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Inverse Problems

Internal State
Cause Observed Effect

Forward Model

Inverse Problem

• Noise sensitivity
• Non-uniqueness
• Numerical conditioning



Milanfar et al. EE Dept, UCSC

Inverse Problem of Interest

Detailed Scene Low resolution images

Image(t1), Image(t2), ….

Cheap Camera

Forward Model

[ ] noiseyxPSFtyxHRtyxLR N +=↓ ),(*),,(),,(

Inverse Problem

),,( tyxHRCompute
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Information in Imaging

Source Transmitter ChannelChannel
Receiver Sink

Communication System:

Physical
Scene

Illumination
&

Reflection

Camera
Optics

Camera
Optics

Imaging
Chip Processor

Optical Imaging:

Space/time 
sampling rate, 

Foveation

Lens Engineering,
zoom,

focus, etc.

Non-uniform
Illumination in

space and time
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Some Informative Analogies

• Imaging (Inv. Probs.)
– Point-spread function
– Deconvolution
– Occlusion
– “Multi-frame” imaging
– Image registration
– Resolution Limits
– ….

• Communication
– Channel response
– Equalization
– Interference
– Multi-antenna systems
– Time-delay estimation
– “Capacity”
– ….
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Agenda

• Sensor model and limitations

• Processing algorithms 

• SR Performance limits

• Further extensions and directions
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Sensing : Resolution Limits of a 
Canonical Image Sensor
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• The image of two sources is the incoherent sum of 
PSFs, representing the effect of the diffraction

Pinhole Camera

• When the point sources are “too close”, according to 
the Rayleigh criterion these two point sources are 
not resolvable. 
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Imaging Closely-Spaced Point Sources

Noise

h(x,y)

Rayleigh’s limit isn’t.
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Resolution as a composite statistical hypothesis test:

Spatial
Resolution

Resolution: Stochastic Problem

• Point sources:

• Measured Signal:
),(),(),( lkylkkylkk yxwqyqxhpypxh ++++−−   βα

),( yx pp

),( yx qq
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Optimal Solution and a Scaling Law

• ”Information capacity”: What is the minimum SNR 
required to detect the presence of two point sources with 
high confidence?

Depends on the sensor PSF,
the required false alarm
and tolerable error rates. (Optimize!) 

Number of samples
at focal plane array 

4Nd
CSNR ≈

M. Shahram, and P. Milanfar, "Imaging Below the Diffraction Limit: A Statistical Analysis", 
IEEE Transactions on Image Processing, vol. 13, no. 5, pp. 677-689, May 2004

M. Shahram, and P. Milanfar,"Statistical and Information-Theoretic Analysis of Resolution 
in Imaging", to appear in IEEE Transactions on Information Theory
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Example for super-critical 
sampling

Unknown Parameters

Known Parameters

What happens when there is aliasing?
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Example for sub-critical sampling 
(50% below Nyquist, two frames)

Message: Things can get a lot worse, but not impossible!
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Processing :Multi-frame Resolution 
Enhancement (Super-resolution)
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Why Spatial Resolution 
Enhancement?

• To obtain an alias-free, “diffraction limited”
image we need 4 pixels covering the Airy 
disk:

• That is: radius of the Airy disk must match 
the pixel dimensions.
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Motivation: SuperResolution
Goes to Hollywood

CBS Program “Numb3rs” Episode from March 11, 2005
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Overcoming Sensor Limitations by 
Processing

The Idea: “Diversity” + Aliasing
• Given multiple low-resolution movingmoving images of a 

scene (a video), generate a high resolution image 
(or video).

Data Courtesy USAF
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• A simple model relating the low-resolution 
blurry image to the high resolution crisper 
image.
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34231213 00 efafaffy +++⋅+⋅=

“PSF”

Resolution Enhancement Model
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Low vs High Res Pixels

x2 enhancement:
Need 4 frames.
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The Mathematical Model

• Statistical estimation problem
• The system is typically underdetermined and ill-conditioned.

• Need N2 frames for factor of N enhancement. 
• Model is uncertain, and sensitive to unknown parameters.
• Computational complexity is a major concern
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The Optimization Problem
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Data Info: Builds robustness to 
model uncertainty

L1 Prior: Incorporates multiscale
model of edges

10 <<α

S. Farsiu, D. Robinson, M. Elad, and P. Milanfar, "Fast and Robust Multi-frame Super-resolution", 
IEEE Transactions on Image Processing, vol. 13, no. 10, pp. 1327-1344 , October 2004
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Why this L1 prior? 
• Let’s look at pixel differences across 

scales ffI m
y

l
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P. Milanfar, and D. Odom, “Modeling Multiscale Differential Pixel Statistics with Applications”, 
SPIE Electronic Imaging Symposium: Conference on Computational Imaging, January 2006, San 
Jose, CA
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Histograms of ffI m
y
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Before
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After: 4x
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Detail Before

Data Courtesy  Vigilant Technology
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Detail After

Data Courtesy  Vigilant Technology



Milanfar et al. EE Dept, UCSC

Security Camera (before/after)
60 input frames
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Processing Limits: Statistical 
Bounds on Super-Resolution 

Performance
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• Consider a sequence of noisy, translating 
images over time.

