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The problem of selecting a pesticide application strategy in the face of increasing resistance
to the pesticide in the pest population is dealt with. The grower in this situation may do better
by sacrificing a portion of the present crop in return for a reduced resistance to future
applications. The model presented represents an attempt to forge a compromise between
excessive complexity, rendering the model difficult to study, and excessive simplicity, rendering
the model useless. The effects of timing of the application of the pesticide within the season are
discussed. The principle conclusions are the following: (i) If immigration of pests from refugia
is significant then proper timing of the application of pesticide may be used to help alleviate
resistance growth. (i) Resistance growth may best be reduced by spraying earlier than what
would otherwise be the best time. (i) The value of the discount rate (and of the time horizon)
has a profound effect on the nature of the optimal policy. © 1985 Academic Press, Inc.

1. INTRODUCTION

The development of resistance to pesticides in agricultural pest populations is
common and well known. Each application of a pesticide selects in favor of
individuals resistant to that pesticide. Hueth and Regev [11] have pointed out that
susceptibility to a pesticide in a pest population may be thought of as an exhaustible
natural resource that is “mined” with each pesticide application. In choosing a pest
management strategy the agricultural decision maker should take this “mining”
effect into account. The intensity and timing of the application of the pesticide
should be chosen to balance the reduction in future susceptibility of the pest
population with losses in present crop yield due to the pest.

This is the second in a series of papers which addresses some of the theoretical
aspects of this pest management problem. We attempt to develop a model which is
sufficiently simple that its structure is relatively transparent, and sufficiently realistic
that it provides some useful insight into the problem. We study what can only be
described as a caricature of the real system; attempts to include further realism lead
quickly to overwhelming complexity. Our work is therefore intended primarily as a
complement to studies such as those of Gutierrez et al. [10] and Shoemaker [14]. We
hope our work may provide some intuition for the behavior of their more realistic
models.

We do not attempt to link our fnodel too closely to any particular crop—pest
system. The model was, however, originally motivated by the cotton—spider mite
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system described by Carey [3]. As such, we make the following basic assumptions.
The crop is an annual, harvested at the end of the season. The pests do not
overwinter in the field to any extent, rather, they arrive primarily by immigration.
Gravid females establish breeding populations that may progress through several
generations during the course of the season. The pest population is controlled by
application of a chemical pesticide. This pesticide is applied prophylactically. We
consider primarily the case of a single pesticide application per year, although we
discuss the case of more frequent applications. In many cases, cotton growers are
able to limit themselves to a single acaricide application per year (Carey, personal
communication), so that this assumption is not entirely unrealistic.

In our previous paper [12] we presented a model for the pest—crop system
described above. The intraseasonal dynamics of the model are formulated in
continuous time and the interseasonal dynamics are in discrete time. Shoemaker [14]
uses a similar approach. The reader may consult our previous paper for a survey of
the literature in this field. Our earlier paper presented several variations of the
model. The intent was to examine the effect of various assumptions concerning the
age structure and genetics of the pest population. The conclusion was that a very
simple model gives results which are qualitatively the same and quantitatively close
to those obtained using more complex models. Based on our previous results, in this
paper we use only the simplest model.

We are concerned with the multiseasonal crop—pest management problem. We
assume a fixed time horizon that is sufficiently distant that if the pesticide is applied
intensively every season, the population becomes resistant by the time horizon. The
basic management problem is to maximize the discounted crop yield over the time
horizon of the problem. Pesticide resistance does not enter explicitly into the
management problem; rather it enters implicitly by reducing the crop yield in later
seasons.

Section 2 contains a brief review of the equations of the model. In Section 3 we
begin the study of the multiyear optimization problem. We first formulate and solve
a dynamic programming problem that gives an application strategy that approxi-
mately maximizes the total net profit given a fixed time horizon. We then check our
results by solving the same problem using a nonlinear programming scheme. Our
results throughout the paper are entirely numerical; nothing is rigorously proved.
There are some questions of mathematical interest associated with our model,
particularly regarding the generality of its qualitative conclusions, but we do not
pursue them here in any mathematical way.

