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The method of multiple hypotheses and the
decline of Steller sea lions in western Alaska

N. WOLF, J. MELBOURNE AND M. MANGEL

In recent years, enormous effort has been expended to explain the cause
of the precipitous decline of the western population of Steller sea lions
(Eumatopias jubatus) since the late 1970s; however, despite these efforts and
the proposal of a wide variety of hypotheses, the decline has proven to be
very difficult to explain. The authors of a recent comprehensive review of the
problem emphasized repeatedly that the system is in dire need of a mod-
elling approach that takes advantage of the data available at small spatial
scales (at the level of the rookery). We view this as an opportunity for eco-
logical detection, a process in which multiple hypotheses simultaneously
compete and their success is arbitrated by the relevant data. We describe
ten hypotheses for which there are sufficient data to allow investigation, a
method that allows one to link various sources of data to the hypotheses and
. the conclusions from this approach.
5 The decline of the western Alaska population of Steller sea lions has
roven to be very difficult to explain, in part because most aspects of the

poral vari;bility, and limited
ata. Consequently, most researchers pooled data across rookeries or across
time, obscuring spatial and/or temporal patterns (Fig. 19.1). Some of these

revious studies are described below.

Construction of a Leslie matrix model for a stable population, followed
by perturbation of various transition rates to find the most
Parsimonious way to produce a trajectory matching the observed

- decline. York (1994) determined that the initial decline could be

Predators in Marine Ecosystems, eds. 1. L. Boyd, S. Wanless and C. J. Camphuysen.
lished by Cambridge U

niversity Press. © Cambridge University Press 2006,
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Fig.19.1 (a) Composite time series of the Steller sea lion (SSL) population in
western Alaska. (b) Space-time plot of the counts of non-pups at 38 individual
rookeries from 1973 to 2002. The abscissa indicates rookeries from west to east,
with each column representing a different rookery. The ordinate indicates time,
with each row representing a single year. The area of each circle indicates the
observed number of sea lions at that rookery in that year. The arrows indicate
years in which a ‘synoptic’ survey of the entire population was taken. Notice,
however, that the dataset is much richer than the synoptic survey (panel a, with
10 points total) would suggest.
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explained most easily by a 10% to 20% decrease in juvenile survival,

Pascual and Adkison (1994) estimated the effective mortality and
fecundity rates for six individual rookeries. Adkison et al. (1993) and

Pascual and Adkison (1994) also modified the matrix model by

allowing vital rates to vary according to alternative hypotheses.
(2) Assumption of a fixed set of

match the observed census data (e.g. Blackburn 1990 (cited in
Castellini 1993), Loughlin & York 2002, NRC 2003, e
(3) Construction of a simulation model that includes the hypothesized oo

effect (e.g. Barrett-Lennard et al. 1995, NRC 2003).
A (4) Analysis of trends across space rather than across time, Merrick et al.
. (1997) observed a correlation between population growth rate and diet
T diversity among diﬂerent rookeries.
2000 2005

ern population (Fig. 19.1); or else
overall trend of the censug

POPULATION BIOLOGY OF THE STELLER SEA LION

’ Genetic (Bickham et gl. 1998) and behavioural (Raum-Suryan et al, 2002)
$ SRR evidence suggest that 144° W longitude separates distinct populations and
e e that the rookeries within each region qualify as a meta-populations (York

N ¢t al. 1996). The eastern population is estimated to have been growing

East slowly since survey methods were standardized in the 1970s, but the west- ot

, ern population declined by more than 80% (Fig. 19.1). The decline appears b
SSL) pop ulation in to have begun in the eastern Aleutians and spread from there, with asso- o
1ps at 38 individual
ies from west to east,

: ciated changes in size-at-age and condition
inate indicates time, 1998, Sease & Loughlin 1999,
ircle Indicates the listed as ‘Endangered’ in 1997
'€ artows indicate Steller sea lions are larg
as taken. Notice,
urvey (panel a, with (Theragra chalcogramma)
have also been the mos

(Castellini 1993, Calkins et gf.
Andrews ¢t al. 2002). The western stock was
ely opportunistic foragers. Walleye pollock
are currently the principal diet component; they
t abundant prey species since the mid 1970s,
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when the North Pacific dimate switched to a warm regime favouring
pollock (Alverson 1992, Anderson & Blackburn 2002). Other important
prey species include Atka mackerel (Pleurogrammus monopterygius), Pacific
cod (Gadus macrocephalus) and Pacific herring (Clupea pallasi).