Review Basic Formulation

{ }ky

noiseSample += )],(*),,([ yxhtyxf kky

error Translate += −− ),( ,11 kkkk vyy

Ny

1y
2,1v

2y
3,2v

• Image formation model:

Point-spread function

Frame-to-frame motion vectors

Aliasing
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noiseSample += )],(*),,([ yxhtyxf kkf

error Translate += ),( ,kjjk vff

• Reconstruction Problem: Given the frames, estimate the 
high resolution image                . (Superresolution)

– Implicit problem: Estimate the motion vectors from aliased images 

Fusion of Multiple Video 
Frames

Nf

1f
2,1v

2f
3,2v

Nuisance
Parameters

Desired unknowns

),,( tyxf
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noiseyxhtyxf kk += )],(*),,([Samplef

• Motion Problem: Given the frames, estimate vectors        

– Implicit problem: Estimate underlying high resolution image from
aliased data

Registration of Multiple Aliased 
Images

Nf

1f
2,1v

2f
3,2v

Desired
unknowns

{ }kjv ,

Nuisance Parameter

Registering Aliased Images : A Very Poorly Understood Problem

error Translate += ),( ,kjjk vff



Milanfar et al. EE Dept, UCSC

How well can the problem be 
solved?

Estimation approach: Look at the Fisher 
Information (hence the Cramer-Rao bound).

Registration 
Information Information 

“Correlation”

Reconstruction 
Information

vvJ - Depends on the set of motions (sampling offsets) and the 
amount of texture energy in the signal

- Depends only on the set of motionsffJ
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CRB for Aliased Image 
Registration

Using Schur decomposition, the CRB for aliased image 
registration is:

With just a pair of aliased images, the FIM is generically 
singular, hence unbiased pairwise registration of aliased 
images is  essentially impossible. (Not so in absence of 
aliasing!)

{ }( ) ( ) 11
,

−−−≥ T
fvfffvvvkjv JJJJCov

Registration 
Information

Information Loss 
due to uncertainty 
about the high 
resolution image.

D. Robinson, and P. Milanfar, "Statistical Performance Analysis of Super-resolution",
To appear in IEEE Transactions on Image Processing
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Registering Sets of Images
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Insights gained:
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ML Estimate of Motion Vectors
A Priori Known Motion Vectors

• How much information is lost by needing to estimate the 
motion vectors?

• How many frames to get a decent answer? 

We expect a 10-20% 
loss in MSE 
performance. (A lot!) 
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Further Extensions: Color, 
Dynamics, Algorithmic 

Improvements
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Color Super-Resolution

• Two types of input to consider: 
– Raw CFA data 
– Full RGB fields

• Unified Treatment
. . .

Demosaicing

Image
Sequence



Milanfar et al. EE Dept, UCSC

Simultaneous Demosaicing and  
Super-Resolution

Bayer Filtered 
Motion Sequence

. . .

Single-Frame
Demosaicing

OLD

Image “fusion” Hi-resolution
Demosaicing

NEW
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Characteristics of Color Algorithm

I. Robust to the data noise and motion 
estimation errors (L1 Norm).

II. Sharp edges in luminance component (L1).
III. Minimize artifact in the chrominance 

component (L2 Norm).
IV. Similar edge location-orientation in all color 

bands.

S. Farsiu, M. Elad, and P. Milanfar, “Multi-Frame Demosaicing and Super-Resolution of Color Images”, 
To appear in IEEE Trans. on Image Processing

S. Farsiu, D. Robinson, M. Elad, and P. Milanfar, "Advances and Challenges in Super-Resolution", 
International Journal of Imaging Systems and Technology, Special Issue on High Resolution Image 
Reconstruction, vol. 14, no. 2, pp. 47-57, 2004. 
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RGB Color Security Camera
24 input frames
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RGB Color  Super-Resolution

40 input frames, resolution enhancement factor of x4
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Demosaiced from 1-CCD 
CFA Camera

24-Frame Demosaicing
and Reconstruction x3

Data courtesy of Technion
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Dynamic Super-Resolution

Low-Res

High-Res

• Naïve Approach:

• Right Approach:

Low-Res

High-Res Fuse

High-Res Fuse
…..

M. Elad and A. Feuer, “Super-Resolution 
Restoration of Continuous Image Sequence –
Adaptive Filtering Approach”, IEEE Trans. on Image 
Proc., Vol. 8. Number 3, pp. 387-395, March 1999
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Dynamic Super-Resolution

• Adapted for color
• Improved robustness
• Different implementation Low-Res

High-Res Fuse

High-Res Fuse
…..

S. Farsiu, M. Elad, and P. Milanfar, "Video-to-Video Dynamic Superresolution for Grayscale 
and Color Sequences,“ To appear in EURASIP Journal of Applied Signal Processing, Special 
Issue on Superresolution Imaging
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Video-to-Video Example I

HR Outcome

LR Video 
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(Milanfar, Farsiu, Elad)

Software
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Further Refinements 

• Computationally, it still makes the most 
sense to solve the motion/fusion problems 
in series.