In Section 4 we briefly study an alternative form of control policy that we call a
“myopic” strategy. In this strategy the grower does not plan ahead over the entire
time horizon, but rather reacts to events of the previous year. We feel that this
strategy may be more realistic in many cases. Section 5 contains a discussion of our
results, with particular attention to the robustness of the model.

2. DYNAMIC MODEL OF THE CROP -PEST SYSTEM

In the single season model, we consider events occurring in a single, spatially
uniform field during a single season of length 7. Since events in one field are
obviously influenced by events in another, we are implicitly assuming that either this
influence is not strong or that events in neighboring fields are roughly the same as
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those in the field under consideration. At the start of the season there are no pests in
the field. Immediately after the season begins pests begin to immigrate at a rate I(?),
where 0 < ¢ < T, from a “pool” into the field. Some of the immigrants are gravid
females who lay eggs and establish breeding populations. The descendents of these
early immigrants continue to breed and are joined by later immigrants. At time T
the crop is harvested and the surviving pests merge with the pool to form the basis
for the next season’s pool.

In our previous paper [12] we found that a number of simplifying assumptions
may be incorporated into the model without seriously changing the form of its
solution. In this paper we study essentially the simplest form of the model. After
presenting the model below, we discuss some of its more obvious (or glaring)
simplifications. It is important to bear in mind that our intent is not to provide a
model that realistically simulates the detailed dynamics, but rather one that has a
simple form and that simulates the effect of the dynamics with reasonable accuracy.

We assume that both the pest and the crop population grow exponentially, that is,
that the end of the season is reached before density-dependent population regulation
becomes a factor. The pest population is initially zero and grows due to the
combined effects of immigration and reproduction. The fundamental measure of the
pest level is the population variable x(#). The crop is represented by a variable c(z).
We assume that the value of the crop at harvest time is directly related to the value
¢(T) of this variable. We do not explicitly state what ¢(¢) is, although, for example,
Regev et al. [13] use an analogous variable that represents leaf mass. In any case, we
assume that the pests reduce this variable at a rate proportional to their numbers.

In order to include genetically conferred resistance in the model, the pest
population is divided into resistant and susceptible subpopulations. These are
denoted by the subscripts R and S, respectively. The basic equations of the single
season model are then

R

dx
Td‘_:pﬂ.(r)xk-'-nuRI(t)a xR(0)=0!

dxs
= = ps(Dxs+psI(r),  x5(0) =0, (21)
%=rc—v(f)(xR+xs) ife>0

=0 ifec=0, ¢(0)=c,.

Here xg(?) and xg(?) are the growth rates of the resistant and susceptible popula-
tions, pyp and pg are the fraction of resistant and susceptible types in the pool, I(¢)
is the immigration rate from the pool to the field, r is the growth rate of the variable
¢, and v(t) is the rate of consumption (or damage) of the crop by the pest.

A few comments are in order at this point concerning assumptions. The pest
growth rates p,(7) will in general be positive, but will be negative during the period
immediately following the application of a pesticide. Our model does not explicitly
take natural controls such as predators into account, but these may be implicitly
included in the functions p;(¢). Similarly, the frequently observed “rebound” effect,
in which a pest population grows dramatically after the effects of an insecticide has
worn off (due to elimination of predators, hormoligosis, or other effects), may be
accounted for in the construction of the p;(¢).
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In general, a pest population does not economically damage a crop over the entire
growing season. This may be taken into account in the formulation of the function
v(?). As an alternative, which we shall follow, one may limit the duration of the
simulation to the period of susceptibility of the crop to that pest.

In actual agroecosystems, the rate at which events proceed is governed by
temperature as well as time. This has led to the introduction of the notion of
“physiological time,” which is measured in day—degrees and incorporates the effects
of temperature (e.g., [16]). Agricultural experiment station advisors are encouraging
growers to schedule events by physiological, rather than chronological, time. Since
the physiological times for the crop and the pest will, in general, be different, the
explicit incorporation of physiological time would introduce an unacceptable level of
complexity. We retain a single time variable ¢, which we regard as incorporating in a
general way the effects of temperature.

