
1

Estimating Spatially Varying Defocus Blur
from A Single Image

Xiang Zhu, Student Member, IEEE, Scott Cohen, Member, IEEE, Stephen Schiller, Member, IEEE,
and Peyman Milanfar, Fellow, IEEE

Abstract—Estimating the amount of blur in a given image is
important for computer vision applications. More specifically,
the spatially varying defocus point-spread-functions (PSFs) over
an image reveal geometric information of the scene, and their
estimate can also be used to recover an all-in-focus image. A
PSF for a defocus blur can be specified by a single parameter
indicating its scale. Most existing algorithms can only select
an optimal blur from a finite set of candidate PSFs for each
pixel. Some of those methods require a coded aperture filter
inserted in the camera. In this paper we present an algorithm
estimating a defocus scale map from a single image, which is
applicable to conventional cameras. This method is capable of
measuring the probability of local defocus scale in the continuous
domain. It also takes smoothness and color edge information
into consideration to generate a coherent blur map indicating
the amount of blur at each pixel. Simulated and real data
experiments illustrate excellent performance, and its successful
applications in foreground/background segmentation.

Index Terms—spatially varying blur estimation, defocus blur.

I. INTRODUCTION

OPTICAL IMAGING systems have a limited depth of
field, which may lead to defocus blur. Most blind

deconvolution algorithms focus on estimating shift-invariant
point-spread-functions (PSFs), or shift-varying PSFs that can
be treated as projections of a globally constant blur descriptor
caused by camera shake [1][2][3][4][5]. However, estimating
defocus blur is a challenging task mainly because the corre-
sponding PSFs are spatially varying and cannot be represented
by any global descriptor. Indeed, spatially varying defocus
PSFs for a given camera can be pre-calibrated and described
typically through a simple model (e.g. disc, Gaussian) that is
characterized by a single parameter indicating its scale (radius,
standard deviation, etc.) For an image, we call the 2D map of
the scale parameter the defocus blur map, which indicates the
level of local blur at each pixel (see an example in Fig. 1).
The main purpose of this paper is to provide an automatic way
of estimating a defocus blur map from a single input image.

Defocus blur map estimation has several potential applica-
tions. For example, it can be employed to detect and segment
in-focus subjects from the out-of-focus background, helping a
photo editor to edit the subject of interest or the background,
separately. Besides that, since defocus blur level is intimately
related with depth of the scene, a blur map also provides
important information for depth estimation. The computation

X. Zhu and P. Milanfar are with the Department of Electrical Engineering,
UC Santa Cruz, Santa Cruz, CA, 95064. {xzhu,milanfar}@soe.ucsc.edu.

S. Cohen and S. Schiller are with Adobe Research, Adobe Systems
Incorporated, San Jose, CA 95110. {schiller,scohen}@adobe.com.

of depth information typically requires two photos of the
same scene taken at the same time but from slightly different
vantage points, i.e. a stereo pair [6]. However, in most cases
only one image is available. A blur map allows one to
reconstruct a 3D scene from a single photograph as long as
the camera settings (focal length, aperture settings, etc.) are
known. For image restoration applications, if both the defocus
PSF calibration and blur map estimation are made, we can
reconstruct an all-in-focus image through a non-blind spatially
varying deblurring process.

In [7] Levin et al. proposed an algorithm that simultaneously
restores a sharp image and a depth map from a single input.
This method locally selects the best PSF by evaluating its
deconvolution errors. It requires a specially designed aperture
filter for the camera, which strongly limits its domain of
application. Instead of estimating the optimal blur scale in
the continuous domain, it can only identify the most likely
candidate from a finite number of calibrated PSFs with
somewhat limited accuracy. Chakrabarti et al. suggested a
method estimating the likelihood function of a given candidate
PSF based on local frequency component analysis without
deconvolution [8]. In their paper the method is applied to
detect simple motion blur, but it can also be employed for
defocus blur identification. Again it can only detect optimal
PSFs from a finite number of candidates.

