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SEARCH THEORY IN NATURAL RESOURCE MODELING

MARC MANGEL '
COLIN CLARK

ABSTRACT. The role of search theory in the exploitation
of natural resources is discussed in this paper. After a brief
history and taxonomy of search problems, the mathematics
of search is discussed. This includes underlying probability
distributions, the differential equations of search, Bayesian
use of search information and optimization problems in search
theory. The theory is illustrated by applications in fisheries,
pest control, animal foraging, and oil and mineral exploration.
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. 1. Introduction. Before a natural resource can be exploited, one must
4 know where it is. For some resources, forests, for example, this is not

E,..'l g a big problem—it is easy to find the resource. For others, fish in the
, ocean, oil or mineral resources, and pests of agricultural crops, finding
ot the resource is a major effort. It is for these resources that search
¥ | theory can play a useful role, since search theory is essentially the
| applied mathematics of finding objects. The purpose of this paper is to
review search theory and to show its role in natural resource modeling
by way of examples in a variety of diverse applications. That is, we
will show the underlying mathematical concepts in relative generality
and then show how they are applied to very specific cases.

Search theory is basically concerned with information, particularly the
gathering and updating of information and how one uses information
in an optimal fashion. This leads one to approach problems from
a Bayesian point of view—the Bayesian approach provides a natural
and mathematically consistent way of dealing with-and incorporating
information.

The applications that we will discuss are a diverse group: fisheries, pest
control, animal foraging, and oil and mineral exploration. The diversity
of applications should help convince the reader of the ubiquitousness of
the problems in which search theory is important. (There are, in fact,
many applications that we will not discuss — some will be alluded to
later on.)
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4 M. MANGEL AND C. CLARK

The next section contains a brief history of search theory with a
“taxonomy” of mathematical problems. In the third section, we provide
a review of search models and techniques. Certain areas of search
theory are not discussed in detail, but pertinent literature citations are
given. The fourth section contains specific examples that show how
search theory is applied to diverse problems such as where fishermen
should go fishing, how spraying decisions in agricultural pest control
should be made, animal foraging, and assessing the quality of a region
for mineral or oil reserves. Finally, the fifth section contains a summary
and conclusions.

3. History and Taxonomy of Search Theory. It is obvious that
men have been searching since man first walked the earth—and un-
doubtedly crude ideas about search theory have circulated since then.
In modern times, search theory developed during World War II in
response to German “Wolfpack” submarines operating off the east-
ern seaboard of North America. In response to this and other prob-
lems, the Navy approached P. Morse at M.L.T. for help. He organized
the Anti-Submarine Warfare Operations Research Group (ASWORG)
which contained, throughout the war, some of the best minds in the
country, including W. Shockley (1942-44), G. E. Kimball (1942-45),
J. Steinhardt (1942-45), W. Horvath (1943-45), C. Kittel (1943-45),
B. O. Koopman (1944-45), and C. B. Allendorfer (1944-45). (A very
enjoyable history of the group is found in Tidman [1984]. Morse’s au-
tobiography (Morse [1977]) is also quite interesting.)

The ASWORG was formed in April, 1942. By May, 1942 it had pro-
duced a memorandum “Preliminary Report on the Submarine Search
Problem” which laid the foundations for further work in search theory.
The group continued to work on search problems throughout World
War IL At the end of the war, the group was renamed the Operations
Evaluation Group (OEG) and published a compilation of its work on
search problems, “Search and Screening” (OEG [1946]). Most of the
material in this report was later published by B. O. Koopman — first
in a series of papers (Koopman [1956a, b, 1957]) and later in a revised
version of “Search and Screening” (Koopman [1980]).

The Navy continued to support research in search theory after the war.
Many technical (mathematical) advances occurred in formulation and
solution of search problems. Stone [1975] summarizes these advances
(to many of which he contributed). Interest in search theory has been
growing considerably since 1970 — particularly for non-military appli-
cations of search theory. In fact, in ATO sponsored an Advanced
Research Institute on “Search Th " with an expressed purpose of
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SEARCH THEORY 5

seeing what in the mathematics of search could be transferred to the
non-military sector. Haley and Stone [1980] contains some of the pro-
ceedings of that ARI. A search problem has three components: 1) the
object being sought (henceforth called the target, but a military app-
plication is not necessarily intended), 2) a searcher, and 3) a detection
device. A taxonomy of search problems can be built around these three
aspects. Other “taxonomies” of search are possible as well for example:
1) the length of search, and stopping rules, 2) the nature of informa-
tion, and 3) the objective functional. We choose the former taxonomy
because it leads naturally to the differential equations of search.

First, the target may be stationary or may move. In general, problems
with stationary targets are somewhat easier to solve than problems
with moving targets. Second, one can consider the level of detail in the
description of the searcher. Early work in search theory concentrated
on a description by means of “search effort” rather than specifying
a search track. The difference between these two approaches usually
arises in the description of the problem. That is, when search effort
is used one usually thinks of dividing the entire search space into cells
and thinks of putting a certain amount of search effort into a given cell.
The probability of detecting the target, given that the target is in cell
¢ and that search effort p; is applied to cell ¢, is then a function ®(yp;).
(A typical example is ®(p;) = 1 —e~b¥i where b; is a parameter . The
origin of this kind of formula will be discussed in the next section.)
When a search track is considered, the search space is treated as a
continuum and detection is characterized as follows. Let X(t) denote
the position of the target a time ¢, Z(t) denote the position of the
searcher at time ¢. Detection is characterized by a function ¥(z,t, 2)
defined by

(2.1) ¥(z,t,2)At = Pr{detection in (¢,¢t+ At) | X(t) = =, Z(¢) = z}.

Examples of such detection functions are presented in the next section.

The third aspect of taxonomy is the kind of search problem studied.
The search problem can be a descriptive one in which a search track
or search effort is specified and one asks for the time dependence of
the probability density of the target. On the other hand, the search
problem can be prescriptive, in which one seeks an optimal search
track or an optimal search effort distribution. Examples of each kind
of search problem will be discussed in Section 4, but this paper is
mainly concerned with prescriptive problems. Mangel [1985a] discusses
a number of descriptive search problems.
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3. Review of search models. This section contains a description
of modeling techniques of most interest in search theory. It contains
subsections on 1) underlying probability models, 2) use of search
information, 3) the differential equations of search theory, and 4)
optimization problems of search theory.

This section is not comprehensive; instead, sufficient material is pre-
sented here so that the applications in the next section can be under-
stood. In particular, some areas of search theory not discussed at all
are a) search for a single target, moving or stationary, with the search
stopping upon discovery (see e.g., Hellman [1970], Stone [1975], Lukka
[1979], Washburn [1981], Mangel [1985b]), b) localization and tracking
problems (e.g., Washburn [1981]), and c) transect theory (e.g., Seber
(1982], Burnham, Anderson, and Laake [1980)).

3.1 Underlying probability models. To begin, imagine a large
region a of area A that contains N objects. Assume that the region is
searched at rate a so that the total area searched after time ¢t is ot.
Assume that the NV objects are randomly distributed, that an object is
discovered once or not at all, and that detections of different objects
are independent events. If X(t) is the number of objects detected in
(0,t), then (assuming a t < A).

(3.1) Pr{X(t) = n} = (’: ) (-‘j;—t)n (1 - “Xt) .

Equation (3.1) is a binomial distribution with mean Not/A and vari-
ance N(1 — at/A)at/A.

Suppose that N and A go to infinity in such a way that N at/A ~ It
where 0 < A < 0o. Then one obtains the Poisson approximation to the
binomial distribution

(3.2) Pr = e_’\t%.

It is easily seen that (3.2) can be derived from the assumption that

Pr{ another discovery in next dt} = Adt + o(dt),

3.3
(3.3) Pr{ no discovery in next dt} = 1 — Adt + o(d).
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SEARCH THEORY 7

The Poisson distribution has the property that the mean and variance
of X (t) are equal to At. In a wide variety of resource problems, however,
ranging from fish (e.g., Allen and Punsly [1984]) to pests (Bliss [1958])
to oil deposits (Uhler and Bradley[1970}) it is observed that the variance
greatly exceeds the mean. One way to obtain a distribution with that
property is the following. Assume that (3.2) holds locally in the region
of interest, conditioned on A. But now assume that )\ varies globally
and thus has a distribution associated with it. Choose the gamma
density f()\) with parameters v and a so that

u/\u—le—a/\

(84
(34) 0 =50

If ) has the density (3.4), then the mean of A is v/a and the coefficient
of variation (standard deviation divided by the mean) of A is 1/,/v.
Now (3.2) is viewed as a conditional distribution. The unconditional

distribution is found by averaging over A:

0o —At(,\t)n —a,\/\u—
Pr{z(t) =n} = / 5 " dx

_I'(n+ u) t" ¥
T(v) n!(a+t)ntv

(3.5)

Setting m(t) = (v/a)t (so that m(t) is the mean of X(t)), substituting
and rearranging terms allows one to rewrite (3.5) as

Pr{z(t) = n} = pn(m,v)

(3.6) _ P_(;“{:)_V)% (1 + @) - (,‘,%)n

which is a very common way of writing the negative binomial (NB)
distribution (see Feller [1968] for a discussion of the NB distribution).
Actually, the commonly used form for the NB distribution has v
replaced by k. In any case, when X(t) has the distribution (3.6), the
mean and variance of X (t) are given by

E{X(t)} = m(t),

(37) Var{X(t)} = m(t)

Thus, the parameter v is often used to indicate the level of overdis-
persion (i.e., variance exceeding the mean). In an ecological context,
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some authors argue that v may even be species specific (Taylor [1971]).
As v — 0o, the NB distribution approaches the Poisson; as v — 0 it
approaches the logarithmic distribution. The method of moments can
be used to estimate m and v. If 4 and o2 are the observed mean and
variance ‘of X(t), one estimates m = pu, v = u?/(0? — p). The maxi-
mum likelihood estimate for v may be vastly superior to the moment
estimate (see Kendall and Stuart [1979]), but the moment estimator is
simple to implement.

It is worth noting that the same kind of analysis that leads to the NB
distribution can be performed using the binomial distribution instead
of the Poisson as the starting point. This is described in Mangel and
Clark [1983] and Mangel [1985a].

All of these models are highly aggregated in that one begins by specify-
ing a probability distribution in the number of detections or discoveries.
A less aggregated approach is to start with a model for the motion of
the targets, a detection function for the searcher, and then derive the
probability distribution for the number of discoveries. In general, this
means solving certain kinds of parabolic partial differential equations.
Descriptons of this approach are found in Section 3.3.