RELEVANT FISHERIES

Walleye pollock, Atka mackerel and Pacific cod are harvested primarily
using groundfish trawling gear. The largest groundfish harvests in the area
occur in the Bering Sea. The peak catch occurred in 1972, followed by a
decline in the late 1970s and a recovery in the mid 1980s. Pollock comprise
over 76% of the groundfish caught in the Bering Sea (NRC 2003). In the
Gulf of Alaska, the pollock catch peaked between 1976 and 198s. A fishery
for groundfish developed in the Aleutian Islands in the late 1970s.

OTHER MARINE MAMMALS

The decline of the Steller sea lion was preceded by declines in populations
of northern fur seal (Callorhinus ursinus) and Pacific harbour seal (Phoca
vitulina) occupying the same region. The causes of these declines remain
similarly unexplained (Merrick 1997, Springer et al. 2003). The range of the
western population is also home to a large population of killer whales (Orei-
nus orca); some of these are ‘“transients’, whose diet is thought to consist
mainly of marine mammals, including Steller sea lions (Barrett-Lennard
et al. 1995, Matkin et al. 2002). Unfortunately, very little is known about the
spatial or temporal distribution of these whales. Steller sea lions may com-
prise 5% to 20% of their diet (Matkin et al. 2002). The stomach of one killer
whale that washed up on a beach in British Columbia contained flipper tags
from 14 different Steller sea lion pups, all of which had been tagged at the
Marmot Island rookery 3 to 4 years before (Saulitis et al. 2000).

COMPETING HYPOTHESES

Competing hypotheses have been proposed to explain the decline of the
western population. Sufficient data exist to explore ten hypotheses with

alternative models and rank them according to their explanatory power
(Hilborn & Mangel 1997).

H1 to H3: food limitation hypotheses

We assume that fecundity (H1), pup recruitment (H2) or non-pup sur-
vival probability (H3) is a positive function of the local encounter rate with
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groundfish prey. Specifically, starvation (H2, H3) or termination of preg-
nancy (Hr) occur if an animal experiences a long series of unsuccessful for-
aging attempts. Under poor foraging conditions, animals may lose condi-
tion because they consume less prey, spend more time and energy hunting,
or both. Body condition, in turn, is a significant determinant of the probabil-
ity that a pregnant female actually completes her pregnancy and produces a
pup (Pitcher et al. 1998). Poor foraging conditions also increase the proba-
bility of starvation and expose the animals to additional predation risk dur-
ing any extra time spent foraging, leading to elevated mortality rates. The
probability of pup recruitment may be linked indirectly to prey availability
if mothers are more likely to abandon pups under poor foraging conditions,

or directly when the inexperienced pups begin foraging for themselves near
the end of their first year. :

H4 to H6: ‘Junk-food’ hypotheses

We assume that fecundity (H4), pup recruitment (Hs) or noen-pup sur-
vival probability (H6) is a positive function of the local encounter rate
with groundfish prey other than walleye pollock. Specifically, starvation
(Hs, H6) or termination of pregnancy (H4) occur with higher probability
when alternative prey are scarce. The fact that a pollock-intensive diet might
lead to poor body condition and depressed vital rates was first proposed by
Alverson (1992), and was supported by evidence from captive sea lions that
lost weight on a diet of pollock alone (Rosen & Trites 2000) and from correl-
ative studies of diet diversity and population decline (Merrick et al. 1997).
Pups, with limited dive depth, may be especially sensitive to the species

composition of the prey base because some prey types are probably inacces-
sible to them.

H7 and H8: fishery-related mortality hypotheses

We assume that survival probability of pups (H7) or non-pups (H8) is a
declining function of the local encounter rate with groundfish trawling
operations. Incidental mortality, usually entanglement of sea lons in fish-
ing gear, is now estimated to be killing less than 100 animals per year (Perez
& Loughlin 1991, Loughlin & York 2002), but in the pastit was much higher
(NRC 2003). It was legal to shoot sea lions in defence of gear until 1990,
and there are anecdotal reports suggesting that shooting (even unrelated to
defence of gear) may still occur (NRC2003). It may be very difficult to deter-
mine whether incidental or deliberate mortality is the problem, since both
might scale with fishing effort. However, it seems likely that entanglement
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would be a bigger problem for naive pups (Loughlin et al. 1983

), Whereag
adults are more likely to be targeted by shooters.