Finally, the model incorporates no age structure, and only the most simple
genetics. In our earlier paper [12]), we provided simulation-based evidence that
models of this simple form have the same qualitative behavior as more complex,
detailed simulation models that include age structure and genetics. Since our
objective is to obtain qualitative insight rather than explicit numerical predictions,
we feel that the simpler model is more suitable.

Our philosophy of modeling the effect of the process, rather than the process
itself, extends to our choice of a function to represent the effect of the pesticide. We
model this with the pulse function

t) = ift. <t<t +8
s(t)=m ifr,<e<y (22)

=0 otherwise

where 7 represents the intensity of application, ¢, is the time of application, and § is
the duration of the effect. The actual effect of an externally applied pesticide would
of course wear off gradually. The pulse function, however, gives a more convenient
mathematical form to the model and does not change the qualitative behavior of the
solutions. We assume that the pesticide is applied prophylactically, and we devote
most of our attention to the case of a single application per season. The parameters
n and ¢, are then the control variables of the model. The basic form for the growth
rate functions p,(?) is

ws(t)

s =R,S. (2.3)

p(t)=r—

During the period when the pesticide has no effect, we have p,(¢) = r,. When the
pesticide is active, we have

p(D) == (24)

Figure 1 shows sketches of functions of this form. For small values of 7, p; decreases
in an approximately linear way. The parameters e; determine the rate of decrease,
with eg < eg. As 7 increases, the effect of the pesticide is assumed to saturate; this
saturation level is determined by w, which is assumed the same for resistants and
susceptibles.
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Fi1G. 1. Sketches of pg and eg as functions of 5 (cf. Eq. 2.4).

We now turn to a description of the interseasonal dynamics of the model. The
simulation is carried out for N seasons. The discrete variable n, with 1 < n < N,
indexes the season. The control variables 1 and 7 depend on n, as do the fractions
pts and pg. Indeed, it is only through pg(n) and pg(n) that the dynamics of one
season have any effect on those of another. If we let x(f; n) denote the value of xy
at time ¢ in season n, and similarly for xg(; n), then the discrete dynamics of pg(n)
and pg(n) are defined by

xg(T;n — 1)

= =2,3,...,N,
#r(n) xg(T;n— 1)+ x4(T;n = 1)° "

(2:5)
.'-“'R(l) =Po

and pg(n) = 1 — pg(n). This says that the pool is essentially depleted at the end of
the season. The survivors of the season are randomly mixed together, and the
proportions of the two types in the population at the end of one season determines
these proportions for the subsequent season. We assume that these proportions are
fixed for the course of a season, and do not change during the interseasonal period.
Once again, these assumptions do not alter the qualitative behavior of the model, but
make it considerably simpler.

Equations (2.1)-(2.5) completely characterize the dynamics of the model. A
considerable economy of representation may be obtained by performing a few
simple manipulations. First, we define the variables y,(t; n) by

yi(t;n) = x,(t;n)/p,(n), i=R,S. (2.6)

Substituting from Eq. (2.6) into (2.1) and noting that the p,(n) do not depend on ¢
yields

dy;
2 - p(6m)y, + 1(0). (27)
This equation is useful, particularly in the dynamic programming solution of Section

3, because it does not contain p,(n). We shall define our optimization problem in
terms of y,(t; n) rather than x,(z; n).
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Next, we define the ratio F(n) by

)’R(T;”)
ys(Tom) 28)

Substituting from Eq. (2.8) into (2.5) yields

F(n) =

k= DF(-)
() = N Fn—1) 1]+ 1" (29)