3.2 Use of search information. For the kinds of problems described in
the previous section, the search information will consist of something
like “in an operating time of length T', n discoveries occurred.” Such
information can be incorporated in a consistent way if a Bayesian
approach is used. For example, suppose that search corresponds to
a Poisson process with parameter A which is unknown. Assume further
that before any search occurs, A has a gamma density (3.4). (This is
called the prior density in Bayesian analysis (DeGroot [1970], Berger
[1980]). The gamma density is also called the conjugate prior for the
Poisson, since if the prior on ) is a gamma, after sampling the updated
(posterior) density is also.a gamma. The use of such conjugate priors
simplifies calculations considerably.)

After search, the posterior density of A is comx’mted by the use of
Bayes’ theorem 7 P

Pr{\ € (A, X + d}) | n discoveries in T}

(3.8) _ Pr{) € (\,X + d}),n discoveries in T}
- Pr{n discoveries in T'}.

If f(A|n,T) is the posterior density, then
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e—a,\/\u—lav e—)«T(AT)n

I'(v) n!
69 IO =
/(; I'(v) n! aX

Integrating and simplifying shows that

e—(a+T)AAn+u—lan+u
(310) f(’\ln’ T) - I‘(n + V)

so that the posterior density on ) is also a gamma density with updated
parameters v+n and a+7T. These updated parameters incorporate the
search information. One is able, in this case, to summarize the search
information so neatly because the prior that was chosen (a gamma)
integrates nicely against the model for the discovery process. Another
useful class of prior densities are noninformative priors (Box and Tiao
[1972], Martz and Waller [1982]) in which the search data change only
the location of the numerator in (3.8), but not its shape. An example
of a resource modeling problem in which a noninformative prior is used
is found in Mangel and Beder [1985].

For virtually all areas of search theory (one notable exception being
line transect theory) search information is incorporated by means of
the Bayesian kind of analysis just described. It should be pointed out,
however, that in the dynamic framework of resource modeling even the
simplest Bayesian methods usually run into the “curse of dimensional-
ity” of dynamic programming. Various methods of circumventing this
difficulty (conjugate priors, passive or semiactive use of information,
etc.) will be used in the following sections. But it seems unlikely that
any completely satisfactory solution of the dimensionality problem will
be discovered, and much more research remains to be done.

3.3 The differential equations of search theory. In this section, certain
differential equations that arise in search theory are described. They
all pertain to the detection of a single target but it will be shown that
they can be generalized for multiple targets. Consider first a stationary
target. Assume that the probability of detecting this target in the next
dt, given that it is at z and the searcher is at z, is ¥(z,2)dt. Some
examples of ¥(z, z) are the following. In the “cookie-cutter” model of
detection, one assumes that;

b

1, if|lz—2| <R
0, otherwise.
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For the case in which the target moves in the plane, the searcher in
three space, and visual detection is assumed, Koopman[1980] argues

that
k23

((z1 — 21)? + (z2 — 22)2 + (23)?)

(3.12) ¥(z,2) ~ Rk
where k is a constant and z = (21, 22, 23), £ = (z1, Z2,0).

Suppose now that the searcher follows a track Z(t). Let u(z,t; Z(7))
denote the probability that the target is not detected by time ¢ given
that its position is z and the search path is Z(7),0 < 7 < t. Then
assuming that detection up to t and past ¢ are independent events

gives
(3.13)  u(z,t+dt;Z(r)) .= u(z,t;2(r)) (1 —~ ¥ (z, Z(t) )dt).

The difference equation (3.13) is equivalent to the following differential
equation

du _
dt

with initial condition u(z,0; Z(7)) = 1 and solution

(3.14) —V (z,Z(t) )u,

t
(3.15) u(z,t; Z(1)) = exp {——/ ¥ (z,2Z(r))dr }
0
In the special case that ¥(z, Z(7)) = ¥y, a constant, (3.15) becomes
(3.16) u(z,t; Z(1)) = e~ Vo,

Equation (3. 15) is often called the random search formula (because of
its original derivation by Koopman [1980]). It corresponds to memory-
lessness and lack of learning by the searcher, since u(z,t + s8; Z(7)) =
u(z,t; Z(7))u(z, s; Z(r)). The random search formula has, however,
turned out to be exceedingly useful and a good description of many
apparently non-random search processes (see, e.g., Washburn[1981)).

If fo(z) is the probability density for the location of the target, then
the probability of detection by time t, Pp(t), is

(3.17) Pp(t) =1- / fo@)u (2, 2(r) )do
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If there are N targets initia.lly present and they are independently
and identically distributed in the search region, then the probablhty
of detecting k of them is

(3.18)  Pr{k of N detected} = (1;,) (Pp(?) )k (1- Pp(t) )N—k,

'
which ties back to the binomial distribution (3.1).

Suppose now that the target moves deterministically, i.e. that

(3.19) ﬁ =bi(zr)  z:i(0) = =z, 'ﬁ S

where b(z) is a known velocity vector and zg —g(zlo,zgo,mao ézls the
unknown initial position of the target. The appr zation
of u{z,t; Z(r)) is

u (2o,t; Z(r) ) = Pr{ target is not detected in (0,¢) |
initial position is zo,
search path Z(7),
0 < 7 <t s followed}.

(3.20)

The analog of (3.13) is
(3.21) u (zo,t +dt; Z(1))

= (1— ¥(zo, Z)dt )u (zo + b(zo)dt, t; Z(r))
= (1 - \I’(:l:o, Z)dt) [ (Zo,t Z(T + Eb (zO)dt_ + o(dt)

Equation (3.21) leads to the differential equation

ou

ou
i(ﬂ?o)gi0 — ¥(zo, Z)u,

with initial condition u ( 7)) = 1. Equation (3.22) is a linear
first order partial differentie¥ equation and is easily solved by the
method of characteristics (Courant-Hilbert[1962]). It might be that
the velocity function depends upon an additional parameter so that
b{xg) is replaced by b(zo; a) where a is unknown. An example would
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be a fish fleeing a net at a fixed speed but unknown direction. One
model for b(zo; a) is then

by (zo; ) = veosa
(3.23) by(zo; @) = vsina
b3(zo; @) = 0,

where v is the speed of the fish and a is the unknown direction.
Such motion is often called conditionally deterministic. Clearly, it
adds no conceptual difficulty to u (20,12 (T)) and just a little bit of
computational difficulty, in that one needs to condition on a, ccmpute
u (a:o, t; Z(1) | a) and then average over a.

As a third model for target motion, assume that the increment dz =
z(t+dt)—z(t) is a random variable itself. One common choice is that dz
is normally distributed with mean vector b(z)dt + o{dt) and covariance
matrix a(z)dt + o(dt). Symbolically, one writes that z(t) satisfies the
It6 equation (Schuss, [1980])

(3.24) dz = b(z)dt + \/a(z)dW,

where W (t) is Brownian motion: dW = W (t + dt) — W(t) is normally
distributed with mean zero and variance dt and increments defined
over disjoint intervals are independent random variables. The analog
of (3.21) is now

(3.25) u (%o,t; Z(7))
— (1 - W(zo, Z)dt ) Eaz {u (w0 + da,t — dt; 2(7) ) }

where E4. denotes the average over all dz. Taylor expanding, as in
(3.21), and averaging leads to the differential equation

ou 1 0%u
—_— - ai (rxg)———
(3.26) ot 2 XJ: 3 °)az,-oax,-o

Oou
+ Ebi(xo)m — ¥(zo, Z)u.

This linear parabolic differential equation can often be approximately
solved especially if ||ai;|| is in some sense small. If that is true,
asymptotic methods can be applied (see Ludwig[1975], Schuss[1980]
for general descriptions, and Mangel [1981,1985b]) for applications to
gearch problems.
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3.4 Optimization problems of search theory. In the next section, four
detailed search problems will be discussed. Thus, in this section, we
merely outline general kinds of optimal search problems and provide
some simple, illustrative examples. The kinds of problems considered
are: 1) maximizing the probability of detecting a single target in a fixed
operating time, 2) minimizing the time to detect a single target, and
3) maximizing the total number of targets detected in a multi- target
search problem.

For the first problem, imagine that the region of interest is divided into
N “cells” that can be searched. Let

(3.27) © p; = Pr{ target is in cell 7},

with Eil p; = 1. Assume that the random search formula (3.16)
holds, so that

Pr{ detecting the target in search time ¢; in
(3.28) . - . —Bit

cell ¢ | target is in cell i} = 1 — e~ Pt
where §; is a constant. Suppose that the total search time is T and that
this time is alloca.ted over the N cells. The probability of detecting the
target is Z;—1 pi(1—ePt) go that one has the optimal search problem

T
maximize 3" py(1 — =A%)
t=1

(3.29) N
such that Z t;=T

1=1
allt; > 0.

This is a simple nonlinear programming problem. It can be solved by
applying the Kuhn-Tucker theorem (Avriel [1976]), the algorithm of
Charnes and Cooper [1954], or the maximum principle. Observe that
this problem involves a one-shot allocation of effort over the cells. An
interesting modification, which we leave to the reader to formulate, is
one in which there are two periods of length T. In such a case, the
results of the search in the first period affect the allocation of effort
in the second period. This effect is observed by updating the p; after
search. That is:
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Pr{ target is in cell ¢ |
it was not discovered in ¢; hours of search}

pi(l — e Biti )

_ pi(l — e—ﬂiti)
T 1 —pie Bt

Next, consider the problem of minimizing the time to detect a single,
randomly moving target. Observe that the probability of detecting this
target by time T is

i
(331)  Pp(T)=1 —N— [ ozl T3z

where fo(zo) is the probability density for the initial location of the

target, and u(zo, T; Z(r)) — the probability of nondetection in (0,T)
given that the initial position of the target is o .26). The

mean time to detection, T, is then

oo
(3.32) T= / tPL (t)dt.
0
Suppose now that Z(7) satisfies ’\f
’ iz
(3.33) = =/,
N~

where the velocity vector JAt; Z) is a control variable drawn from a
control set V. Thus, one has the optimal control problem

(3.34) minimizey,cv T, subject to %% =v(r; Z).