Hg and H1o: predation-mortality hypotheses

Transient killer whales are predicted to prey upon sea lions or their pups
when the whales’ preferred prey, harbour seals, are scarce (Springer et al,
2003, Mangel & Wolf in press). Therefore, survival probability of sea lion

pups (Hog) or non-pups (Hro) is predicted to decline if local harbour seal
density falls below a threshold value.

THE APPROACH

The hypotheses and data were linked by the following procedure (all the
details can be found in Wolf and Mangel (2004)).

(1) We formulated the alternative hypotheses as one-parameter scaling
functions that modify vital rates according to local conditions.

(2) We sorted the data concerning ‘local conditions’ by rookery and year.

(3) We formulated a suitable population model, with appropriate process
uncertainty and observation error (described below).

{4) We calculated the likelihood for all possible values of all parameters
(one per hypothesis) simultaneously.

(5) We ranked the effects in terms of statistical support and strength of the
effect.

In contrast to all previous modelling approaches, this procedure does not
require a complete dataset, and makes use of variation both between rook-
eries and across time.

In the population model (step 3), we assume two age classes: pups and
non-pups. The population dynamics (Box 19.1) can then be characterized
by the survival and fecundity of non-pups and the survival of pups to the
non-pup stage (recruitment). There are thus three parameters that charac-
terize how population size changes from one year to the next. Because each
of these parameters must be between o and 1,

process uncertainty (sensu
Hilborn and Mangel (1997)

) is captured using binominal transitions. In
particular, three binomial distributions represent all possible transitions in

the model: recruitment (the number of pups that survive from the previous
year, with rate parameter p), sutvival (the number of non-pups that sur-
vive, with rate parameter o) and fecundity (the number of non-pups that
give birth to new pups, with rate parameter ¢). The probability distributions
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determined by the per-capita probability of reproduction by female
non-pups, N(i, #), in that year at the same rookery. The number of
TON-pups in a particular year is determined by the survival of non-
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Pups from the previous year and the recruitment (survival to age
1) of pups produced in the previous year. These transitions capture
process uncertainty through a set of nested binomial distributions.
Although the true number of pups can be estimated by aerial survey,
the observed number of non-pups, Nobs(i, #), is smaller than the true
number —so a beta-binomial mode] is used to account for observa-

tion error (see Fig. 19.2).
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d number of 1on-pups is smaller than the true number

Mangel 2004).
We set fixed back

ground values for the life-history parameters (denoted
bY Po, 0o and ®o)

that are modified by local conditions to reflect a particular
hypothesis. We chose background values from observed values measured
on the Marmot Island rookery by Calkins and Pitcher (1982) and used by
York (1994), and Pascual and Adkison (1994). The annual growth rate of a
Population using these values is 0.4% (Pascual & Adkison 1994). Fecundity
estimates also account for only about 50% of the Pups being female (York

1994, NRC 2003) and for about 50% of the non-pup Population being juve-
nile (Holmes & York 2003).
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Box19.2 Hypotheses to explain the decline

We formulated ten different hypotheses as functions relating life-
history parameters of Steller sea lions to local conditions. Function i
(i =1,2,3,...,10) is parameterized with a single unknown constant,
¢, in such a way that a zero value for the constant indicates no effect
for hypothesis i. Hypotheses 1 to 3 are related to food; specifically,
they propose that low prey abundance leads to diminished fecundity,
Pup recruitment or non-pup survival rates. These are captured as
separate Holling Type II1 functional-response curves, with the half-
saturation values denoted by ¢;, ¢, and G; respectively. Hypotheses 4
to 6 propose that an elevated fraction of pollock among available prey
in the environment leads to diminished fecundity, pup recruitment
Or non-pup survival'respectively, for the sea lions. These effects are
captured by raising the fraction of non-pollock in the environment
to the power ¢; (i = 4, 5, 6), where ¢; > o. Hypotheses 7 and 8
describe the possibility that increased fishing activity near a rook-
ery leads to diminished pup recruitment (hypothesis 7) or non-pup
survival (hypothesis 8). We assume that this is characterized by a
negative exponential distribution with parameter ¢; > o. Hypotheses
9 and 10 are related to predation pressure by killer whales. They are
investigated by using optimal diet theory (Mangel & Wolf in press)
in which it is assumed that predators consume sea lions (depress-
ing recruitment or survival rates) when the density of the more prof-
itable prey (harbour seals) falls below a critical value. The survival
rate is depressed by ¢; (i = 9, 10) (see Fig. 19.3)

Finally, for the case of the predation-mortality hypotheses {Hg and
Hio), we assume that killer whales broaden their diet to include Steller
sea lions when harbour seals are scarce, so that the survival probability
of sea lion pups (hypothesis ¢) or non-pups (hypothesis ro) decline when
local harbour seal populations fall below a critical value (Mangel & Wolf,
In press). In particular, we set the critical harbour seal density by com-
paring the densities of harbour seals around sea lion rookeries with rising
and falling populations, and choosing a point between these distributions,
(If killer whale predation is a significant source of mortality for Steller sea

lions, then the densities of harbour seals around sea lion rookeries with
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rising and falling populations should tend to be above and below the criti-
cal value respectively.)