In this paper we propose a new method for estimating PSF
scale at each pixel. The estimation is based on local frequency
component analysis similar to [8], but is significantly more
general since it is carried out in the continuous domain.
Smoothness constraints and image color edge information are
also taken into consideration to generate a map that is smooth
and meanwhile allows discontinuity in the boundary regions
between objects (such as boundaries between sharp foreground
subject and blurry background). This algorithm does not rely
on any specific functional model of the PSFs and is therefore
very generally applicable. It can be implemented using any
PSF model that is a function of a single parameter. As we
illustrate in Section IV, even without accurate PSF calibration
and modeling the method can still roughly tell local blur
level for real images by employing the disc function as an
approximate model.

Bae and Durand [9] perform blur estimation to magnify
focus differences, but the blur estimation is done only at edges.
Their blur map is essentially interpolated elsewhere. Their first
step is an explicit edge detection step, which may not be very
robust to either strong blur or noise. Since the goal in [9] is
magnifying focus differences, the case of a background that is

2

0 2 4 6 8
(a) (b) (c)

Fig. 1. Defocus blur map estimation experiment using a real image. (a) Test image. (b) Estimated defocus blur map. (c) Automatic
foreground/background segmentation.

too blurry for reliable edge detection is not mentioned. On the
other hand, our statistical models are applicable everywhere
there is some image contrast, even where there is not a single
clear edge that can be localized. Thus, we produce a dense set
of probability distributions versus blur radii over the image.
Our method models changes in energy at all frequencies with
blur and not just very high frequencies (edges). The method
of [9] models only step edges with a Gaussian blur PSF.

Our continuous blur radius modeling discussed in sec-
tion III-A leads to a very accurate estimate of local blur,
which in turn provides for better discrimination than [8] in
separating the effects of defocus blur over noise and image
content. A second important improvement over [8] is that
we find and enhance 2nd and 3rd local maxima in the blur
radius probability distribution at each pixel. This is discussed
in section III-B. When the global maximum does not give the
correct blur radius, the 2nd or 3rd highest local maximum
almost always does (see Fig. 5). Our smoothness constraint
then allows our method to choose the proper radius, thereby
signficantly reducing errors in the blur radius map.

The use of a sharp-edged window in the local frequency
analysis in [8] causes more mixing of values in the frequency
domain thus reducing the signal to noise ratio. Our formulation
uses a Gaussian windowing function to avoid this problem.
In [8], a single horizontal or vertical motion blur kernel is
chosen from a set of candidate motions and then a final binary
labeling problem is solved to segment the moving object
from the assumed static background. This final step can only
distinguish between part of the image blurred with one blur
kernel and those parts of the image that are not blurred with
this one kernel. Our technique is more flexible in that we can
distinguish between areas of the image that are blurred with
multiple (but different) blur kernels.

The rest of this paper is organized as follows. Section II
gives an analysis on local image statistics to motivate the
basic estimation idea. The proposed algorithm is described
in Section III. Simulated and real data experiments are given
in Section IV to show the algorithm performance. We also
provide application examples in this section, focusing mainly

on automatic foreground/background segmentation. Known
shortcomings are discussed in Section V. Finally, we sum-
marize and discuss directions of future research in Section
VI.

II. LOCAL IMAGE STATISTICS ANALYSIS

An imaging process suffering from spatially changing blur
and random noise can be generally modeled as:

g[x] = (hx ⊗ f) [x] + n[x] (1)

where ⊗ denotes a 2-D convolution operator. f and g represent
the ideal all-in-focus image and the observed blurry image (in
gray level), respectively. hx is the spatially varying blur kernel
at position x, and n denotes random noise that is assumed to
be i.i.d. Gaussian: n[x] ∼ N (0, σ2

n).
Because both f and hx are unknown, the blur estimation

is highly ill-posed, and thus prior knowledge about the latent
image content f is required. Although the distribution of f
is difficult to describe, we assume that its gradient field can
be locally modeled as white Gaussian. Specifically, in a small
analysis window η of size N ×N we have

f∇[x] = (∇⊗ f)[x] ∼ N (0, sx), ∀x ∈ η (2)

where ∇ denotes a derivative operator in a particular direction
(horizontal or vertical). sx represents local variance in the
window η around x. We assume that blur kernel hx is constant
inside η. For simplicity, in the rest part of this paper we use
h and s to replace hx and sx, respectively.