This is a deceptively simple control problem — deceptively because
buried in T is the solution of a parabolic partial differential equation.
Methods for the solution of these kinds of problems are discussed by
Lions [1971], Ahmed and Teo [1981], Teo and Wu (1984] for general
problems, and Lukka [1979] for search problems in particular.
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For the third problem, once again imagine a collection of N cells with
many targets and assume that there are M search periods, each of
length 1. Assume that there is a single searcher who searches one cell
in each period and that the discoveries follow a Poisson distribution:

Pr{k discoveries | cell 7 is searched}

/\i-‘e"\"
k!

Now assume that the ); are unknown and have a gamma prior distri-
bution with parameters v; and ;. Thus, search does two things: first
it produces discoveries of the objects, and second it produces informa-
tion which is summarized in the continual updating of the parameters
v; and o; ( la (3.10)). Assume that the objective is to make as many
discoveries as possible over the M search periods. Define Vi (v, a) by

(3.35) -

Vi (v, @) = maximum expected number of discoveries
(3.36) when k periods remain and the parameters
are v = (v1,...,vnN), and a = (aq,...,0n).

We will now derive the dynamic programming equation (DPE) that
Vi (v, a) satisfies. In order to do this, note that, conditioned on );, the
expected number of discoveries if cell ¢ is searched is \;. When this is
averaged over the gamma density, the expected number of discoveries,
if cell ¢ is searched, is v;/c;. Thus,
(3.37) Vi(v,a) = max L

U 4 7
The meaning of (3.37) is obvious: if only one period remains, search
the cell where the expected number of discoveries is highest since any
information obtained in this last period is valueless. For k > 1, the
dynamic programming equation (DPE) for Vi (v, a) is .

(3.38) Vi(v, @) = max {:— + E{Viy1 |3} }.

In this expression, E{Vi_,|¢} is the expected value of Vi_1, given that
cell + is searched. It is computed as follows:

(3.39) E{Vi_1li} = Y Pr{n|i}Vi_1(v + &in, a + &),

n=0
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where Pr{n|i} is the probability of n discoveries given that cell 7 is
searched (see (3.4)-(3.5)):

L'(n+v;) a;

. P 1} = ,

(3 40) l‘{n|’¢} P(V,’)n! (ai + 1)n+u,~

and
v+ 6n=1,V2, .. Vi1, Vi + N Vig1,. .-, UN),
o; + 6 = (a1, 09,...,0i—1,0; + L, it1,...,ON).

By recursively solving (3.38), one obtains the optimal sequence %} of
cells to search and the optimal value function V;’. The solution of
(3.38) will be discussed in more detail in the next section.

4. Applications of search theory in resource modeling. We
will now describe four diverse applications of search theory to resource
modeling. These are 1) fisheries, 2) agricultural pest control, 3) animal
foraging, and 4) oil and mineral exploration.

4.1 Fisheries. In many commercial fisheries a significant portion of
the cost of fishing operations is taken up by search for concentrations
of fish. Some fishermen are regularly more successful than average.
While fishermen themselves may attribute such success to blind luck,
it seems more likely that the most successful fishermen are those who
are most adept at utilizing information from their environment. The
successful fisherman knows where to look for fish at any time, and when
to abandon an unsuccessful search. The unsuccessful fisherman fishes
in the wrong places at the wrong times — perhaps using the wrong
gear.

Attempting to understand the behavior of fishermen in an uncertain
environment is important for fisheries regulators, especially when new
types of regulations are being considered (Bockstael and Opaluch{1984],
Hilborn[1985]). Regulations introduced without proper appreciation of
fishermen’s behavior are not likely to achieve the desired objectives
of management, and thus tend to erode confidence in the managing
authority.

Models of search in fisheries have been discussed by Shotten [1973],
Swierzbinski[1981], Mangel [1982], Mangel and Clark [1983], Mangel
and Plant [1985], Mangel and Beder [1985], and Clark [1985]. The key
observation is that the fishing process actually produces two things:
first the physical catch and, second, information about the stock level.
Thus, one needs to study questions about the joint production (in
economic language) of fish and information.
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We will now consider a slight generalization of the third optimal search
problem discussed in the previous section and show how it can be used
to answer the question of where one should go fishing (Mangel and
Clark, [1983]).

Consider a fleet of N vessels capable of searching for fish on several
fishing grounds A;,..., A,,. Search for fish on each A; is modeled as a
Poisson process with mean encounter rate A; per vessel. It is assumed
that k vessels in A; search independently so that

Pr{k vessels encounter n schools on A; in time ¢|\;}

. e\
D =Pre() = 9% e, n=0,1,2,....
This is expressed as a conditional probability in order to emphasize
that we wish to consider the mean encounter rate A; to be uncertain.
The fishermen do not know a priori what the mean encounter rate on
A; will be, but they combine their historical experience with current
environmental observations to cbtain a prior estimate of A;. Once
fishing begins, they are able to update this estimate according to actual
fishing success.

Let f(A;) denote the prior distribution for A;. If n schools of fish
are encountered by k vessels during time ¢, the posterior distribution
becomes

ks AL
ik
Pk O3 (G

If the prior density for A; is a gamma density (3.4) with parameters
v; and );, then the posterior density is also a gamma with parameters
v; + n;, a; + k;t. The updated (posterior) mean and variance are thus
given by

—/'_V,'+n,' ne _ v +ng
(43) A = a; + kit’ (0:)" = (a; + kit)?”

(This model ignores the effect of removals of fish schools, which alters
the value of A; as fishing proceeds. This extra complication will be
discussed briefly below).

For simplicity of notation we now suppose there are only two fishing
grounds, and let M denote the number of fishing trips that can be
completed in a given season. During each trip, the fleet can be allocated
with k; vessels to ground A;,k; + ko = N. With an objective of
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maximizing expected net revenue over the season, how should the fleet
be allocated to A; and A, over time?

Before setting this problem up mathematically, it is worthwhile to think
about what it involves. Why not, for example, simply send all N vessels
to the ground with the highest expected catck rate (or highest expected
net return, if costs differ between A; and A2)? Indeed as (3.37) shows,
if only one trip is possible, this is the optimal policy. But if several
trips are possible, this policy may not be optimal, since it generates no
new information about unsampled ground. Perhaps one or two vessels
should be sent to the less attractive fishing ground, on the off chance
that fish are unusually abundant there. If so, then the whole fleet can
be switched for subsequent trips. Such “probing” for information is
characteristic of optimal search strategies.

Let p; denote the average dockside value of fish obtained from A; and let
¢; denote the cost of sending one vessel to A; for one trip. Let V,.(v,a)
denote the expected net revenue obtained from optimal allocation of N
vessels, when n fishing trips remain in season, and where v = (v1,12)
and a = (o, 0z) are the prior parameters at the beginning of these
n remaining trips. (In effect, v and o are the state variables of the
problem, representing the state of information). If n = 1, the expected
net revenue of value function is a generalization of (3.37) to include
economic parameters:

(4.4)

Vi Vv
Vi(y, a) = lg}ca_'{xN [k (;l-plt - 61) + (N — k) (-a—2p2t — C2 )]

_ pivs P22y, . pavat
= lg}cang [(——al g )t (c1 C2)]k+N( g c2),

and hence the optimal number of vessels on A; is

. _ N, ifMt—Cl > Mt—62
(45) k"= {0, otherwise.

The dynamic programming equation for n > 1 is then a generalization
of (3.38):

' v
Vor1(v,@) = B2 k—c1) + (N — k) (a—ZPﬂ —c2)

(46 RN
+ B{Va(vh 04} |,
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where the prior expectation is really a double expectation, over the
prior distributions f(A;) and over the sampling “experiments” (i.e.,
the generalization of (3.39)).

oo

(o o]
47) E{..} = > Y Va(v1+n1,v04n5,00 +kt, 0+ (N — k)t

)
n;=0nqy=0 J\
( Pr(ny) Pr(ny).

The probabilities Pr(n;) are a generalization of (3.40):

Pr(n) = /Ooo Pr(n|), k, t)y(A; v, a)dA

(4.8)
_ (k)" a™ I'(n+v)
Tl (a+kt)mtr T(v) (k #0),
1, n=0
(4.9) Pr(n) = {0’ n>0 (k=0).

Unlike (3.39), the expectation (4.7) involves a double series that must
be summed numerically for each iteration of (4.6). Since the series
converges slowly, this computation can be extremely time consuming.
In Mangel and Clark [1983], only one iteration was attempted, and
the idea of “semiadaptive” control was used to deal with M > 2
periods. With this approach, only information generated in the first
fishing period is taken into consideration, and it is assumed that the
allocation of vessels in periods 2, ..., M will be specified by the updated
parameters after one trip. This is probably a good approximation to
the optimum provided that sufficient sampling occurs on each ground
in one period. (In real life it could hardly be expected that the values

“of A; would remain constant throughout the fishing season, unless the

fish were of a particularly sedentary nature. Hence, a continual probing
strategy would probably be best; no specific model of this situation has
been developed, however.)

A single searcher. The semi adaptive calculation gives a poor
approximation for the case of a lone searcher, since search on only one
ground is considered. However, in this case we can make a simplification
which allows for an additional period of search to be treated. For simpli-
city, assume p; = p; and ¢; = c2. Then we can ignore costs and set
p1 = p2 = 1, and (4.4) and (4.6) reduce to (3.37) and (3.38); the latter
we rewrite more explicitly.
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- v
(4.10) Vi(v,a) = max a;t’

1/1 +ny Vo
| % max ——t +1 max ,— ) Pr(n1),

n1—0

(4.11)

2yt Z max (2 L2 Pr(ny)}.

ng=0

The series in (4.11) can be reduced to a finite sum as follows (Clark
and Mitchell [1984]):

et 141 +ny 2
E - = 1|P
ma.x( P ,a2) r(ni)

n1=0
o~ V2 =~ Vvi+mn
= Z a—Pr(nl) + Z T Pr(n1),
n1=0 2 ni=m+1 1
where
. [ug(al +t) ]
m = 1nteger —T -1
2
if this is nonnegative, and m = —1 otherwise. Thus, the above sum
becomes
(o o] m
vn+n V2 v1+m
Pr(ni) + —_ = Pr(n
iy T S (255 ) e
4.12) m
V1 1703 v1+m
=—+ -~ ——— | Pr(n1).
o1 "20 (az a;+1 ) ( 1)

Not only is the sum in Eq. (4.12) finite, but the number of terms also
decreases, eventually to zero, as v increases; this further simplifies the
subsequent iteration for V3:

(4.13)
Va(v,a) = max{a—t+ E Vo(v1 + 1y, 02,01 + 8, az) Pr(ny),
ni=0
a2t + E Va(v1,vs + n2, 1,02 +1) Pr(ny) }

nga=0




)s

Clark

3 sum

ll).

