 [Figure 2(a)], p = 0.003 (Figure 2b). Figure 3 shows the
dominating mix and value as a function of p for p, = 0.5, p, = 0.8, and p = 0.0003
[Figure 3(a)], p = 0.003 (Figure 3(b)]. These figures show results in accord with

Table 2. Exact and approximate solutions of the inner problem.?

VAN
p = 0.05 p=0.1 p=202
Mix T = (10,10,10) T = (28,1,1) T = (10,10,10) T = (28,1,1) = (10,10,10) T =(28,1,1)
i 0.795 0.645 1.369 0.969 2.092 1.298
0.796 0.645 1.372 0.969 2.095 1.275
2 0.835 0.654 1.429 0.987 2.158 1.311
0.837 0.642 1.431 0.978 2.160 1.311
3 0.871 0.639 1.481 0.977 2.213 1.313
0.872 0.629 1.483 0.966 2.216 1.308
4 0.903 0.621 1.526 0.960 2.261 1.305
0.904 0.612 1.528 0.951 2.263 1.301
5 0.931 0.602 1.567 0.940 2.301 1.295
0.933 0.595 1.568 0.933 2.303 1.291
6 0.957 0.580 1.602 0918 2.336 1.283
0.958 0.575 1.604 0.913 2.338 1.280
7 0.979 0.556 1.633 0.892 ' 2.367 1.267
0.981 0.554 1.635 0.889 2.368 1.266

*The upper entry in each row is the exact solution of the inner probiem. The lower entry in each row is the approximate
solution of the inner problem.

)
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AN

Figure 2. Solution of the canonical problem using the approximate solution of the inner
problem. p, = 0.5, p; = 0.7, and (a) p = 0.0003 and (b) p = 0.003.

intuition. First, for p; fixed, as p increases, the points at which the dominating mix
e shifts move to the left (smaller values of p indicating more uncertainty). Second, for
: > p fixed, as p, increases, the points at which the dominating mix shifts move to the

left. [In fact, if p; = 0.9, then the mix (0,333,333,334) dominates all others for all
values of p. It will be seen, however, that this is not the case if one takes the sequential
view of the problem, as in the next section.] ‘

201 o 16 b,

! 1 1 1 J 1 1 L ! ]
2 4 6 8 10 2 4 6 .8 10

P p
Figure 3. Solution of the canonical problem using the approximate solution of the inner
problem. p, = 0.5, p, = 0.8, and (a) p = 0.0003 and (b) p = 0.003.

N
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4. RESULTS USING THE SEQUENTIAL ATTACK MODEL

In this section, results for optimizing expected utility in the canonical problem are
presented in which the sequential attack model was used. In order to emply the se-
quential attack model, a simulation was developed. The basic features of the simulation
are the following:

1. The number of targets is essentially infinite. The proportions of different kinds
of targets are uncertain. That is, the vector # is uncertain. For example, for the canonical
problem, the distribution on ¢ is given by (2).

2. Each iteration of the simulation begins with a specified mix of weapons N =
(No,N,, . . .). Targets appear one at a time, according to the probability distribution
of £. When a target appears, the simulation looks at the current vector of weapons and
chooses the weapon with the highest single-shot probability of kill against that target.
That weapon is then used against the target and the vector of weapons is decremented
by 1. When a target appears and there is no weapon that can be used against it, the
current simulation iteration ends.

At first glance, this stopping rule for the simulation run appears arbitrary. To some
extent, it is, but there are also good reasons for choosing it. First, one can think of
all targets of sufficiently high threat value than when a target cannot be attacked, retreat
from battle must occur. Second, a major objective of this work is to provide a tool for
evaluating the effectiveness of different mixes of weapons. It is a serious failure of a
mix if one is unable to attack a target that arises. Alternate rules for the simulation are
discussed in Section 5.

3. At the end of each iteration of the simulation, the utility of that iteration is
computed according to

u= (1 — e ?h), 27)

where k; is the number of j-type targets destroyed during the current iteration.
4. Since u given in (27) is a random variable, a large number of iterations of the
simulation are performed for each vector N. The number of iterations is chosen so that

5.16[(u? — ()"
(u)

where { ) denotes an average over the simulation runs. If u were normally distributed,
then (28) indicates that the 99% confidence interval has a width that is 1% of the mean.