It is known that information about blur can be conveniently
analyzed by the means of a frequency spectrum given the
observed g. We first define a localized 2-D Fourier filter
basis {ti}i, which is a set of functions over the same spatial
extent as the analysis window η. Each such function represents
a different spatial frequency, or a group of related spatial
frequencies. Specifically, a Gabor filter is employed, which is
the product of a pure sinusoid with a 2-D Gaussian function.
For example, for the i-th frequency (ω

(i)
1 , ω

(i)
2), the function

value at position x = (x1, x2)T is

ti[x] = w[x] exp
(
−2πj

(
x1ω

(i)
1 + x2ω

(i)
2

))
. (3)

3

Here the 2-D Gaussian function w[x] is centered in the analysis
window η and its standard deviation is 1/4 of the diameter
N of the window size. This has the advantage of tapering
values down to 0 as they approach the edges of the window.
Otherwise the window edges will appear to be sharp in the
image and mask the true frequency response.

The choice of the set {(ω(i)
1 , ω

(i)
2)}i depends on the window

size. We use frequencies (ω1, ω2) = (a1/N, a2/N) for even
values of a1 in the interval [−N−14 , N−14] and even values of
a2 in the interval [0, N−14], except that when a2 = 0 then
a1 is in [−N−14 ,−2] to avoid redundancy and the DC filter
a1 = a2 = 0. For N = 41, we have 60 complex filters ti. A
subset of the real (cosine) filters in our Gabor filter bank for
N = 41 is shown in Figure 2.

If we impose such localized Fourier analysis onto image g
within the window centered at x:

g∇i [x] =
(
g∇ ⊗ ti

)
[x], (4)

then, using [8] as a starting point we can derive the likelihood
function of the modulus squared of these coefficients as:

p
(
{|g∇i [x]|2}i|h, s

)
=
∏
i

Exp
(
|g∇i [x]|2; 1/

(
sσ2
hi + σ2

ni

))
(5)

where Exp is the exponential distribution, and where {σ2
hi}i

is called the blur spectrum for blur kernel h defined by:

σ2
hi =

∑
x

|(h⊗ ti)[x]|2 (6)

and {σ2
ni}i is the noise spectrum:

σ2
ni = σ2

nσ
2
∇i with σ2

∇i ,
∑

x∈η |∇ ⊗ ti[x]|2. (7)

The real and imaginary parts Re(g∇i) and Im(g∇i) are indepen-
dent normal distributions with equal variances 1

2 (sσ2
hi + σ2

ni)
when our window function w is not used. When w is used, then
this statement is approximate but very accurate for the higher
frequencies (ω

(i)
1 , ω

(i)
2) in our filter bank. We are modeling

|g∇i [x]|2 = (Re(g∇i [x]))2 + (Im(g∇i [x]))2. It is well known
that the sum of the squares of two standard normal N(0, 1)
random variables is χ2

2 ≡ Exp(1
2). It is then easy to derive (5)

for two independent N(0, 12 (sσ2
hi + σ2

ni)) variables.
Note that in [8] no Gaussian window is used. Instead, a hard

rectangular window is implicitly imposed on the image data.
One advantage of using a hard window is that the local power
spectra can be better localized in space. However, as we know
from the convolution theorem, multiplication in one domain
(spatial or frequency) corresponds to a convolution in the other
domain. Thus, by using a hard window in the spatial domain
the frequency data is convolved with the Fourier transform of
the hard window: a 2D tensor product of sinc functions. In
contrast, multiplication by a Gaussian in the spatial domain
corresponds to convolution with a Gaussian in the frequency
domain. Since the power of sinc(f) function falls off as 1/|f |
its power is much more spread out than that of a Gaussian,
and thus there is more mixing of components of the spectrum
from the hard window.