8 also
es the

),

SEARCH THEORY 21

The calculations leading to (4.12) make the evaluation of V3(.) in (4.13)
an easy computation.

The computed results for the first three iterations are shown, in
“feedback” form, in Figure 1. Here the prior mean and coefficient
of variation for A; are fixed at A; = 10.0 and CV; = 0.5 (i.e., v; = 4,
a1 = 0.4). The curves in the figure are “switching curves” —the optimal
ground, to sample on trip 1 is A, if (A2, CV3) lies above or to the right
of the switching curve, and A; otherwise. The three upper curves
are shown corresponding to having one, two, or three trips remaining,
respectively. (The fourth curve labeled SA will be explained later.)

- - n
n o O

COEFF. OF VARIATION
O
00}

04

0.0 | | i J
7.0 8.2 9.4 10.6 1.8 13.0

MEAN

Figure 1. Indifference curves for the first of N remaining trips
N =1,2,3, plus "semiactive-adaptive curve for N = 3.
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Note first that all three switching curves pass through the “indifference
point” (A2,CV2) = (A1,CV1). For N = 1 the curve is a vertical line:
A, is preferred to A; if and only if X3 > ;. For N > 1 the relative
levels of uncertainty also affect the decision: Az will be preferred to
A, even if Az < Aj, provided CV; is sufficiently larger than CV;. The
reason for this is clear: when the level of fish abundance is much more
uncertain on A2 than on A;, the value of information obtained by
sampling Ag exceeds that for A; by a sufficient amount to compensate
for the expected decrease in catch. This is the active aspect of active-
adaptive control. (The switching curve for passive-adaptive control is
simply the vertical line Ay = A;.)

The curve labeled SA corresponds to the semiactive policy, for N = 3.
While this policy differs noticeably from the optimal policy, the actual
expected payoff is only marginally inferior (Table 4.1). The columns in
Table 4.1 are : nonadaptiv’e (fish A; for all three trips); passive (fish

A; on first trip, switch if A; < Mg, etc.); semiactive; and optimal.

Table 4.1. Total expected catch for various search policies: NA (non-
adaptive), P (passive), SA (semiactive), and O (optimal). Parameter
values: A; = 10.0, CV; =0.5, A2 =8.0,t=5, N =3.

CvV, NA P SA 0
0.2 150.0 159.4 159.2 159.4
0.6 150.0 160.9 159.2 161.3
1.0 150.0 161.7 159.2 163.8
1.4 150.0 164.0 172.4 173.1
1.8 150.0 165.1 180.3 180.7

Depletion and competition. The information obtained from searching
can be extremely valuable to fishermen, and the question then arises
as to the optimal production and sharing of such information. The
sharing question cannot be addressed on the basis of the above simple
model, however, since limited sharing only becomes relevant when fish
concentrations are depletable. Modification of the simple search model
to allow for depletion is discussed by Mangel and Clark [1983], to which
the reader is referred for details. The basic probabilities in (4.1) now
become

l(/\/5)n(l _ e—k&t)ne—kt(,\—na) 0<n< /\/6
4.14) p, =q " - T
419 pas={7 hsns
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where (a), = (a—n+1)(a—n+2)...(a), for a > n. Here é represents
the amount by which the search rate ) is reduced by the removal of
one school of fish (schools are assumed to be of equal size), so that A/é
is the initial number of schools.

Mangel and Clark [1983] use this depletion model to analyze the com-
petitive behavior of fishermen. It is of interest to ask whether compe-
tition would lead to an oversupply or an undersupply of search effort.
In fact, both may occur! First, the competitive scramble to exploit
a potentially productive fishing ground may generate excessive infor-
mation as a side effect of the usual common-property over-exploitation
phenomenon (Clark [1976]). On the other hand small patches may not
be searched out at all, in cases where individual fishermen would be
unable to protect their finds from intruders. While the two effects could
counteract one another, it would only be by accident that an approxi-
mately optimal exploitation pattern would emerge. Mangel and Beder
[1985] discuss other aspects (especially inference) of the model (4.14).

Regulation. The deterministic theory of fishery regulation has been
discussed by Clark [1980], but the stochastic theory, which seems
essential for predictive purposes (Hilborn [1985]), is as yet largely
undeveloped. Mangel and Beder [1985] have discussed the problem of
utilizing “on-line” search information to determine the optimal length
of the fishing season. Mangel and Plant [1985] and Clark [1985] have
modeled the effects of fishery quotas on fishermen’s behavior.

Mangel and Plant [1985] note the following “duality” between regu-
lation in terms of individual vessel effort and catch. The vessel’s net
seasonal profits are, in either case,

(4.15) © = pH — ¢(E),

where H is the season’s catch and E denotes effort. If E is controlled,
then H becomes a random variable, while if H is controlled, then the
effort E required to catch the quota H becomes random. Expected

profits will generally differ for the two types of regulation. :

Attempts by management agencies to introduce individual catch or
effort quotas have usually met with strong resistance from the fishermen
involved, although in some cases at least, the fishermen ultimately
became strong supporters of a quota system. What fishermen may
be most concerned about is that an individual quota will severely limit
their chances of having a great year once in a while. In an unlucky
season the fisherman may fail to fulfill his quota, while in a good season
the quota constrains his catch. His expected catch is necessarily smaller
than his quota.



24 M. MANGEL AND C. CLARK

The Seine Fishery for herring in the Bay of Fundy has operated under a
vessel quota system since 1976. Figure 2 shows catches of the 47 seiners
in this fishery in 1978; individual vessels had quotas ranging from 1200
to 1500 tons, depending on vessel size and past catch history. At least
23 of the 47 vessels failed to achieve their full quotas.

;
9
o ©
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>
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o
(0
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(0 0]
s
)
P4
500 1000 1500
CATCH(tons)

Figure 2. Individual vessel catches of herring in the Bay of Fundy,
1978. Vessel quotas ranged from 1200 to 1500 tons.

The following simple model (Clark[1985]) describes this situation. Let
pn denote the probability of finding n units of fish during a given
time. We use the negative binomial distribution (3.6) with the mean
m(t) = m, a constant over time, and aggregation parameter v = k.

Now suppose the fisherman has a quota of Q units of fish per week.
Then the probability distribution for his actual catch is truncated at

Q:

_ [ pn(m,k)/Cq, forn<@Q
(4.16) PnQ~— {0, forn > Q,
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where the normalization constant is

Q
(4.17) Cq =) _ pn(m,k).

n=0

The expected catch under quota is

Q
(4.18) E{n|Q} =) npnq

n=0

and it is not hard to show that E{n|Q} < E{n}.

Given values of m, k, and Q, the expected reduction in catch can be
computed easily from these formulas. The higher the variance in weekly
catch rates, the greater will be the reduction in expected catches under
quota. Also, a shorter quota period leads to a greater reduction in
catch.

It follows that individual quota systems should be designed with a max-
imum of flexibility. Pooling and transfer of quotas should be allowed
(but must be closely monitored). Short-period quota limits can be used
to smooth out the delivery of fish to processors or marketers, but fisher-
men should be allowed to continue fishing until they have accumulated
their seasonal quota. If properly formulated and controlled, an individ-
ual quota system has great potential both for controlling catches and
for encouraging economic stability and efficiency in a common-property
fishery. Approval and cooperation by the fishermen themselves is es-
sential for the success of such a system.

4.2 Agricultural pest control. It has become apparent in recent
years that heavy reliance on prophylatic spraying of insecticide as
a means of controlling agricultural pests may exact a considerable
toll from ecosystems. Thus, alternative control programs —-called
Integrated Pest Management (or IPM) —via cultural, biological, and
chemical means have developed. Perkins [1982] presents an excellent
discussion and history of the pesticide problem. A key element in
the optimal management of agricultural pests and the concomitant
reduction and/or avoidance of senseless use of pesticides — involves
knowing how many pests are present. That is, by acquiring search
information on pest infestation levels, a grower can make more informed
decisions about how to control the pest. In this case, the search
is equivalent to sampling the crop for the pest. Plant and Wilson
[1985] and Plant and Mangel [1986] provide discussions of sequential
sampling in agricultural pest control from the viewpoint of applied
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mathematicians. Mangel, Plant and Carey [1984] consider a search
problem related to the detection and delimiting of infestations of
Mediterranean fruit flies.

We will illustrate how search theory can be used in agricultural pest
control by considering the cotton-lygus bug (Lygus hesperus Knight)
system. Recent work by Stefanou [1983] and Mangel, Stefanou, and
Wilen [1985] shows that there are two periods during the development
of the crop when lygus may do damage to the ultimate yield of cotton.
(There is actually some disagreement about the possibility of damage
that lygus may cause. Alternate viewpoints are provided by the work
of Gutierrez, et. al. [1977,1979]. Regardless of the ultimate disposition
of the lygus question, we believe that the example presented here is
still useful for its illustrative purposes.)

If a grower did not sample his crop for pests, his decisions on spraying
or other controls would be made using essentially whatever prior he has
on the pest distribution. Scouting or searching for pests can provide
additional information, which can be used to update the prior. Thus,
in each period of crop development a grower has two decisions to make:
first, whether to scout or not, and second, whether to apply some
control or not. We will explicitly concentrate on the scouting decision
here.

In order to formulate the search and spraying model, one needs to be
able to characterize 1) the plant’s dynamics, 2) the pest’s dynamics,
3) the damage to the plant caused by the pest, and 4) the effect of
spraying the pest. Thus introduce the following variables:

L; = lygus population at the start of period ¢

~_J 1, if spray was applied in period 1
¥ =10, otherwise,

1, if scouting was done in period ¢
8; = .
0, otherwise.

Let D(Li,L2,y1,y2) denote the damage to the physical yield,
measured at the end of the season, when the values of lygus and spray
are (L1, L2) and (y1,y2) respectively. If p is the unit price for cotton,
c1 the cost of spraying and c, the cost of searching, then the total cost
is

(4.20) Cr = pD(L1, L2, y1,y2) + c1(y1 + y2) + c2(81 + s2)-
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A detailed specification of the damage function which takes into account
the dynamics of the cotton plant is found in Appendix 1 (also see
Stefanou[1983] and Mangel, Stefanou, and Wilen [1985]). Pest control
problems are different from most resource problems in that the costs
are not assessed incrementally. That is, costs are measured in reduced
yield at the end of the season by specifying one function rather than
a sum of costs over the periods of interest. The total cost Cr can
easily be extended to include a continuous cost of spraying by simply
reinterpreting the meaning of y;. The profit to a grower, m, is

(4.21) m = pYy - Cr,

where Yy is the physical cotton yield in the absence of lygus.