Table 3 shows the results of the simulation using the canonical problem withp = 0.4,
po = 0.5, and 30 or 40 weapons. It is instructive to compare the SEAM with the
SIAM. For example, for p = 0.05, from Table 2 the expected utility of the mix
(25,5,5,5) against T = (10,10,10) is 0.871 and against T.= (28,1,1) is 0.639. For
the mix (7,11,11,11), the values are 0.957 and 0.580, respectively. Setting p = 0.4
gives a total expected utility of 0.7318 for the mix (25,5,5,5) and 0.7308 for the mix
(7,11,11,11). The corresponding values for the SEAM are 0.7560 and 0.7197, re-
spectively. Observe that the utility for the SEAM case is higher than the SIAM case
for the mix (25,5,5,5) but lower for the mix (7,11,11,11). This shows the additional
value of GP weapons when targets are attacked sequentially. Note from Figure 1, for
example, that for the SIAM and p = 0.4, the optimal mix of weapons is (19,7,7,7).
For the same value of p, = 0.7, the optimal mix in the SEAM is (34,2,2,2), a

=0.01, (28)
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Table 3. Results using a simulation of the sequential model.

(u)
p = 0.05 p = 0.01
Weapons mix p =09 p = 0.7 p = 0.9 p= 07
(30,0,0,0) 0.5878 0.5878 0.1422 0.1422
(24,2,2,2) 0.6418 0.6054 0.1539 0.1451
(18,4,4,4) 0.6636 0.6033 0.1577 0.1418
(12,6,6,6) 0.6763 0.5894 0.1599 0.1371
(6,8,8,8) 0.6806 0.5697 0.1600 0.1310
0,10,10,10) 0.6613 0.5808 0.1542 0.1203
(40,0,0,0) 0.7333 0.7333 0.1866 0.1866
(34,2,2,2) 0.7923 0.7576 0.2006 0.1915
(25,5,5,5) 0.8274 0.7560 0.2065 0.1875
(16,8,8,8) 0.8400 0.7442 0.2081 0.1808
(7,11,11,11) 0.8274 0.7197 0.2028 0.1723
(0,13,13,14) 0.8030 0.6781 0.1945 0.1594

considerable shift toward more GP weapons. Even if the single-shot probability of kill
of the SP weapons is increased to p, = 0.9, the results in Table 3 show that the optimal
mix is still 40% GP weapons.

The shift toward more GP weapons in the SEAM is understood when one recognizes
the importance of having weapons that can be used against any target. If a mix contains
a large proportion of SP weapons, then it is likely that the attack process will end with
many unused weapons. A larger proportion of GP weapons avoids this unpleasant
situation.

Next consider the case in which N = 1000, p = 0.0003, and p, = 0.9. Recall that
for the simultaneous attack model, the mix with only SP weapons dominated all others.
Table 4 shows the values VN }|e) for r = (3,4,%) and (38,3,3) as a function of the
number of GP weapons. If V, = V[{N;}|(3,5,3)] and V, = V[{N}(35,%,5)], then the

value of a given mix in the situation where t = (3,3,3) with probability p is simply

VAND = pVi + (0 = p)Va. (29)

The values in Table 4 can thus be used to find V({N;}) for any value of p.

Table 4 leads to a number of interesting observations. First, unlike the SIAM, the
mix with all SP weapons does not dominate all others in the SEAM. The reason for
this has been mentioned before: the larger proportion of SP weapons in a mix, the
more likely it is that the attack process will end with many unused weapons. Second,

Table 4. Values of a mix of 1000 weapons.

Value when ¢ =

Weapons mix (5.3.9) (38,75,35)
(100,300,300,300) 0.25 0.11
(500,167,167,166) 0.20 0.13
(700,100,100,100) 0.18 0.14
(900,34,33,33) 0.16 0.15
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observe from Table 4 that as the proportion of SP weapons increases, the difference
between V, and V, increases. Thus, a larger proportion of SP weapons implies a larger
variance in the ultimate value. Increasing risk aversion of the ultimate outcome will
then imply a choice of mix that performs ‘‘about the same’’ over a wide range of
scenarios. Thus, the proportion of GP weapons in a mix will increase with increasing
risk aversion of the outcome. This suggests considering a new measure of value. Define
a? by

=pVi+ ( —p)Vi — (pV, + (1 — p)V,)? (30)
so that ¢ is the variance of the overall value as a function of p. Then set
VAND = VAND - ao, 3D

where a is an adjustable parameter. As o increases, one assesses a greater penalty for
variance in the outcomes. Any value of a > 0 will imply a shift toward more GP
weapons. Table 5 shows V({N,}) for the four mixes in Table 4 as a function of p and
a. From this table, one sees that the dominant mixes are 1 and 4 and that the region
in which mix 4 dominates shifts to the right (i.e., greater values of p) as « increases.
In the next section, a more complete discussion of alternate measures of value is
presented.