The effects from mixing are ameliorated to some extent by
computing the power spectrum of the blur kernels using the

same window (hard or soft), thus introducing the same mixing
into those spectra as the spectra obtianed from the image.
Still, in real experiments with both hard and soft windows
we have found that using the Gaussian window gives more
accurate results in distinguishing between various blur radii.
However in other situations, such as estimating motion blur,
the superiority of the hard window in localizing frequency
information may be a more important factor and would thus
warrant the choice of a hard window.

Assume that the defocus PSF model h is given, and that it
can be indexed by its scale value r: h = h(r). Theoretically
the optimal r̂ could be selected by maximizing the likelihood
function (5) if both s and σ2

n are given:

r̂ = arg max
r
p
(
{|g∇i [x]|2}i|h(r), s

)
(8)

Although the image noise variance σ2
n may be compressed

at the light or dark ends of the camera response, for our
purposes it has been sufficient to model the noise as spatially
constant. It can be estimated by many approaches, for example
[10]. However, the variance of the latent image gradients s is
unknown and is difficult to estimate directly.

From (5) we estimate the conditional likelihood function as

p
(
{|g∇i [x]|2}i|h

)
∝ max

s

∏
i

Exp
(
|g∇i [x]|2; 1/

(
sσ2
hi + σ2

ni

))
(9)

where the optimal ŝ that maximizes the conditional likelihood
is selected for each given h. In other words, maximizing the
likelihood function (9) is equivalent to optimizing it over both
s and r simultaneously:

< r̂, ŝ >= arg max
r,s

p
(
{|g∇i [x]|2}i|h(r), s

)
(10)

However, it is still not quite clear why optimizing (5) with
respect to both r and s is a reasonable way to select the scale
r, since we do not have any prior knowledge about r or s.

To further analyze the behavior of the likelihood function
(5) over r and s, a simulated experiment is carried out and
shown in Fig. 3, where (a) shows the latent test image patch
of size 41×41. We use a disc function to simulate the defocus
PSF and its radius to define the scale value r. The radius of
the true h that convolves the image patch is set as: r∗ = 5.
White Gaussian noise with σ2

n = 10−7 is also added according
to (1).1 Then, we decompose the simulated patch (b) through
equation (4) (where horizontal derivative filter ∇ = [1,−1] is
used) and calculate the likelihood value p with different s and
r based on equation (5). The results are plotted in (d), where
a global maximum is located in the point with the true radius
value. In this case, maximizing function (10) in the continuous
domain can generate the correct r.

However, it is not guaranteed that the global maximum
always indicates the true radius. Fig. 4 illustrates another
example where we implement the same simulation as Fig. 3
but with a different patch (see Fig. 4 (a)). At this time there
still exists a local maximum around the true radius value, but
it is no longer the global maximum.

1The pixel intensity range here is [0, 1].

4

a2\a1 −10 −8 −6 −4 −2 0 2 4 6 8 10

2

8

Fig. 2. A subset of the cosine filters w[x] cos (−2π (x1(a1/N) + x2(a2/N))) in our Gabor filter bank for N ×N windows of size N = 41.

(a) (b)

(c)
(d)

Fig. 3. Simulated experiment based on a local patch. (a) Latent test patch. (b) Simulated blurry patch. (c) True PSF using the disc model.
(d) Plot of the conditional likelihood values of (5) with different r and s.