Thus, the local value of each vital rate is calculated by multiplying the
background rate by all the relevant scaling factors. Note that there are ten
unknown parameters, one per hypothesis. In each case, a parameter value
of zero indicates that the corresponding hypothesis has no effect.

SOURCES OF DATA

In order to test the various hypotheses using the model, we acquired
data on relevant prey species from triennial groundfish survey results
collected by the National Marine Fisheries Service/Alaska Fisheries Sci-
ence Center (NMFS/AFSC) in the Gulf of Alaska/Aleutian Islands
(http:/ /www.afsc.noaa.gov/race/groundﬁsh/ default_gf-htm). We calculated
estimates of fishing activity in minutes per year from the NMFS groundfish
fishery observer database. This database covers foreign and joint-venture
groundfish fisheries from 1973 to 1991 and domestic fisheries from 1986
to 2001,

Estimates of harbour seal density came from online NMES/AFSC
marine mammal stock assessthents and reports (Withrow et al. 2000,
2001, 2002, Angliss & Lodge 2002), a Marine Mammal Commission
report (Hoover-Miller 1994), and eight journal articles (Bailey & Faust
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1980, Everitt & Braham 1980, Pitcher 1990, Frost et al. 1999, Mathews &
Pendleton 2000, Jemison & Kelly 2001, Boveng et al. 2003, Small et al.
2003). The Steller sea lion counts were from the NMFS JAFSC/National
Marine Mammal Laboratory (NMML) online database (http://nmml.
afsc.noaa.gov/AlaskaEcosystems /sslhome/stellerhome html). We limited
our consideration to year-rookery combinations in which counts from June
or July were available for both pups and non-pups, and to rookeries for
which such censuses from at least two different years were available. When
more than one count was available for a particular rookery in a single year,
we took the average. Several sets of adjacent rookeries were censused as one
large rookery early in the dataset and as separate rookeries in later years. In
some of these cases, we combined the counts from the separate rookeries
inlater years in order to extend the time series for the ‘Joint’ rookery. When
prey abundance or harbour seal density estimates were missing for certain
area-year combinations, we*used linear interpolation to estimate the miss-
ing value from reported values in earlier and later years for the same area.

Further details about the acquisition and treatment of data are found in Wolf
and Mangel (2004).

RESULTS

We estimated the unknown parameters by comparing the predictions of
the stochastic population model with the observed counts. To do this we
started with the beta-binomial observation error distribution and a two-life-
stage stochastic population model employing the local vital rates, and cal-
culated the probability of observing the sequence of reported pup and non-
Pup counts at a particular rookery, given: (a) relevant local conditions and
(b) a particular set of parameter values in the hypothesized equations. We
then computed the maximum-likelihood estimate (MLE) of each parameter
and constructed ten one-dimensional profile likelihoods (Hilborn & Mangel
1997) so that we could examine the support for each parameter, holding the
others at their MLEs. For each parameter, we computed a profile-likelihood
interval by finding the area under the curve that contains 95% of the total
area.

The result of these computations is shown in Fig. 19.4. Each column
fepresents one class of hypothesized impacts (overall abundance of food,
fraction of food that is pollock, fishing activity or predation) and the rows
Tepresent the hypothesized effects on fecundity, recruitment or survival.
Each plot shows the profile likelihood for the relevant parameter in the
functional form. A peak at a non-zero value indicates support for the
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Fig. 19.4 Likelihood profiles for the parameters associated with the functional
forms for the four classes of hypotheses and their effects on the relevant
life-history parameters. See text for further details.

corresponding effect. We therefore find: strong support for hypotheses r,
5 and 10; weak support for hypothesis 4; and no support for the other six
hypotheses.