This relation provides a convenient, explicit form for the dynamics of pg(n). In
particular, expanding (2.9) in a Taylor series yields

e (n) = wr(n = 1) F(n - 1) + 0(k (n - 1), (210)

which indicates that when the fraction of resistants is small, it grows geometrically.
This same effect is seen in the model of Comins [6].
In summary, our model is given by the equations

d
_;}f,t_R=PR(f§"))’R+I(‘), yr(05n) =0
d
=2 = psltsm)ys + 1(1), »5(0;m) = 0
d .
szrc_”(‘)[#k(”)()’R_}'s)+YS] if c(t;m) >0
_ (2.11)
=0 ife(e;n) =0,
c(0;n) = ¢,

___ kr(n—-1F(n-1)
kr(n) = pr(n —1)[F(n-1)-1] +1°

0<t<T, 1<n<N,

pr(1) = p,

together with Eqs. (2.2), (2.3), and (2.8). In the next section we consider the
economic optimization problem associated with this model.

3. THE MULTISEASON ECONOMIC OPTIMIZATION PROBLEM

The problem is to maximize profit from the crop harvest over N seasons, subject
to discounting. We assume that the decision maker expects a new pest control
technology to be available at the time horizon so that resistance to the pesticide does
not enter explicitly into the profit function, which is

J = ;la’f_llc(T;n) - cpwj(n)]. (3.1)

In this equation ¢(T; n) is the value of the crop variable at time T in year n,
a = (1 + y)~! where y is the discount rate, and ¢, is the relative cost per unit of

pesticide.
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The multiseason economic optimization problem is to choose a strategy
{n(n),t(n)}, n=1,..., N, to maximize the profit function J given in Eq. (3.1),
subject to the dynamics of Egs. (2.11). Our problem is so simple that it can be solved
numerically using standard nonlinear programming subroutines. However, most real
problems of this type are too complicated for this method of solution, and must
instead be solved using dynamic programming, often with simplifying assumptions
to make the problem tractible. Shoemaker [14] presents an example of the ingenious
use of dynamic programming to solve a very complicated problem of this sort. Since
we are interested in relating our problem to the more complicated variety, we focus
on the dynamic programming solutions, and use nonlinear programming solutions as
a check. Our nonlinear programming code uses the IMSL package ZXMIN, and is
based on a similar program written by Dr. S. Yakowitz. We begin by making a
further simplication, which may, however, more closely represent actual practice.

In our earlier paper [12] we concluded that the pest population in a given year
could be controlled with pesticide intensity and that the buildup of resistance could
be controlled by proper timing of the pesticide application. An increase in pesticide
intensity leads to an increase in crop yield that is uniform over the first several
seasons. In general, pesticide intensity has a much lower effect on the buildup of
resistance than does timing of the pesticide application.

Therefore, in the dynamic programming solution we fix % at a value independent
of n and use r,(n) as the sole control variable. To select a proper value for 5 we
consider the single year optimization problem of maximizing over n the quantity
c(T) — cgn, with ¢, held fixed. The solution #* of this problem depends on ¢, and
pr- Mangel and Plant [12] find that the value of #* is virtually independent of ug
and ¢, over a wide range of values of pp and ¢, We therefore adopt the following
strategy. Before the start of the dynamic programming problem, ¢, and uy are fixed
at moderate values and the optimal #n* maximizing ¢(T') — c,n is determined. The
parameter 7 is then fixed at this value 7»* for the solution of the dynamic
programming problem. In the nonlinear programming solution, we treat both n and
t, as free parameters. Our solution to the dynamic programming problem is as
follows. Let I'(z,(n),pg(n)) = c(T;n) —cn*. Then the simplified multiseason
problem is to find a t,(n) to

maximize J = Y. a""T(t,(n), pr(n)) (3.2)

n=1

subject to the dynamics described in Egs. (2.11). Let J*(u) denote the return from
stages n through N, assuming that the optimal policy is followed and that the
current value of pg(n) is p. Then by the principle of optimality the appropriate
functional equation is

Jr(p) = max {T(t,p) +al%y(G(n, ;1)) (3.3)

where G(n,p;t,) is defined by the right-hand side of Eq. (2.9). The solution
proceeds by finding JF(p) using