The sequential model has one major disadvantage in that it requires a simulation.
An approximate method for treating the SEAM will now be described, using the
canonical problem as an example. Imagine a total of N = Z2_ N, weapons are available
to be used. Consider all sequences of length N consisting of {M,,M,,M;} where Z M, = N
and M, is the number of i-type targets attacked. The likelihood of a given sequence
{M|,M,,M,} is determined by the multinomial distribution:

Pr({M\,M,,M3}) = (32)

HM'H‘“

In addition, the M, must satisfy certain constraints determined by the vector N =
(Ng,N,,N,,N3). For the canonical problem, these constraints are

M =N, + N, M, =Ny + N,, M; =Ny + N;. (33)

It is clear that not all sequences of length N will satisfy (33). It is possible that up to
two of the three constraints are violated. The following approximation procedure was
developed to deal with cases in which the constraints were v101ated If the ith constraint
is violated, then M, is replaced by M, where

M, = N, + N.. (34)

If the ith and jth constraints are violated, then M; and M; are replaced by M, and M s
where
- M; . M;

Ny + N, M =

M = ——— ——L_— N, + N, 35
M, + M, M+ M (35)

Equations (34) and (35) are interpreted as follows. For (34), one has M; > N, + N,
so that the attack process had to stop at M; = N, + N.. When two constraints are
violated, all the GP weapons were used on targets i and j; (35) captures this idea.
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The value V({V}|¢) is calculated as follows. Let v(M,) denote the value associated
with M, attacks on the ith type of target. If M; = N,, then

M; .
viM) = D, (1 — e ™Pr{k of M, targets destroyed}
k=0
M.
i Ml
=> - e“’")< )P'f(l - pMit
k=0 k
=1-[1 — p(l — e (36)

In what follows, it helps to set ‘
S;=1-p —e?), So =1 = po(1 — e™). 37

If M; > N,, but no constraint is violated, then
N; N.

viM) = > (1 — e'Pk)<k'>p’f(1 — p)Vit
k=0 {

M; _
+ 2 a- e—Pk)<AZ‘)ps<1 ~ poit

k=N;+1 ’
=1 - 8% — S + Sh. _ (38)

If the ith constraint is violated, then M, in (38) is replaced by N; + N,. If the ith and
jth constraints are violated, then M, in (38) is replaced by N; + No[M,/(M; + M)].
The value V({N}|¢) is then :

VAN = EM<2 v,-(M,-)>, (39)

i

where E,, denotes the expectation over M = (M,,M,,M,), using the multinomial dis-
tribution (32).
Tables 6 and 7 contain a comparison of the results using the simulation and the

Table 6. Comparison of simulation and analytical methods for sequential attack model.

VAND
p =07 Py = 0.9
Weapons mix® Simulation Analytical Simulation Analytical
(30,0,0,0) 0.1422 0.1424 (0.1)° 0.1422 0.1424 (0.1)
(24,2,2,2) 0.1451 0.1463 (0.6) 0.1539 0.1557 (1.2)
(18,4,4,4) 0.1418 0.1430 (0.8) 0.1577 0.1593 (1.0)
(12,6,6,6) 0.1371 0.1401 (2.2) 0.1599 0.1618 (1.2)
6,8.8.8) 0.1310 - 0.1336 (2.1) 0.1600 0.1624 (1.5)
(0,10,10,10) 0.1203 0.1112 (7.6) 0.1542 0.1447 (6.2)

*Other parameter values are p, = 0.5, p = 0.01, p = 0.4.
*Indicates

imulation — analytical
Simulas 101'11 ana; y 1ca. % 100‘

Percent error = - -
simulation

P
NG

>
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Table 7. Comparison of simulation and analytical methods for sequential attack model.