We also computed Aikaike’s information criterion (AIC) weights
(Burnham & Anderson 1998) from the likelihood information. Hypothe-
Ses I, 4, 5 and 10 account for >99% of the AIC weight (and hypothesis 4
only provides 5% of that total). In Fig. 19.5, we show the functional forms
associated with the different hypotheses, evaluated at the MLE values of the

parameters, and in Fig. 19.6 we show the lost production of Steller sea lions
due to the effects in hypotheses 1, 4,5 and 10.

DISCUSSION

The strong message of ecology is that the world changes and that the rea-
sons for change are manifold. Thus, rather than trying to ‘prove’ one mecha-
nism, we should recognize that niultiple mechanisms will almost always be
at work, and we should ask how to weigh the importance of different mech-
anisms. It is this approach that we have taken in understanding the decline
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Fig. 19.5 Vital rate functions corresponding to MLE parameter values. {a)
Hypothesis 1: food availability affects fecundity (magnitude of effect: medium).
(b) Hypothesis 4: pollock fraction affects fecundity (magnitude of effect: weak at
best). (c) Hypothesis 5: pollock fraction affects pup recruitment (magnitude of
effect: very strong). (d) Hypothesis 10: harbour seals (via predation) affect
non-pup survival (magnitude of effect: weak but persistent).

of the western population of Steller sea lions. There is good evidence for
two strong effects: Hi, total prey availability affects fecundity; Hs, pollock
fraction in the environment affects pup recruitment. One moderate effect
was found: Hio, harbour seal density (predation) affects non-pup survival.
There was also marginal evidence for one weak effect: Hy, pollock fraction
in the environment affects fecundity. No evidence was found for any of the
other hypotheses. What our work has done is to guide the weight of the evi-
dence, when all plausible hypotheses are competing, towards those that win
the competition.

Although we used the word mechanism, we recognize that a study such
as this one cannot demonstrate causality. It would seem that Hr is a rela-
tively clear and simple mechanism: lower abundance of all prey types leads
to lower fecundity through the direct effect of reduced resource accumu-
lation by adults and thus reduced storage for reproduction. Hro also has
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a clear mechanism, but note that its MLE is about 0.01, 0 that the effect
of changes in the breadth of the diet of killer whales leads to only a 1%
reduction in non-pup survival, and then only in cases where harbour seal
numbers are sufficiently low.
On the other hand, H4 and Hs are more complicated. A high pollock
fraction can result either from high pollock or from low non-pollock, and
either of these could be the underlying factor. Furthermore, the mechanism
might be something completely different for which pollock fraction is only
a correlate. For example, juveniles may require some easily caught subset
of prey species because they are unable to dive deep enough or swim fast
enough to catch anything else. (In the current dataset, the fish biomass is
not broken down by size class of fish. However, the really small fish and the
really big ones are probably not useful to sea lions, Thus, some additional
thinking is required about how to modify the survey data to address this
question.)

Our results also suggest an adaptive management plan in which one
designates the areas around some of the rookeries as experimental zones
in which to make fishery quotas contingent upon the results of pre-fishing-
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* rookeries around which fishing is reduced or prohibited if the total
prey biomass in the pre-season zone is below a critical threshold
(determined by ;). ’

¢ rookeries around which a directed pollock fishery occurs if the
pre-season survey suggests pollock fraction is above a critical threshold
(determined by c).

This combination of rookery types would allow sufficient variation in treat-
ment, which is crucial in adaptive management. Sea lion vital rates would
be monitored in the same areas to see if the management plan was having
a positive effect. Before organizing any adaptive management, it would be
possible to use our model to simulate forward and suggest a time scale over
which results might be expected to appear.

Our results also suggest a form of ‘adaptive observation’: identify rook-
eries with high numbers and low numbers of harbour seals (regardless of
the number of sea lions). The prediction of Hio is that the per-capita attack
rate of killer whales on sea lions will be higher around rookeries where har-
bour seal densities are low. Careful monitoring of killer whale attack rates
would provide a natural test of hypothesis 10: if low harbour seal numbers
are associated with declining sea lions, but not with elevated killer whale
attack rates, then there must be some other factor to explain the observed
correspondence between low harbour seals and declining sea lions.

The question ‘Is it food?’ has been asked a number of times in the con-
text of the decline of Steller sea lions. As with most questions in biology, we
shall never be able to ‘prove’ that it is lack of food. However, we conclude
that the weight of the current evidence is that it is indeed food — and both
the quantity and quality of the food matters. The more recent question ‘Is
it killer whale predation?’ can be answered too: sometimes, if harbour seal
populations are sufficiently low; however, the predation does not cause a
large reduction in survival, but has a persistent annual effect.
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