Scouting provides information on the values of L;. The method of
scouting is by a sweep net and the unit of scouting is 50 sweeps of
the net. Thus the data are represented as X = number of lygus
observed per 50 sweeps. Each row corresponding to 50 sweeps will
be called a “plot”. We assume that the probability that a plot contains

- L = £ lygus is given by the Poisson distribution with parameter u

and that u itself has a gamma distribution with parameters v and o.
Thus, the underlying model for the distribution of lygus is a negative
binomial (equations (3.2) - (3.6)). For operational purposes, the results
of scouting are divided into three categories: low (X < 4), medium
(5 < X < 8), or high (X > 9) lygus counts per 50 sweeps. One needs,
in addition, to specify the accuracy of the search. Using the discretized
form of the lygus count, this can be done by introducing a matrix, o,
as follows:

X/L Low Medium High

Low OLL OLM OLH
(4.22) 0= Medium | opmr oMM OMH
Hzigh OHL OHM OHH

where 0;; = Pr{X = {|L = 5} is a measure of the accuracy of the search
process. If all o;; = 1/3, then search will produce no information and
if the diagonal entries are equal to 1 the search is perfect. A convenient
model is one in which the diagonal elements are equal to a parameter
o and the off-diagonal elements equal to (1 — 0)/2. To complete the
formulation of the problem, one needs to specify the lygus dynamics.
The following simple model is used

(4.23) ' Ly = Z(K,L1)+(1—Ky1)L1,
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where L; is the lygus population in period ¢, K is the fraction of lygus
killed by the spray and Z(K, L) represents net immigration plus any
increase in lygus due to the killing of predators.

We can now formulate the dynamic programming equations for the
scouting and spraying decisions. Consider the second (latter) period
first. Let the utility of profit be denoted by U(m) = Uy (p(Yo — D) —
ci(yr + y2)) — Uz (ca(s1 + 82)). If the grower scouts in the second
period, the expected utility of profit is

(4-24) VS('2) = Eﬂlxl {ELllxl,# {Elexx,# {nig'XELﬂxn,Xn#,yn

[U1 (P (Yo—D(L1, L2,y1,%2) ) —c1(y1+2) ) —Us (ca(s1+52) )] } } }

This formidable set of expectations is the way of incorporating search
information. Reading from the left on the right hand side of (4.24)
one has: first, the posterior average over the updated distribution
on u, given the search information X;; second, the average over
possible values of L;, given the search information; third, the a priori
average over second period search information given first period search
information (with the dynamics (4.23) implicitly built into this); and
fourth, the average over the true second period population, given the
search information. If no scouting is done in the first period, these
expectations simplify to the expectations over the prior distribution.

If no search occurs in the second period, the expected utility of profit
is

(4'25) Vlslzg = Elllxl {EL1|X1,# max ELzlxl’”" [Ul (p (YO

C» — D(L1, Ly, y1,92) ) —e1(y1 +92)) - U2(0281)] }

That is, if no search is performed in the second period, the optimal
spraying decision is made on the basis of first period information
(posterior distributions) and lygus dynamics solely.

The optimal second period search decision is then made by determining
the second period value, V(?):

2) (2
(4.26) v = max (Vy3,Vs"):

The solution of (4.26) determines whether or not the grower should
scout in the second period. Note that this solution says nothing about
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whether or not the grower should spray, or the level of spraying. The
level of spraying is determined by a set of optimization equations
similar to (4.24) and (4.25) after the scounting information is obtained.
For example, the grower might have a prior distribution which gives
considerable weight to a high density of lygus. If scouting results
showed few lygus, the posterior distribution would have less weight
on a high density of lygus and spraying—which would have occurred
without scouting—might not be done.

The first period spraying and scouting decisions are now determined by
solving appropriate dynamic programming equations. In particular, if
the grower does scout in the first period, the expected utility of profit
is

X 2
VS( ) = EI" {my?XELllxlyu [max (Ex2lxl’“)ylv( )’

EXzIXn#,mV}SIZ.’S') ) ] }

If the grower does not scout in the first period, the expected utility of
profit is

(4.27)

1
VISI.S2 =E, {II:I?XELHM [ma‘x (EXqu,w V.ng)’

(4.28) ”
EXnI#,wVNS ] }

The ultimate first period value and search decision are then made
according to

‘ 1 1
(4.29) v = {glgg}(Vs( V).

Equations (4.24) - (4.29) provide a complete solution to the searching
and spraying problem. They are easily programmed on a desktop micro
computer (e.g., Stefanou [1983] provides results using Apple II+). In
order to facilitate presentation of these results, the following additional
information is needed:

1) In addition to the specification of lygus as simply Low, Medium,
or High counts per 50 sweeps, the net growth parameter Z(K, L;) in
dynamics (4.23) needs to be specified. Two choices will be used: Z = 3
lygus/50 sweeps (low Z), and Z = 8 lygus/50 sweeps (high Z). One
could, of course, add an entire distribution to Z without any conceptual
and very little computational difficulty.
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2) The damage function D is actually quite complicated (Stefanou
[1983] or Mangel, Stefanou, and Wilen [1985]) since it involves tracking
the life history of the cotton plant from square production through the
development of bolls and then relating bolls to yield. For purposes
here, it is sufficient to index the cotton plant by its initial square load,
Q (see Appendix 1 for further discuggton

3) The case of oi; = ¢ and (1 -}
scouting matrix (4.22) is used for tRe res

Tables 4.2 and 4.3 show the ultimate expected value of cotton produc-
tion (dollars/acre) as a function of the four possible search strategies,
the prior distribution on lygus, the initial square load, and the value of
Z(K,L;). The bottom row in these tables compares the value of cotton
production for the case of always searching versus never searching. In
some sense, this is a good measure of the value of search information.
For example, if a grower had to contract-out scouting services, the en-
tries in the last row of these tables provide him with an idea of a “fair
price” (to the grower, at least) for the scouting services.

Tables 4.4 and 4.5 show the value of always scouting versus the value of
never scouting as a functicn of accuracy of the search information (o),
the prior distribution on lygus, the initial square load, and the value
of Z(K,L,). As o increases, the accuracy of scouting information also
increases.

We stress that these results provide a way of assessing the value of
search information and are not an endorsement of mindless spraying of
pesticides. In fact, the reverse is true: our emphasis is on using search
information in order to make better spraying decisions.

In conclusion, this example from pest control shows how search theory
can play a major role in the optimal management of agricultural
systems.

4.3 Animal foraging. Some species of animals live a solitary existence
(except during breeding) while others are highly social. Many benefits
have been suggested for group living (Pulliam and Caraco [1984]), but
the question of interest here is whether foraging in groups can result
in increased survival probabilities for individual foragers. A related
question concerns the optimal size of foraging groups, and whether
such optimal group sizes would in fact be observed in nature.

Let us take up the latter question first. Suppose that evolutionary fit-
ness (e.g., survival probability) is a function o(n) of group size n. If
¢(n)is monotonically decreasing, one would expect to see individual
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foraging, but a game-theoretical analysis indicates that mutual “horn-
ing in” on food discoveries might be a competitive equilibrium strategy
(see Clark and Mangel [1984]). Suppose, however, that p(n) is peaked,
as in Figure 3.

Fitness

¢ (n)

|

|
I n* n
Group Size n

Figure 3. Peaked fitness curve p(n), with optimal group size n*
and equilibrium group size 7.

Then there existe an optimal group size n = n* at which individual
fitness is maximized. But, would groups of size n* be observed? If
such a group did exist, it would attract animals from smaller groups.
An individual, for example, would improve his lot by joining any group
of size less than 7 where p(7) = (1) (see Figure 3). Optimal sized
groups thus appear to be unstable; observed groups should be larger,
possibly much larger, than the optimum.

Because individual incentives usually conflict with group objectives,
group members will often behave in apparently nonoptimal ways
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(Schelling [1978]; Mangel and Clark [1986]). In the case of oil explo-
ration, for example, the results of exploration in one area can drastically
affect the value of nearby tracts. If these external benefits cannot be
captured by individual drillers, total exploration effort may be severely
suboptimal (Peterson [1975]). In fisheries, the level of search effort
used may be either suboptimal or superoptimal, as noted in Section
4.1 above. The divergence in incentives has far-reaching implications
in many areas, and much research on the topic remains to be done.

The next question is how would a peaked “curve” arise? If forage is
patchy, would foragers improve their fitness by searching in groups?
This question has a number of facets, and we will only discuss a few of
them here (see Clark and Mangel [1986] for further details).

Suppose first that n foragers search independently and share equally
each patch of food discovered. If ) is the individual search rate and 7
the average time for an individual to consume a patch of average size
B, then the average individual feeding rate for a group of size n is

B/n B

(4.30) pln) = T/n+1/nX 14+1/X°

—i.e., is independent of n. Groups of size n find and consume patches
at n times the individual rate, so that the net individual feeding rate
is unchanged.

In practice, for » much larger than 1, search would not be independent;
the group search rate would be nA(n) with nA(n) increasing but A(n)
decreasing. This gives

B
which is a decreasing function of group size n. (Also probably 7 should
be replaced by an increasing function 7(n).)

But now suppose that patches are ephemeral. Assume independent

Poisson search and deterministic patch depletion given by
dX

X(0) = B.
If the group leaves the patch and resumes search after time T we obtain
for the average feeding rate
B(1 — e~2rT)

e(n,T) = nT + 1/
= ¢(nT).

(4.33)
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Assume T is chosen to maximize this expression: If T is unrestricted
we have

(4.34) T* =T*(n) =Ty /n, ¢

where T maximizes the function ¥(T). Hented = ¢ (n,T*(n)) is
again constant in n.

For ephemeral patches, T\< Tr,ax = life of patch, so we obtain
(nTmax), if nTax < T*

4.35 =

(4.35) @’(") {x(T‘), if nTomax > T

and this is an increasing function of group size n, for n < npy, =

T*/Tmax. For example, if « = .001/day, A = .01/day, Tmax = 1 day,

then nyax = 416 and groups of size n = npyax increase their average
food intake over individual searchers by a factor of 66.6.