VAN
P = 0.7 D= 0.9
Weapons mix® Simulation Analytical Simulation Analytical
(40,0,0,00 . 0.1866 0.1920 (2.9)° 0.1866 0.1920 (2.9)
(34,2,2,2) 0.1915 0.1928 (0.7) 0.2006 0.2023 (0.8)
(25,5,5,5) 0.1875 0.1887 (0.7) 0.2065 0.2092 (1.3)
(16,8,8,8) 0.1808 0.1829 (1.2) 0.2081 0.2131 (2.4)
(7,11,11,11) 0.1723 0.1754 (1.2) 0.2028 0.2142 (5.6)
0,13,13,14) 0.1594 0.1450 (9.0) 0.1945 0.1885 (3.1)
*Other parameter values are p, = 0.5, p = 0.01, p = 0.4.
®Indicates
Percent error — 31mulat1'on - .analytlcal % 100.
simulation

approximate method. The results shown in Tables 6 and 7 indicate that the analytical
approximation is extremely accurate over a wide range of variables. For N = 1000
weapons, the analytical approximation to the simulation (i.e., Table 4) is not as accurate.
The error is of the order of 20%, but all trends in Table 4 are followed in the analytical
approximation.

5. SUMMARY AND DISCUSSION

The main purpose of this article is to introduce a new methodological concept for
dealing with uncertainty in allocation and acquisition problems. Although the general
concept (embodied in the observation E {max, h(x,u)} = max, E{h(x,u)}) is simple
and well known, its importance for weapon acquisition has been virtually unnoticed.
The key idea here is that one must compute the value of a specified mix of weapons
by averaging over possible target scenarios and then compare the value associated with
different mixes. If one does not take into account the variation over scenarios, then
the acquisition process will lead to mixes of weapons that perform poorly against the
average over scenarios. A second, but not as important, methodological concept in-
troduced here is the use of an expected utility function of the number of targets

destroyed, rather than simply an expected kill model. The use of a utility function has

two advantages. First, it allows one to capture the natural risk aversion associated with
military operations. Second, it provides a natural way of incorporating the uncertainty
of the attack process into calculations.

Two methods for computing the value, V({N}}), of a set of weapons are described
in this article. The first is a SIAM [Eq. (26)] in which one presumes all weapons are
used. The optimal mix of weapons is determined by a two-stage optimization procedure
in which one associates a certain set of weapons with a certain target type. The second
method for computing the value of a mix of weapons is based on a SEAM in which
targets appear randomly according to some distribution and one continues to attack
targets until either all weapons are used up or a target appears and cannot be attacked
(i.e., no GP weapons and SP weapons for that target remain). The SEAM was studied
by using a simulation and an approximate analytical procedure. The SIAM overesti-
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mates the value of SP weapons, relative to the SEAM. This is caused by the assumption
in the SIAM that all weapons can be used.

Thus far, the work presented here has generated the following ‘‘rules of thumb”’
regarding weapons mix decisions. First, GP weapons provide a kind of *‘insurance’’
against uncertainty in the sense of providing a capability for doing something in all
situations. That is, one may not have an “‘optimal’’ capability if the situation is specified
in enough detail, but one does have a ‘‘not too bad’’ capability across a variety of
situations. second, even when the fraction of targets in a scenario is known, the exact
order in which targets appear is not known. This introduces another kind of uncertainty
that may affect the ultimate value of a mix of weapons. Third, SIAMs overestimate
the value of SP weapons. Fourth, given a mix of weapons, the following heuristic is
often a good approximation to the solution of the inner problem. Apply SP weapons
to the target that they most effectively destroy. Apply GP weapons uniformly to all
targets. Fifth, if one is risk averse to outcomes over scenarios, the optimal mix will
involve a high percentage of GP weapons. -

A number of modifications and additional aspects of the work are worth discussing.

Uncertain 13{;- or Target Type

Throughout this article, it was assumed that the single-shot probability ‘of kill, }A’fj-,
was known with certainty. This may not be true for at least two reasons. First, for
many of the newer SP weapons, the value of f’,‘l in combat can only be inferred from
the existing test data in noncombat situations. For this reason, there is considerable
uncertainty in the actual value of Isfj Second, the value of the single-shot kill probability
also depends on the countermeasures (CMs) taken to define the target. Some CMs are
purely passive and affect all 13,‘, (e.g., hardening a site). Other CMs affect some weapons
and not others. (For example, a SAM site will not affect the ballistic flight of an iron
bomb but will affect the flight of a smart weapon that must be guided by someone
inside the attacking aircraft.)