Ji(p) = max T(z,n) (34)
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and then solving Eq. (3.3) recursively. The optimal profit is then
J* = J*(po)- (3.5)

The solutions to the dynamic programming problem were obtained as follows. The
analytical solutions of Egs. (2.11) were first written out. These solutions are simple
to obtain but long to state, and are not reproduced here. Following the usual
procedure of Bellman and Dreyfus [1], the continuous problem of Eq. (3.3) was
replaced by one in which the control variable r, assumed discrete values. For
simplicity we restricted ourselves to integer values; the nonlinear programming
solution removed this restriction.

Table I shows the values of the parameters chosen for our calculations. These are
the same as those used in our earlier paper [12]. The choice of these parameters is
somewhat arbitrary. As will be pointed out in the discussion, the qualitative behavior
of the model is highly insensitive to the values of the parameters.

A convenient indication of the single season yield is the ratio f defined by

f=¢(T)/cee™. (3.6)

Figure 2 shows a plot of f vs ¢, for the parameter values of Table I. The value of pg
is p,. The optimal value of ¢, is t* = 6. We shall refer to this colloquially as the
single season optimal value. Note that, in fact, the optimal value t* depends on pp.
We use the term “single season optimal” to mean the optimal value if resistance is
negligible. In fact, for pg = 1, t¥* is also approximately 6.

Also shown in Fig. 2 is a plot of the ratio pg(2)/p, versus t.. Unlike the crop
yield, this ratio increases with increasing z,.. For any multiseasonal strategy that
conserves susceptible pests, the value of ¢, may not be the single season optimal
during some years. It is evident from Fig. 2 that it will never be useful to set ¢,
greater than ¢* since this only decreases the fraction of susceptibles. This discussion
should make easier the interpretation of the multiseason optimization results, which
we now present. Figure 3 shows plots of the optimal timing ¢ (n) with zero discount
rate (a = 1). The figure shows ¢ (n) plots for several different time horizons.

For a sufficiently short time horizon, the multiseasonal optimal strategy is simply
to spray at the single season optimum in each season. Moreover, for any value of the
time horizon it is optimal to spray at this value of 7, when n is nearly equal to N,
since at this point the cost of future resistance is small. As the time horizon

TABLE I
Parameter Value Parameter Value
Iy 1 8 2
I 1
r 0.1 w 20
v 0.005 Po 10 74
T * 20 [ 1
ep 35 < 0.5
eg 5
a 02
rs 0.2 n* 2




PESTICIDE APPLICATION STRATEGY

0.8

0.6

TONE

0.2

53

F1G. 2. The effect of spraying time 1, on relative yield and resistance buildup. Parameters are set to
their first year values. The curve f(1) gives the relative yield, and the curve pp(2)/p, gives the ratio of pg
in the second year to that of the first.
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F1G. 3. Optimal spraying time #,(n) for four different time horizons: N = 5, N=10, N =15, and

N = 20.
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lengthens, it becomes cost effective to spray early during the early seasons. Based on
Fig. 3, we can say that by spraying early the grower sacrifices a portion of his
present crop to delay the buildup of resistance, thereby gaining a greater crop in the
future. Note that under our assumption of zero discount rate, each season’s crop has
equal value.

Figure 4 presents the results of Fig. 3 in another, more compact form. The
abscissa is still n, but the ordinate is a logarithmic plot of pgp(n). The dots show
values of pgz(n) assuming the optimal policy is followed. These dots are connected
by thin lines to aid the eye. The heavy lines show intervals of a given optimal value
of 1, as a function of the season in a 20-year problem, and of the current value of
pr- Once again, the thin lines serve only to aid the eye. The optimal control policy
for a given time horizon N < 20 and a given present value of 4y may be obtained
by starting at n = 20 — N + 1 and following the appropriate trajectory. Since ¢ is
actually a continuous control variable, the figure may be thought of as giving an
approximation to the level curves on the optimal ¢, surface; we shall see that this is a
good approximation of these level curves.