Including search interference in the above model gives decreasing for
7 > Nmax, and thus is peaked, with peak n* < npma.. Our analysis
therefore predicts that group foraging will be beneficial when forage is
both patchy and ephemeral.

Variance of the Feeding Rate. So far we have equated fitness from
foraging with the average feeding rate. But variance is also obviously
important. As a simple model, let R denote the individual’s minimum
food requirement for a certain decision period, say, one day. Let
f(z,y) denote the probability density for food intake z, depending
on a parameter y subject to the forager’s control over some set Y.
The probability of starvation (i.e., not meeting the minimum food
requirement) for the period is then

R
(4.36) Pr(z < R) = /_ f(z,y)dz = F(R, ),

where F' is the cumulative distribution of . The forager then attempts
to minimize F(R,y) over y €Y.

As a very simple example, consider independent Poisson search by a
group of n foragers, and ignore handling time 7. An individual forager
has the choice of foraging alone or joining the group. If the individual
forages in a group of size n, the search rate is nAt, but the individual’s
share is 1/n of whatever is found. Thus, for Poisson search, the mean
of the forage found in (0,t) is At and the variance is At/n. In this case,
the function f(z;n) is

(nAt)na:e—m\t

(4.37) f(zin) = (nz)!

nz=0,12,....
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The survival probability 1 — F(R;n) is shown in Figure 4 as a function
of R for n=1,2, and 5.

PROB. OF SURVIVAL

: 10
RESOURCE REQUIREMENT

Figure 4. Survival probabilities for n = 1,2, and 5, as functions of resource
requirement, R; expected food discovery At = 5 units.

Note that for R < T we have fitness 1—F(R; n) as an increasing function
of n, whereas for R > T fitness decreases with n. The forager should be
risk averse, minimizing the variance in food intake, in the event that
expected intake exceeds minimum requirement R; conversely, when R
exceeds the expected intake, the forager should be risk prone (also see
Carao [1981)).

Other Models. The relationship between the time profile of food intake
and probability of survival is doubtlessly more complex than indicated
by either of the above models. For example, the forager may be able
to alter strategy over time, depending on its current food “deficit.” If
there are N decision periods, with starvation occurring if and only if
total food intake is less than R, we can determine a feedback foraging
strategy via dynamic programming (Clark and Mangel [1985]).

Foragers may face a higher risk of predation when searching for food
than when under cever. Only when sufficiently hungry, is it worthwhile
to start searching for food. The following jump-process model may be
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useful for analyzing such a situation:

(4.38) dX = —adt + dr,
_JY>o, with probability Adt
(4.39) dr = {0, with probability 1 — Adt.

Here X represents the energy reserves of the forager, a > 0 is the
depletion rate of reserves, ) is a search-rate parameter, and Y the
amount by which one item of food increases the reserves (Y could also
be random). Starvation occurs if X(t) < X.. The forager is able to
choose Y and A from some set of pairs S; in particular A = 0 is an
allowable choice —*“hiding.” We also assume

bdt, ifA>0

(4.40) Pr (death by predation in time dt) = { 0 ) =0.
The problem is to find the (Y, A) policy in feedback form (Y, A depend-
ing on X) so as to maximize overall survival probability.

For simplicity, assume Y is deterministic. Also set X, = 0 without loss
of generality. Define p(z, s) as the maximum probability (i.e., using an
optimal strategy) of survival to time s > 0, given X(0) = z. Then
clearly

0, ifz<0

1, ifz> as,

p(z5) = {

and for 0 < z < as we can calculate p(z,s) as follows. First, for
as—Y < z < as the forager survives if and only if it locates one food
item before time s, without' being killed by a predator. Hence,

3
p(z,8) = / Pr{surviving to ¢ and not finding forage}
0

- Pr{finding forage in (¢,t + dt)}
- Pr{surviving from ¢ + dt to s| one item of

4.41
(441) forage found}dt

8
A
— —bt ~Aty gy _ —(b+A)s
/;e e Y Adt ;) b(l € )

foras-Y <z <as,

since the third probability in the first integral equals 1 in this model.
An inductive argument shows in general that
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(4.42)
p(z,8) = (5% )" [1 — e~ (b+A)s (1 +(b+A)s+...
(b+ A)n—1gn-t
(n—1)!

)] foras—nY <z <as—(n-1)Y.

For fixed time s, the survival probability decreases rapidly as a function
of the “deficit” n. On the other hand, for fixed deficit n, the probability
of survival increases with the length of time remaining, s, approaching
the limit (A/(b+A))" as s — oo.

The optimal foraging policy for this simple model is also very simple:
forage whenever the deficit is positive. Clearly, a more realistic model
would include infinite forager capacity and other factors; see Mangel
and Clark [1986]. |

4.4 Oil and mineral exploration. Any form of exploration fundamentally
involves a search process. Some applications of search theory to
problems of oil and mineral exploration are found in the papers of
Cozzolino [1972], Cozzolino and Falconer [1977], Gilbert [1976], Harris
and Skinner [1982], Mangel [1983, 1985d], Menard and Sharman [1975],
Rangarajan and Mehta [1980], Smiley [1979], Shusterich [1982], Uhler
[1976, 1979], and Uhler and Bradley [1976]. In particular, the papers of
Cozzolino and Falconer, Harris and Skinner, Menard and Sharman, and
Rangarajan and Mehta apply versions of the random search formula
(3.16) to problems of oil and mineral exploration and production. Uhler
and Bradley show how the negative binomial distribution (3.5) and
(3.6) can be used to provide a good model for the distribution of oil
- resources.

The random search formula (3.16) is memoryless since it is a simple
exponential distribution. A number of authors have sought extentions
of this formula to include depletion.

For example, Cozzolino [1972] uses two Poisson distributions to model
search with depletion. Let N denote the initial number of objects in a
certain search area A. The value of N is unknown, but a Poisson prior

is assumed:
n

(4.43) Pr(N =n) = %e"", n=01,2,...,

where A = E{N} is a known constant. Objects are located indepen-
dently by Poisson search:

(4.44) Pr (locate a given object in dt) = ~dt.
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Once located, an object is tagged or otherwise removed from the set of
undiscovered objects.

The probability of locating n objects in time t (from ¢t = 0), given N,
is thus binomial:

Pr (locate n objects in time ¢t|N)
= (N) (1—e )"e‘”t(N_"),O <n<N.
n

A straightforward calculation then shows that the prior probability of
locating n objects in time ¢ is

Pr (locate n objects in time t)

PAA—e)"

_ —t
(4.45) = o exp(—Ae™ "),

i.e., another Poisson distribution, with parameter A\(1—e~7%); ast — oo
this converges to the original distribution for N.

Finally, applying Bayes’ rule, we obtain the posterior distribution for

N:
Pr (N = k|n items located in time t)
de— 0t k—n B
—(—(-_k—_-_ZlTexp(—/\e 'ﬂ), k=n,n+1,---

which can also be expressed as

Pr (q items remain|n items located in time t)

—vt\q
(4.46) _ Qe—a,—) exp(Ae™), g=0,1,2,-.

Thus the posterior distribution for the number of objects remaining to
be discovered is a Poisson distribution with parameter Ae~7!, which
also equals the expected number of items remaining. Note that this
expectation decreases at the deterministic rate ~, and is completely
independent of the actual number of objects located in time ¢. This
is the sense in which the Poisson-Poisson search model is “completely
memoryless.” (Cozzolino’s model also allows for variation in the size of
the objects, but the memoryless property persists under this extension).
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The memoryless property was also observed by Iwasa et al. [1981] in
a foraging model. Specifically, assume Poisson search with parameter
~, no replacement, and let px be the prior probability that N = k.
Let r(n,t) denote the expected number of undiscovered objects after n
objects have been located during an initial search period ¢t. We then
have:

Example 1. (Poisson prior)

LI
(4.47) Pk = 7y€

(mean = variance = A).
r(n,t) = de™ "

Example 2. (Negative binomial prior)

co+k-1 1 \o/ a \*

(4.48) p"_( k )(1+a) (1+a)
(mean = oa, variance = oo (1 + a))
r(n,t) = o+n

(&) -1

Example 3. (Binomial prior)

M
(4.49) Pr = ( " )q"(l —g)M*
(mean = Mg, variance = M¢(1 — q))
rint) = — A"

et (14) +1

A fourth example, the gamma prior, permits an arbitrary relationship
between mean and variance, but does not appear to give a simple
formula for r(n,t) —see Mangel and Clark [1983], Equation (33).
Mangel and Beder [1985] discuss extensions to non-Poisson search.

The number n of objects located in time ¢ does not affect r(n,t) for
the Poisson case, but increases (resp. decreases) r(n,t) for the negative
binomial (resp. binomial) cases.

Next, let us discuss a stopping rule for exploration with these models.
If r denotes the expected number of undiscovered objects at a given
time, then the expected number discovered in the next dt is rydt. If
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p denotes the value of one object and ¢ the cost of search per unit
time, then expected short-term benefits will exceed costs if and only if
prvy > c. In the Poisson case, no information is generated by searching,
so the stopping rule is simply pry = ¢, or by (4.47)

(4.50) ts = 1ani/\.

N e
Although no consideration of alternative search areas was taken in
deriving the stopping rule (4.50), this possibility can easily be included,
simply by letting search cost ¢ include the opportunity cost of search
elsewhere. The larger this opportunity cost, the shorter the stopping
time t,, as one would expect.

The stopping rule becomes more complex if a non-Poisson prior is as-
sumed, for in this case search provides both discoveries and information.
The case of a gamma prior is discussed by Mangel and Clark [1983],
but other priors seem not to have been analyzed.

Another stopping problem, and one that is especially well suited for
Bayesian analysis, concerns the assessment of a region thought to
contain an oil or mineral deposit. We will assume that this region is
sampled by an exploratory search process (such as exploratory drilling)
and let X; denote the discovery from the i exploratory event. We
assume that X; follows a negative binomial distribution, so that
I(z+ k) m\~k/ m \=
(4.51) Pr{X; = 2} = [ (1 + ?) (—m - k) .

Here m is the mean of the distribution and k a parameter that repre-
sents the level of aggregation. As k decreases, the level of aggregation
increases. The effect of this aggregation is easily shown by considering
the likelihood that X; = 0:

k k
(4.52) Pr(X; =0} = ;) -
Figure 5 shows Pr{X; = 0} as a function of k and m. When k is small,
there can be a considerable chance of a zero observation, even if m is
quite large.