These considerations are easily taken into account. For example, in the canonical
model, one could attach a distribution to p,, say p, = 0.9 with probability = and
p, = 0.7 with probability I — 7 (or any more complicated distribution as well). There
is no conceptual difficulty (and very little computational difficulty) when the f’,‘l is
modified in this way.

Similarly, to take into account different defensive CMs, one simply needs to extend
the definition of the target vector. That is, one can think of a ‘‘target’’ as consisting
of a physical target type with a certain countermeasure. Once again, there is no
conceptual or computational difficulty with doing this.

Components

As mentioned at the end of Section 2, the operational forces do not purchase or load
‘“‘weapons.’’ Rather, they acquire and load components from which a variety of weapons
can be built. For this reason, one should really work with a set {C;} of components
rather than a set of weapons {N;} and thus compute the value of a set of components.
That is, one needs to compute the value V({C}) of a mix of components {C;}. This
involves no new conceptual difficulties and only a slight increase in computational
complexity. The only significant change in computational complexity arises when one
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tries to maximize V({C}) over {C}, subject to a constraint, since there are many more
components than weapons. This is a tractable problem, however [9].

Attack Force Attrition

A factor not taken into account in either the SIAM or SEAM models is the attrition
rate of the attacking forces. In particular, it is often argued that the attrition rate will
be lower when SP weapons are used. It is possible to enlarge the problem studied to
include attrition as a factor in either model. The difficulty, however, is that the attrition
rates are highly uncertain for almost every situation. For this reason, it is unlikely that
the basic concepts that emerged in this article will change considerably when attrition
is included.

Improvement of the Optimization

Most of the results in this article concerned V({N,}). Near optimal mixes of weapons

. were then determined by inspection of a set of V({N;}). In [9], a stochastic approximation

scheme is used to obtain the optimal mix of components. That is, stochastic approx-
imation methods [11] can be used to maximize (V({N,})) where the { ) indicate an
average over simulations.

Measuring the Level of Uncertainty

As the total number of weapons in the mix increases, one expects that the limit
theorems of probability theory will take over and that there will be decreasing relative
variation in the target vector that is attacked. This idea can be captured in the following
way.

Consider the canonical problem in which the target vector is ' = (#},21,£) with
probability p and 2 = (#},43,75) with probability 1 — p. Assume that N weapons are
used and let M; denote the number of i-type targets that appear. Then M; has a mul-
tinomial distribution with

tIN  with probability p,

EM;; = . 40
v {th with probability 1 — p, “40)

and

ti(1 = tHN with probability p,

M} = 41
var{M;} {z,?(l — )N with probability 1 — p. @

Consider the total average (over scenarios) coefficient of variation in the target vectors
that appear. This coefficient of variation is

l_tl 1/2 1_t2 172
cv =3 [p( Y ) + (1 - p)( o ) ] 42)

Equation (42) clearly shows that as N increases, the total CV decreases. In particular,
one must continually readjust the value of p to keep the level of uncertainty the same.
This observation is meaningless in a real-world context, where there is presumably
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one value of p. But it is important for situations in which one is comparing different
mixes of weapons that have considerably different values of N.

Parameter Sensitivity

The key parameters that enter into the calculations needed to evaluate a mix of
weapons are the target scenarios and their likelihoods, the value of the parameter in
the utility function, and the values of the kill probabilities. An examination of Figures
1-3 shows that the dependence of the optimal mix on the likelihoods of the scenario
gradually changes with the likelihood. There are no sudden jumps from a high pro-
portion of GP weapons, say, to a low proportion of GP weapons. Similarly, examination
in Figure 1 shows a gradual change of the optimal mix with respect to p. Some estimation
of parameter sensitivity to the kill probabilities can be gleaned from Tables 3, 6, and
7. In those tables, one sees a shift toward more SP weapons as p increases. This
increase can be quite dramatic, as the first column of Table 3 shows.