– Need extremely accurate motion estimation.

– Need excellent filtering, interpolation.
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Better Motion Estimation 
• Almost all motion estimation algorithms 

today deal with the case of only two 
(consecutive) frames at a time. 

Pairwise estimation
(“Progressive”)

Fixed reference estimation
(“Anchored”)
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Constraints on Motion Vectors 
Across Time

Frame i Frame j Frame k

kjv ,

kiv ,

jiv ,

0,
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+=

ii

kjjk

kjjiki

v

vv

vvv • Linear set of constraints imply that the 
motion vectors live in a subspace.

• For more general motion, you have 
nonlinear constraints, group structure.

• Applicable to any core algorithm.

S. Farsiu, M. Elad, P. Milanfar, "Constrained, Globally Optimal, Multi-frame Motion Estimation,“
Proc. of the 2005 IEEE Workshop on Statistical Signal Processing, Bordeaux, France, July 2005

Translation case:
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Better Filtering and Interpolation: 
The Kernel Regression Idea

T
ii xx ],[ 21=x,)( iii zy ε+= x

Measurement
Regression function

Data:
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Smoothing matrix

Local Polynomial Kernel Regression:
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Even Better: Adaptive Kernel 
Regression
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jxx =Consider the Denoising Problem First:

Bilateral filter
(Gaussian Kernels)
Tomasi (’98)
Elad (’01)
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• Kg implicitly exploits the local gradient 
information. (e.g. BF, )  

• Improved solution is possible by explicit 
incorporation of orientation info.

Choice of Radiometric Kernel

( )22)(exp gjig yyK σ−−=

Xiaoguang, Feng, P. Milanfar, "Multiscale Principal Components Analysis for Image Local Orientation 
Estimation", Proceedings of the 36th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, 
CA. November 2002

Spread the kernels
along local orientations
(“Kernel Steering”)
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Adaptive Kernel Regression 

• Steerable Kernel Regression
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Local Steering matrix

Global Scaling parameter

H. Takeda, P. Milanfar, “Image Denoising by Adaptive Kernel Regression”
Proceedings of the Asilomar Conference on Signals and Systems, Oct. 2005, 
Pacific Grove, CA
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Image Denoising

Noisy, sigma = 25Original image
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Denoising Results

Bilateral filter, 
RMSE = 8.66

Adaptive kernel,
Steered 
order = 0
RMSE = 7.04

Gaussian kernel

Standard kernel, 
order = 2,
RMSE = 10.21

Adaptive kernel, 
Steered,
order = 2
RMSE = 7.03
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What About Fully Adaptive 
Kernel-based Interpolation? 

The Problem: At the location x where we wish to interpolate, there is no 
pixel value (yet)

Denoising Interpolation

)( jig yyK −

?yj

Pixel Exists Pixel Doesn’t
Exist

The Solution: Produce a “pilot”, low-complexity, estimate of the pixel
then apply the more sophisticated adaptive kernel techniques described 
earlier. 

The process can in fact be iterated for further improvement.  

?
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Illustration:
30% of  Pixels Retained Local Constant Kernel Estimate
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Adaptive Kernel Estimate
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Upsampling Example: Interpolation from Regular Samples

3x
Downsampling

Standard kernel, 
order = 2
RMSE = 8.32

Steerable kernel, 
order = 2
RMSE = 7.59
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Interpolation from Irregular Samples

85%

Random
Downsampling

Standard kernel, 
order = 2
RMSE = 9.35

Steerable kernel, 
order = 2
RMSE = 8.38
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Low resolution video, 8 frames Local constant estimator, order=0

Local quadratic estimator, order=2 Estimated scene

SR Example
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Super-resolution Example

Motion
Estimation

Image
Reconstruction

Resolution 
enhancement from 
video frames captured 
by a commercial 
webcam
(3COM Model No.3719)
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Some Final Remarks

• SR is an idea whose time has come. 

• Time to seriously consider applications.

• A prediction: in 5-7 years, SR will be 
used routinely in consumer products. 
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The Life of Super-Resolution so-far

• A pregrant idea: Super-Res is conceived
– Yen (‘56) and Papoulis (’77) Sampling Theorems

• Birth: A first super-resolution algorithm
– Tsai and Huang (’84)

• Toddler: Back-projection methods
– Peleg, Keren, Schweitzer (’87), Peleg and Irani (‘90)

• Early Education: Some formal signal processing
– Bose (’90), Tekalp et al (’92)

• Pre-teen: The facts of life 
– Elad (’95), Katsaggelos (’95), Schultz (’95), Foroosh (’95)

• Teenager: Getting good with numbers, and learning to learn
– Nguyen,Milanfar,Golub (’98), Baker (’99)

• College: Color, compression, stability, learn to adapt better
– See Special Issue of EURASIP JASP

• TODAY: SR has recently graduated from college. 
– Time to get a job and become useful.
– Or go to graduate school….