The problem that we wish to consider here is one in which a decision
must be made about the value of m. That is, one drills exploratory
wells, measures X;, and tries to determine whether m is greater than
a critical value m, or not (various extensions of this problem are
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44 M. MANGEL AND C. CLARK

considered in Mangel [1985c]). In particular, how many dry wells are
needed before one can say that m < m. with sufficient confidence to
conclude that the region is devoid of oil and minerals?

1.0

Pr{X=0} .

logom
Figure 5. The likelihood of zero observation drawn from a NB
distribution with parameters m and k.

We will adopt a Bayesian approaéh to this problem. (Bayesian ap-
proaches are especially well suited to problems of “negative informa-
tion” — i.e., in which negative results are obtained upon search). Let



Y

.
rells are
lence to

,

:sian ap-
informa-
ch' Let

/N SEARCH THEORY - 45

L

fo(m) be the prior probability depaity for the value of the mean in the
region of interest. The likelihood # (m), that n independent samples
are negative when the mean takes the value m is

(4.53) @(m)w (HLm )"".

The posterior density for the mean given n zeros, f(m | n) is then
given by a normalized version of the product of fo(m) and P,(m):

fo(m)(k 4+ m)—"*
[ fo(m)(k + m)—nkdm’

(4.54) f(min) =

The condition that Pr{m < m.} > «, where « is a given confidence
level, is then equivalent to

mMe

[o o]
(4.55) fo(m)(k +m)~"*dm > o f fo(m)(k +m)~"*dm.
0 0
One a prior density fo(m) is chosen, one can easily solve (4.55). One

choice for fo(m) is the uniform prior

(4.56) fo(m) =1 m > 0.

This prior is improper (it does not have a finite integral) but as long as
nk > 1, the postrior density does integate. Using (4.56) in (4.55) and
solving gives

(4.57) nz%{l—lﬁ’:é;k:;))-}.

A second choice for fo(m) is a non-informative prior (Box and Tiao
[1972], Martz and Waller [1982]) which is one in which data change only
the location but not the shape of the likelihood curve fo(m)P,(m). In
Appendix 2, we show that the noninformative prior for sampling the
negative binomial distribution (4.51) is given by

(4.58) fo(mm-1/2(k +m)~12,
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This prior is also not integrable, and, relative to the uniform prior,
gives higher weights to small values of m. Using (4.58) in (4.55) gives

(4.59)
/ m~Y2(k + m) " 2dm > af m~ 2 (k + m)~ "~ 2dm.
0 0

The integral can be transformed to one over a finite domain by setting

m = ktan? 9
(4.60) tan 6

The condition in (4.59) then becomes

oc 1T/2
(4.61) / (cos§)2"%~1d9 > a/ (cos 0)27F~1d0,
0 0

where 0, = arctan(\/mc/k).

Table 4.6 shows results obtained using (4.57) and (4.61). The uniform
prior is “more cautious”—i.e., requires more negative samples — than
the noninformative prior. The cause of this is clear: the noninformative
prior leads to a posterior that is more heavily weighted towards small

values of m.

In closing this section, it is worth noting that often one will have more
information about the possible value of m — say, from independent
geological or seismic sources. In such a case, one may wish to use an
informative prior for f,(m). A good choice is then

(4.62) fo(m@m-a(k +m)~b,

where o and 3 are constants adjusted to fit the available information.
Use of priors similar to (4.62) is described in Mangel [1985c¢], as are
extensions of this model.



R

rior,
rives

Im.

tting

L
iform
than
1ative
small

more
ndent
i1se an

ation.
as are

SEARCH THEORY ' 47

Table 4.6 Deposit Size Estimation Based on Dry Wells
Number of Dry Wells Needed for

k m, a & Pr{m <m.} > a.
Uniform Prior Noninformative Prior
5 .25 .95 17 10
D .50 .95 11 7
D 1.0 .95 7 4
.5 1.5 .95 6 4
5 b5 .95 11 7
.5 S 97 12 8
5 S5 .08 13 9
5 S99 15 11
5 5 .995 17 13
2 S5 .95 17 9
2 S 97 19 11
2 S99 23 14
2 5 .995 26 ' 17

5. Discussion and conclusion. = We have shown that search theory,
as a mathematical topic, involves a diverse collection of mathematical
ideas and techniques which includes differential equations, probability
theory, and optimization theory. Search theory, in fact, provides a nat-
ural blending of those three areas of mathematics. As far as the appli-
cations are concerned, we discussed four fields of application: fisheries,
pest control, foraging theory, and oil or mineral exploration. In each
of these, the application of search theory leads to a new understanding
of some aspect of the problem and also to new mathematics.

The interest and effort in natural resource modeling over the last fifteen
years was concentrated in questions of exploitation. Search theory (and
clearly one must find a resource before exploiting it) is essentially a
question of -exploration. There remains much to be done in coupling
the theories of exploration and exploitation.

APPENDIX 1:
DAMAGE FUNCTION FOR THE COTTON-LYGUS SYSTEM

In this appendix, we describe the model for the cotton-lygus dam-
age function (further details are given by Mangel, Stefanou and Wilen
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[1985]). The cotton plant development is characterized by buds, called
“squares” that develop into bolls, from which the ultimate yield is ob-
tained. A discrete-time model is adopted with the following variables.

S(t) = number of medium and large squares per .001
acres at the start of week ¢
(A.1.1) L(t) = number of lygus adults plus nymphs per 4 sets
of 25 sweeps in week ¢
B(t) = number of large bolls in week ¢.

(Actually, chronological time is not the truly appropriate variable;
rather the degree-day is the appropriate measure with a conversion
from chronological time to degree-days.) The lygus-cotton interaction
is modeled by assuming the following dynamics for S (t):

S(t) = Bu(t - 1)S(t— 1)+ Ba(t - DSt - 1)°
(A.1.2) + Ba(t — 1)L(t — 1) + Ba(t — 1)L(t — 1)
+ Ug(t) fort=3,...,8,

where the S;(t) are coefficients (determined by the data) and /s (t) is
a noise term. The initial condition for (A.1.2) is S(2) = Q. The model
(A.1.2) is one in which squares grow logistically in the absence of lygus,
which exhibits a logistic “harvesting” effect.

In the data analyzed by Mangel, Stefanou, and Wilen [1985], no large
bolls appeared before the fifth week. Assuming a two-week lag between
squares and bolls, the following dynamics are used:

B(t) = w1t — 1)B(t — 1) + (¢ — 1)B(t - 1)*
(A.1.3) + st — 1)S(t — 1) + 74t — 1)S(t — 1)?
+ vg(t), fort=6,7,...,12,

with initial condition
(A.1.4) B(5) = .0135(3) + .00025(3)>.

In (A.1.3), the ~;(t) are coefficients to be estimated and Ug(t) is a noise
term.
Mangel, Stefanou, and Wilen [1985] estimated the coefficients in (A.1.2-

4) using ordinary least squares regression. When this is done, one finds
that B4 is not significantly different from zero at all and that B3 is
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significantly different from zero at the 5% level only in weeks 4 and 8,
thus leading to the two period problem discussed in the text. Figure 6
shows how well the estimated model followed the data used to generate
it.
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Figure 6. Comparison of the solution of equations (6) and the
averages of the observed squares and bolls.

The yield of cotton (in pounds) is based on the assumption that 125,000
bolls yield 480 pounds. Thus, by solving (A.1.2-4) with L(t) = 0, one
obtains the value of Yy in (4.21) — the yield in the absence of lygus.
Given values of L(4) and L(8), one can then compute the damage done
by lygus in reducing physical yield.
APPENDIX 2:
NON INFORMATIVE PRIOR FOR THE MEAN
OF A NEGATIVE BINOMIAL DISTRIBUTION

The approximate noninformative prior for the NB distribution is de-
rived as described by, Martz and Waller [1982], 224. Viewing (4.51) as
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the likelihood of m given z, the log-likelihood is
(A.2.1) L(mz) = —klog(k + m) + z[logm — log(m Hk) {H{(z, k),

where £(z, k) contains terms independent of m. The derivatives of the
log-likelihood are

oL -k + z T
om k+m m m+k
(A.2.2) 52L k i i

om2  (k+m):2 m2 (m+k)?

Setting L/Om = 0 shows that the maximum likelihood estimate is
m = z. Define

—8%L

TOh) = Bz

(A.2.3) me

m m+k k

w2 (k+m)2Z  mk+m)

The approximate non-informative prior is then

(A.2.4) fo(m)@& J(m)Y? = m=Y2(k 4+ m)~1/2,

ACKNOWLEDGEMENTS. This work was partially supported by NSF
Grant MCS-81-21659, by the Natural Sciences and Engineering Re-
search Council of Canada Grant A-3990, and by the Agricultural Ex-
periment Station of the University of California.



the

\NSF
Re-
Ex-

SEARCH THEORY 51

REFERENCES

N.U. Ahmed and K.L. Teo [1981], Optimal Control of Distributed Parameter Systems,
North Holland, New York.

R. Allen and R. Punsly [1984], Catch Rates as Indices of Abundance of Yellowfin Tuna,
Thunnus albacares, in the Fastem Pactfic Ocean. Inter-Amer. Trop. Tuna. Comm.
Bull. 18, 303-379.

M. Avriel [1976], Nonknear Programming: Analysis and Methods, Prentice Hall, Engle-
wood Cliffs, New Jersey.
J.O. Berger [1980)], Statistical Decision Theory, Springer Verlag, New York.

C.L Bliss [1958], The Analysts of Insect Counts as a Negative Binomial Distribution, Proc.
Tenth Intl. Cong. Entomol., 1015-1032. '

G.E.P. Box and G.C. Tiao [1972], Bayesian Inference tn Statistical Analysis, Addison
Wesley, Reading, Mass.

K.P. Burnham, D.R. Anderson, and J.L. Laake [1980|, Estimation of Density from Lene
Transect Sampkng of Biological Populations, Wildlife Monographs No. 72.

A. Charnes and W.W. Cooper [1958], The Theory of Search: Optimum Distribution of
Search Effort, Man. Sci. 5, 44-50.

C.W. Clark [1976], Mathematical Bioeconomics: The Optimal Management of Renewable
Resources, Wiley-Interscience, New York.

— — — (1980}, Towards a Predictive Model for the Economic Regulation of Commercial
Fisheries, Can. J. Fish. Aquat. Sci. 37, 1111-1129.