One could study parameter sensitivity by constructing ‘‘elasticities’” of the form

1 Au

N . T udp’

where p is any of the parameters,  is the utility, and Au is the change in utility when

p is changed by Ap. Comprehensive studies of such elasticities are presently underway .
Numerical experience with the models presented in this article shows that the ob-

jective functional is relatively flat around the optimum. This means that the results are

relatively insensitive to small deviations in values of the mix.

Other Value Functions

The utility function u(k) = 1 — e * was introduced to capture the effect of un-
certainty in the number of targets destroyed. The computations of the value function
V({N}|¢) then use this utility function. There is, however, another kind of uncertainty
in this article that is dealt with just as a linear expectation. This is the uncertainty over
scenarios (i.e., over the ¢ vectors). Both the SIAM and SEAM compute the value as
a simple linear expectation:

VANY) = EVANID). 43)

A more sophisticated way of dealing with the uncertainty across scenarios is to replace
(44) by a utility-of-the-utility model. That is, replace (44) by

VAN = E{UIVANYNDTY, (44)

where U() is a given *‘super’’ utility function. Equation (31) is an example of a simple,
heuristic super utility function. One could even choose U(V) = 1 — ¢~ ?, where p is
a parameter. Perhaps the greatest difficulty with the utility-of-the-utility concept is that
the parameters (p for example) do not have the simple intuitive interpretations that p
has in 1 — e~ In this super utility function exhibits risk aversion, the effect will be
a shift toward more GP weapons (see Table 4, for example).

Another possibility would be to forego the utility function entirely and work with a
more complicated measure of value, such as the prospect theory of Kahneman and
Tversky [5].

S -}—
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Other Simulation Rules

The rules for running and stopping the simulation described in Section 4 can be
modified in a number of ways. Possible modifications of the running rules are (a)
targets appear in clumps of random size rather than one at a time or (b) targets are
attacked until they are destroyed. Preliminary investigation of this second modification
indicates that it may have a nonnegligible effect on the outcome of the optimization
procedure. For the preliminary investigations thus far, the effect has been a shift toward
more SP weapons.

A natural modification of the stopping rule is to continue the iteration of the simulation
until all weapons have been used and to keep track of the disutility associated with
targets that cannot be attacked. Another stopping rule is to continue the iteration until
the total number of targets that are not attacked reaches x, where x is a parameter
supplied by the user. Studies using these rules are currently underway.

Supply Networks

As discussed in Section 1, there are a number of different levels_at which the
methodology introduced here can be used. For the problems associated with supplying
a region or an individual aircraft carrier, one important complication is the existence
of the supply network. For purposes of concreteness, consider the case of an aircraft
carrier about to be loaded for a deployment. Although the primary source of weapons

is the carrier’s own magazine, there usually is a supply ship that travels with the carrier. -

Further away (in both times and space) are land-based intermediate supply depots
(ISDs). Finally, there are supply bases in the continental United States (CONUS).
Supply ships can be used to load weapons at the ISD and deliver them to a carrier task
force. The ISD can then be resupplied from CONUS. Associated with each of the
resupply actions is a delay. One can envision that the existence of a supply network
will mitigate some of the negative effects of mixes composed mainly of SP weapons,
as long as the pace of operations is slow enough that the carrier does not run out of
weapons. In order to model the effects of the supply network, one needs to consider
a dynamical version of the problem considered in this paper. The natural formulation
is a discrete time one, in which the total value is the sum of values in each ‘‘period.”’
The mix of weapons on the carrier will then increase due to supply actions and decrease
due to attacks. _

One of the most interesting questions associated with the use of a supply network
involves the initial allocation of weapons. That is, how should one spread an initial
allocation over CONUS and various ISDs (located in widely separated geographic
areas) so as to optimize the ultimate value of a mix. Such questions are currently under
investigation.

Generalization of Invehtory Theory

One of the concepts used throughout this work was interchangeability. That is, more
than one kind of weapon could be used to attack a given target. This can be interpreted
in terms of classical inventory theory as follows. As targets appear, they present a
“‘dernand’’ for weapons. The demand can be served by more than one weapon from
the stock of items. In this sense, one is faced with a generalization of classical inventory

theory since this problem is one with multiple stocks, multiple demands, and inter-
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changeability of demands and stocks. One can easily think of many situations in which
such models apply (indeed, it is difficult to think of a consumer item, from automobiles
to soda pop, in which multiple stocks are not common). The methodology introduced
here can be used to address such generalizations of classical inventory theory.
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