For small values of n, the ug(n) trajectories are approximately linear, indicating
the approximately geometric growth mentioned in Section 2. Also, for small » the
pr(n) trajectories are approximately parallel to the “level curves” of r.. This
indicates that the optimal policy during the early seasons is to spray at about the
same fixed time in each season, and is due to the negligible value of py in the early
seasons.

107"

1074

|0 ll'll’ll'llolvlllalllFll
n
F1G. 4. Optimal strategies as functions of up and n. The dots show values of pg(n) over a 20-season

horizon, assuming the optimal policy is followed. The heavy lines separate intervals of optimal ¢, for each
n. The thin lines are only an aid to the eye.
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FI1G. 5. Optimal spraying time t,(n) for N = 20, with four values of a.

Figure 5 shows how the discount rate influences the optimal policy for a 20-year
time horizon. There are two principle effects. The first is to make the policy
nonmonotonic; the second is to move the policy toward the single season optimal in
each season. The reason for the former effect is that the early season crop, which
does not suffer from the effects of a highly resistant pest population, becomes much
more valuable due to the discounting of future crops. The reason for the second
effect may be explained as follows.

Figure 6 shows a plot similar to that of Fig. 4, but for the case « = 0.9. This figure
indicates that it is never optimal to spray earlier than ¢, = 4. The figure also shows
that it is, roughly speaking, a good policy to spray early during those seasons when
1g, the fraction of resistants, has an intermediate value. During the early seasons the
high value of present crops due to discounting motivates spraying near the single
season optimal. After the resistant type dominates the population there is nothing to
be gained by spraying early, so the optimal policy returns to the single season
optimal.

The simplifications made in implementing the dynamic programming solution are
the assumption of constant 7 and the restriction of f; to integer values. We
implemented a nonlinear programming solution to test the effect of these simplifica-
tions. Because of the size of the problem we were forced to restrict the time horizon
in the nonlinear programming solution to N = 10, so our comparisons are made
based on this value. The discount rate was set at zero (i.e., a = 1) and all other
parameter values are as in Table 1. Table II shows the values of 7; and 7 for three
solution methods: (i) dynamic programming with 7 fixed and ¢, held to integer
values; (ii) nonlinear programming with no restriction on z, and 7 held fixed; and
(iii) nonlinear programming with no restriction on either parameter. The correspon-
dence between these is very good. A similar good correspondence was found for
a = 0.9.
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FIG. 6. Optimal strategies as in Fig. 4, but with a discount term a = 0.9.

TABLE II
Optimal Values of 1, and 5 Using Three Different Assumptions®
() (i1) (iii)

h [ n I n I ]
1 5 2 4.7 2 4.8 2.0
2 5 2 4.7 2 48 20
3 5 2 4.7 2 48 20
4 5 2 4.7 2 4.8 2.0
5 5 2 4.8 2 48 20
6 5 2 4.8 2 4.8 2.0
7 5 2 49 2 49 2.0
8 5 2. 50 2 5.0 2.1
9 6 2 55 2 5.5 23

10 6 2 6.5 2 6.5 27

(i) Dynamic programming, integral 7., fixed: (ii) nonlinear program-
ming, n fixed; (iii) nonlinear programming, 7 free.
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In studying the economic optimization model in the form of Eq. (3.1), we
implicitly assume that the grower follows a procedure of actively planning ahead
over the entire time horizon. An alternative procedure is to simply react to perceived
changes in the system. We refer to this as a myopic policy and study it in the next
section.

4. MYOPIC STRATEGIES

In motivating this section, two points are especially worth noting. The first is that
the time horizon of the problem, which is generally unknown to the manager, may
play a significant role in determining the optimal strategy. In particular, if the time
horizon is relatively short, then the strategy of spraying at the single season optimal
time in each season may provide a multiseason optimum. The second point is that
the multiseasonal optimum strategy is to spray at or near the single season optimum
time except during those years when resistance is at an intermediate level, in which
case the spraying should be done earlier.