— — — [1985], The Effect of Fishermen’s Quotas on Expected Catch Rates, Mar. Res.
Econ. 1, 419-428.

— — — and M. Mangel [1984], Flocking and Foraging Strategies; Information 1 an
Uncertain Fnvironment, Amer. Nat. 123, 626-641.

— — —and — — — [1986], The Evolutionary Advantages of Group Foraging, Theor.Pop.
Biol., to appear.

— — — and R. Mitchell [1984], An Optimal Search Problem, Univ. of B.C. Inst.
Appl. Math. Tech. Rep. No. 84-13.

R. Courant and D. Hilbert [1962], Methods of Mathematical Physics, Vol. II. Wiley,
New York. >

J.M. Cozzolino [1972], Sequential Search for an Unknoun Number of Objects of Nonuniform
Size, Oper. Res. 20, 293-308.

— — — [1977], A New Method for Measurement and Control of Exploration Risk, Soc.
Pet. Eng. J. 6632, 1-8.

— — — [1979], Measurement and Projection of Search Efficiency, Soc.Pet. Eng. J.
7456, 251-256.

— — — [1979], and W.A. Falconer [1977], Williston Basin Search Analyzed, Oil Gas.
J., 17 January. '

M. DeGroot {1970], Optimal Statistical Decisions, McGraw Hill, New York.

W. Feller [1968], An Introduction to Probabikty Theory and Its Applications, Vol. 1, Wiley,
New York.

R.J. Gilbert [1976], Search Strategies for Nonrenewable Resource Deposits, Technical
Report 196, Institute for Mathematical Studies in the Social Sciences, Stanford
University. :



N4

RO

s o LA T 8 e T D il

. e oy
B i e R L NG 3
[P AP S epoRce ey

n
3

52 M. MANGEL AND C. CLARK

A.P. Gutierrez, T.F. Leigh, Y. Wang, and R.D. Cave [1977], An Analysis of Cotton
Production in California: Lygus Hesperus (Heteroptera: Miridae) Infury — an Fuvaluation,
Can. Ent. 109, 1375-1386.

— — - Y. Wang, and U. Regev [1979], An Optimization Model for Lygus Hesperus
(Heteroptera: Miridae) Damage in Cotton: The Economic Threshold Revisited, Can. Ent.
111, 41-54.

K.B. Haley and L.D. Stone [1980], Search Theory and Applications, Plenum, New
York.

D.P. Harris and B.J. Skinner [1982], The Assessment of Long Term Supplies of Minerals,
Chapter 8 in_Explorations in Natural Resource Economics (V.K.Smith and J.V. Krutilla,
eds.), Johns Hopkins University Press, Baltimore, Md.

O. Hellman [1970], On the Effect of Search Upon the Probability Distribution of a Target
Whose Motion is a Diffusion Process, Ann. Math. Stat. 41, 1717-1724.

R. Hilborn [1985], Fleet Dynamics and Individual Variation, Can. J. Fish. Aquat. Sci.,
42, 2-13

Y. Iwasa, M. Higashi, and N. Yamamura [1981], Prey Distribution as a Factor Deter-
mining the Choice of Optimal Foraging Strategy, Amer. Nat., 117, 710-723.

M. Kendall and A. Stuart [1979], The Advanced Theory of Statistics, Vol. 2, Charles
Griffin and Company, London.

B.O. Koopman [1956a], The Theory of Search, Pt. I Kinematic bases, Oper. Res. 4,
324-346.

— — — [1956b), The Theory of Search, Pt. II. Target Detection, Oper.Res. 4, 505-531.
— — — [1957], The Theory of Search, Pt. III. The Optimum Distribution of Searching
Effort, Oper. Res. b, 613-626.

— — — [1980], Search and Screening, Pergamon Press, New York.

J.L. Lions [1971], Optimal Control of Systems Governed by Partial Differential Equations,
Springer Verlag, New York.

D. Ludwig [1975], Persistence of Dynamical Systems under Random Perturbations, SIAM
Review 17, 605-640.

M. Lukka [1979], On the Optimal Searching Tracks for a Randomly Moving Target — a
Free Terminal Point Problem, Ann. Univ. Turkuensis A175, 11-24.

M. Mangel [1981], Search for a Randomly Moving Object, SIAM J. Appl. Math. 40,
327-338.

— — — [1982a], Search Effort and Catch Rates in Fisheries, Eur. J. Oper.Res. 11,
361-365.

— — — [1982b)], Probability of Success in the Search for a Moving Target,Oper. Res. 30,
216-222. |

— — — [1983], Optimal Search for and Mining of Underwater Mineral Resources, SIAM
J. Appl. Math. 43, 99-106.

— — — [1985a), Search Models in Fisheries and Agriculture, in Proceedings of the R.
Yorque Workshop on Resource Management (M. Mangel, ed.), Springer Verlag.

— — — [1985b], Search Theory: A Differential Equations Approach, to appear in Recent
Advances in Search Theory, D. Chudonousky, editor.

— — — [1985c] Sampling Highly Aggregated Populations, Unpublished report Depart-
ment of Mathematics, University of California, Davis (available from author).

— — — [1985d) Decision and Control in Uncertain Resource Systems, Academic Press,
New York.



SEARCH THEORY 53

- — — — and J.H. Beder [1985], Search and Stock Depletion:  Theory and Apphcations,
| Can. J. Fish. Aq. Sci. 42, 150-163.

i — — —and C.W. Clark (1983], Uncertainty, Search and Information tn Fisheries, J. du.
1 Conseil. 41, 93-103.

t — — —and — — — [1986)], Unified Foraging Theory, Ecology, accepted.

— — — and R.E. Plant [1985), Regulatory Mechanisms and Information Processing tn
' Uncertain Fisheries, Mar. Res. Econ. 1, 389-418.

i — — —— — —, and J.R. Carey [1984], Rapid Delimiting of Pest Infestations: A
| Case Study of the Mediterranean Frust Fly. J. Applied Ecology 21, 563-579.

— — —, S.E. Stefanou, and J.E. Wilen (1985), Estimating Lygus Hesperus (Knight)
Ingury to Cotton Yields, J. Econ. Ent. 78, 1009-1014.

H.F. Martz and R.E. Waller (1982], Bayesian Rekabikty Analysis, Wiley, New York.

H.W. Menard and G. Sharman (1975], Scientific Uses of Random Drlling Models,
Science 190, 337-343.

P.M. Morse [1977), In at the Beginnings: A Physicist’s Life, MIT Press, Cambridge,
Mass.

J.J. Opaluch and N.E. Bockstael (1984], Behavioral Modelking and Fisheries Management,
Mar. Res. Econ. 1, 105-115.

| Operations Evaluations Group [1946], Search and Screening, Superintendent of Doc-
| uments, Washington, D.C.

J.H. Perkins [1982], Insects, Experts and the Insecticide Crisis, Plenum Press, New York.
b F.M. Peterson [1975), Two Externalities in Petroleum Ezploration, in G.M. Brannon
(ed.), Studses in Fnergy Tox Policy, Ballinger, Cambridge, Mass.

' R.E. Plant and M. Mangel (1986], Modeling and Simulation in Agricultural Pest Control,
| SIAM review, 41, 203-214.

f ———and T. Wilson [1985], A Bayesian Method for Sequential Sampling and Forecasting
E in Agricultural Pest Management, Biometrics, 41, 203-214.

H.R. Pulliam and T. Caraco [1984], Living tn groups: Is There an Optimal Group Size?
t Ch. 5 in J.R. Krebs and N.B. Davies, eds., Behavioral Ecology: An Fvolutionary
| Approach, 2nd edition, Sinauer, Sunderland, MA.,122-147.

% S. Rangarajan and C.H. Mehta [1980], Search Area Analysis of Ezploration Driling for
4" Hydrocarbons, Geophysics 45, 94-108.

¥ T. Schelling [1978], Micromotives and Macrobehavior, Norton, New York.

' Z. Schuss [1980], Theory and Applications of Stochastic Drfferential Equations, Wiley, New
b York.

i G.A.F. Seber [1982], The Estimation of Animal Abundance, MacMillan Publishing Co.,
| New York.

i R. Shotten [1973], Search and Decision n Fishing Systems, M.Sc. Thesis, Univ. of
i B.C., Vancouver.

¥ K.M. Shusterich [1982], Resource Management and the Oceans, Westview Press, Boul-
§ der, Colorado.

¥ A.K. Smiley [1979], Competitive Bidding Under Uncertainty, Ballinger Press, Cam-
‘7‘ bridge, Mass.

8. Stefanou [1983], The Optimal Allocation of Scouting FEffort and Timing of Pesticide
i Application, Ph.D. Dissertation, Department of Agricultural Economics, University
bof California, Davis.



S e T TL IO RV

R A O e WD RSN i

54 M. MANGEL AND C. CLARK

— — — , M. Mangel, and J.E. Wilen [1984], Pest Scouting, Value of Information, and
Optimal Spraying Decisions, J. Ag. Econ., submitted.

L.D. Stone [1975], Theory of Optimal Search, Academic Press, New York.

J.E. Swierzbinski {1981), Bioeconomic Models of the Effects of Uncertainty on the Economic
Behavior, Performance, and Management of Marine Fisheries, Ph.D. Thesis., Harvard
University, Cambridge, Mass.

L.R. Taylor [1971], Aggregation as a Species Characteristic, pgs. 357-378 in Spatial

Patterns and Statistical Distributions (G. Patil, E. Pielou, and W. Waters, eds.),
Pennsylvania State University Press, Umvermty Park, Pa.

K.L. Teo and Z.S. Wu [1984], Computational Methods for Optimizing Distributed Systems,
Academic Press, New York.

K.R. Tidman [1984], The Operations Evaluation Group (A History of Naval Operations
Analysis), Naval Institute Press, Annapolis, Md.

R.S. Uhler [1976], Costs and Supply in Petroleum Ezxploration: The Case of Alberta, Can.
J. Econ. 9, 72-90.

— — — [1979), Petroleum Finding Costs, Technical Report, Department of Economics,
University of British Columbia, Vancouver, Canada.

— — — and P.G. Bradley [1970], A Stochastic Model for Determining the Economic
Prospects of Petroleum Exploration over Large Regions, J. Amer.Stat. Assoc. 65, 623-
630.

A.R. Washburn [1981), Search and Detection, Military Applications Section, ORSA,
Arlington, Va.

r—



