A Persian Folk Method of Figuring Interest

PEYMAN MILANFAR
SRI International
333 Ravenswood Ave.
Menlo Park, CA 94025

I recently learned a very quick and effective way of estimating monthly payments on a loan. My father showed me the method, having learned it himself from my grandfather, who was a merchant in nineteenth century Iran. While its origins remain a mystery, the method is still in use among merchants all around Iran, and perhaps elsewhere.

My father used the formula:

Monthly payment = \frac{1}{\text{Number of months}} (\text{Principal} + \text{Interest});

he calculated the interest as

\text{Interest} = \frac{1}{2} \text{Principal} \times \text{Number of years} \times \text{Annual interest rate}.

The \textit{exact} formula, assuming interest accrued monthly, can be found in any basic finance textbook:

\[C = \frac{r(1 + r)^N P}{(1 + r)^N - 1}, \tag{1} \]

where \(C \) is the (exact) monthly payment, \(r \) is the monthly interest rate (1/12 the annual interest rate), \(N \) is the total number of months, and \(P \) is the principal. With this notation, the folk formula becomes

\[C_f = \frac{1}{N} \left(P + \frac{1}{2} P N r \right). \tag{2} \]

In many cases, \(C_f \) is a surprisingly good approximation to \(C \). As an example, for a 4-year auto loan of $10,000 at an annual rate of 7% compounded monthly, the exact formula gives monthly payments of $239.46 while the folk estimate gives $237.50.

To see why the approximation works, we regard \(C \) as a function of \(r \), with all other quantities held fixed. (The singularity in (1) at \(r = 0 \) can be cancelled out.) A straightforward calculation shows that the first order Maclaurin polynomial for \(C(r) \) has the form

\[C(r) \approx \frac{1}{N} \left(P + \frac{1}{2} P (N + 1) r \right), \tag{3} \]

which closely resembles the definition of \(C_f \). For a fixed \(P \), when \(r \) is sufficiently small and \(N \) sufficiently large, the difference between (2) and (3) is small.