These observations motivate the consideration of a model in which the strategy is
decided “myopically,” i.e., without explicit regard for the future, but in which the
present state of the system is measured and used to influence future decisions. The
strategy is to spray at time ¢* under ordinary circumstances. If during a given year
an appreciable increase of resistance to the pesticide is detected, then in the next
year the pesticide is applied earlier. In practice the grower might implement such a
strategy by simply using subjective judgment. In order to study such a strategy in the
context of the model, however, we must provide specific decision rules. Our rule is to
infer the increase in resistance by observing a reduction in yield. This is possible in
our model since the only factor affecting yield is resistance. It might not be possible
in reality since other factors may mask the effect of increased resistance. In any case,
the increase in resistance is measured in the following way. The yield ¢(T; 1) during
the first season is established as the baseline. The decline Ac(n) in yield is measured
as

Ac(n) =[e(T; n) = c(T; n = 1)] [e(T; 1). (4.1)

The decision rule is: if Ac(n) < 8 then z(n + 1) = t¥ — At,. Computational experi-
mentation with this simple strategy indicates that for the proper choice of the
parameters  and At,, the myopic strategy may significantly increase the value of
the profit function J [Eq. (3.1)], although the increase is not as great as that
obtained through the dynamic programming strategy. The values of J for each of
these strategies are highly dependent on the parameters of the model, so we do not
present them. :

We conclude this section with a brief discussion in which we drop the restriction
of a single pesticide application per season. We consider only the myopic strategy of
spraying early in response to decreased yield in the previous season.

The problem is studied numerically in a way that tries to simulate actual practice.
As in the single dose case the first dose is applied prophylactically at time 7,. At time
t, + & the population of pests x is estimated. If x is larger than some threshold level
x, a second dose is applied. This procedure is repeated a2 maximum of M times, and
is terminated in less than M times if at some ¢, + m8, where m < M, the relation
x < x; is satisfied.
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F1G. 7. A comparison for the case of multiple applications of the optimal strategy with that of
spraying at the single season optimal time in each season. The upper curves show application times #,(n)
and the number of applications. Curve (a) correspond to the single season optimal strategy, and curve (b)
corresponds to the myopic feedback strategy. The lower curves show values of ug(n) and f(n). To aid
the eye these are plotted as continuous curves. The solid curve corresponds to the myopic feedback
strategy; the dashed curve corresponds to the single season optimal strategy.

Figure 7 shows the results of numerical solution using this strategy. Curves a
correspond to the case in which the pesticide is first applied at ¢* in each season.
The number of applications in each season is shown above the 7, curve. The
maximum number allowed is 3. A single application is used until season 12; three
applications are required from this season on. The yield is high in season 12, but
resistance builds very rapidly and the yield declines quickly. Curve b shows the
results when the myopic feedback strategy of Section 3 is used. The value of x is set
slightly lower in this case to partially compensate for the earlier initiation time ¢..
The strategy is modified from that described earlier in that the value of 7, is
maintained at ¢} — Az, once it has been set there. The feedback strategy causes the
multiple dose application of pesticides to be delayed until season 15 and signifi-
cantly delays the buildup of resistance, as well as reducing the total amount of
pesticide applied over the time horizon.

5. DISCUSSION

Our paper is concerned with the economic trade-off faced by a grower who must
balance short-term gains achieved through the application of a pesticide with
long-term losses due to the buildup of resistance to the pesticide in the pest
population. We study this problem by means of a model that we hope is realistic
enough to have some usefulness, but simple enough to permit a detailed examination
and understanding of its behavior. Our conclusions are not intended to be prescrip-
tive, but rather simply to provide some insight, as does the Schaeffer model in the
study of fisheries [4]. ’

One result of our study is that the time horizon of the problem and the discount
rate have a substantial effect on the optimal policy. This effect may best be
interpreted by considering pesticide susceptibility as a resource that is mined with
each pesticide application [11]. As with any other resource, the optimal rate of
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exploitation of susceptibility increases with increasing discount rate and with de-
creasing time horizon. We may expect this result to be quite robust with regard to
the choice of model for the system.

A second result is depicted in Fig. 2. This figure shows that the curve representing
yield as a function of time of application of pesticide has a maximum. If the
pesticide is applied too early then the pest population is rebuilt by immigration; if
the pesticide is applied too late then the crop is destroyed before the application.
This result must be interpreted in the context that the susceptibility of the crop to
pest attack is assumed uniform over time in our model. Within this context the result
appears reasonable. In our model, the optimal spraying time is virtually independent
of the value of ppg.

The second curve in Fig. 2 shows that resistance increase in a given year is a
monotonically increasing function of time of application of pesticide. This effect
occurs because if the pesticide is applied later, the immigrating population, which is
not subjected to the pesticide, has less time to dilute its effect. Once again this result
agrees with intuition, provided that immigration takes place over the course of the
growing season. The principal conclusion obtained by combining the curves in Fig. 2
is that, if the grower is going to try to delay the onset of resistance by spraying at a
time other than the optimal one, then he should spray earlier than optimal, rather
than later.

In our earlier paper [12] we noted that while the intensity of application 5 has a
significant effect on the yield in a given year, over a broad range it does not have
much effect on the rate of growth of resistance. This is reflected in Table II, in which
the optimal intensity is almost constant. This result holds for a wide range of
parameter values in our model, but we are not prepared to say that this conclusion
holds for all possible models. We can, however, say that this phenomenon in our
model permits (or restricts) us to focus on the effects of timing of application on
resistance growth, which, in our model, are substantial.

We examined our model over a wide range of parameter values and found that its
conclusions were generally insensitive to parameter value provided that the growth
rate of the pest population is substantially higher than that of the crop. We feel that
this is a reasonable restriction. If the rate of decline I, of the immigration function is
reduced, then the optimal time ¢z, is delayed, but the qualitative results are identical.
The same thing happens if the intrinsic growth rates r; are increased after the
pesticide is applied, to reflect the destruction of natural enemies.

The dynamics of interseasonal resistance buildup reflect three assumptions: the
pool is depleted at the end of the year, there are no pests overwintering in the field,
and the ratios of susceptibles and resistants do not change in the overwintering
period. The effect of modifying these assumptions is exactly what one would expect.
Resistance growth is slowed if the pool is not depleted, speeded up if there is
overwintering in the field, and may have either effect depending on which type has
the higher growth rate during the overwintering period. The qualitative results are
not changed.

Since our model is deterministic, there is no difference between the open loop
optimal strategy presented in Section 3 and the corresponding closed loop optimal
strategy. The implementation of such a strategy would require knowledge of the time
horizon and future discount rates (in general, knowledge of one of these implies
knowledge of the other). This motivated the consideration of a “myopic” strategy in
Section 4. This strategy for some parameter values resulted in a substantial increase
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in total yield over simply applying the pesticide at the single season optimal in each
season.

Although we briefly considered the case of multiple pesticide applications in this
section, we restricted ourselves primarily to the consideration of a single application.
Many crops require multiple applications of the same pesticide, indeed, this is the
rule rather than the exception. The effect of multiple applications could easily be
incorporated into our model by making the value of &, the duration of pesticide
intensity, larger and the value of %, the intensity smaller, to reflect a sort of
“average” level of pesticide over several applications. In the alternative, several
applications could be built in by making the spray function s(#;n) in Eq. (2.2)
consist of several pulses. As with other such changes, these would increase the
complexity of the model without substantially changing its qualitative results.

The robustness of our model to detailed changes is both its strength and its
weakness. On the one hand, we feel that we can have some confidence in the
qualitative nature of the results, and that these results may be useful in understand-
ing the behavior of the solutions of more complex models. On the other hand, we
certainly do not expect that our model will ever have any predictive value. A more
thorough consideration of the specific properties of the individual agroecosystem,
and a more detailed model reflecting the complexities of this system, are required
before one can make realistic predictions.
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