We repeat this experiment on overlapping patches centered
at every pixel of Fig. 5 (b), which is uniformly convolved by
the disc function with r∗ = 5. For each patch, the radius
r̂1 corresponding to the global maximum, and the radius
r̂2 corresponding to the second highest local maximum are
detected and illustrated in Fig. 5 (c) and (d) respectively. From
(c) we can see that for most pixels the latent radii are correctly
captured, but meanwhile there exist some “holes” where the
maximum likelihood estimation failed (see circled regions for
example). At the same time, for most of these holes the correct
radii values are captured by the second highest maxima (see
(d)).

This phenomenon is further illustrated in Fig. 6 we see plots
of log(p(r)), assuming optimal s as in eq. (9), at three different
points in the image in Fig. 5 blured with the disc of radius
5. The blue plot is at a point where the maximum likelihood
estimation gives the correct radius. The red and green plots
are at points where the maximum likelihood estimation fails,
but where there is a clear local maxima at r = 5.

At this point we should make a few comments as to why the
maximum likelihood estimation fails in some cases. One factor
is that the power spectra of the disc kernels we are using have
periodic lobes and zeros that scale along the frequency axis
with the radius of the disc. Thus, if r0 is estimated to have a
high probability, and another r shares some of the same power

spectrum zeros as r0, then r will also tend to be assigned a
high probability. This results in the various local maxima in
the plot of log(p) versus r. Then, one local maximum may be
elevated over another for reaons of noise, or the latent image
not being sharp, or the actual power spectrum of the latent
image being far from the modeled one.

From the above simulations, we can conclude that:
1. Function (5) is non-convex over r and s.
2. In many cases, the global maximum point of (5) corre-

sponds to the latent r∗, but this is not guaranteed.
3. For most cases, the true radius value r is located in a

local/global maximum with a relatively high probability.
For the maximum likelihood estimation in (5), because we

don’t have any prior on either r or s, its accuracy is limited.
However, function (5) still provides candidate r for most
patches. If priors or constraints about r can be taken into
account, then it is possible to improve the quality of blur map
estimation further.

III. PROPOSED METHOD

Our blur map estimation approach includes two main steps:
1. Local probability estimation;
2. Coherent map labeling.

Given an input color image, the first step estimates up to
3 candidate scale r values for every pixel in its luminance

5

(a) (b)

(c)
(d)

Fig. 4. Simulated experiment based on a local patch. (a) Latent test patch. (b) Simulated blurry patch. (c) True PSF using the disc model. (d) Plot of the
conditional likelihood values of (9) with different r and s.

(a) (b) (c) (d)
Fig. 5. Simulated experiment based on an image. (a) Latent in-focus image. (b) Simulated blurry image convolved by a disc function with radius r∗ = 5. (c)
Estimated radii map corresponding to the global maxima. (d) Estimated radii map corresponding to the second highest local maxima. In the circled regions,
the true radii values are missed by the global maxima, but captured by the second highest local maxima.

channel: the candidate r values correspond to the global/local
maxima of function (5) with the highest likelihood values, and
they are calculated in the continuous domain. The second step
creates a coherent blur map based on the estimate of the first
step, image derivative information, and a smoothness prior.

A. Local Probability Estimation
To find the most important local maxima of (5) we use a

fixed point iteration, namely, calculating the optimal r or s
iteratively with the other variable fixed.

In the defocus blur situation the blur spectrum {σ2
hi}i is

solely determined by r, i.e. h = h(r). Thus, in this section we
use the notation σ2

i (r) to describe σ2
hi. It has been deduced in

[8] that given a fixed set of blur spectra {σ2
i (r)}i, the optimal

ŝ maximizing (5) can be found through the following fixed
point iteration:

ŝ =

(∑
i

ρi(ŝ)

)−1∑
i

ρi(ŝ)
|g∇i [x]|2 − σ2

ni

σ2
i (r)

, (11)

where

ρi(ŝ) =

(
1 +

σ2
ni

ŝσ2
i (r)

)−2
.

Although it is possible to analytically compute the blur
spectrum for a disc kernel, we want to keep our system
general enough to handle any blur kernel model (such as the
somewhat polygonal blur kernels arising from the leaf shutters
of some cameras). We therefore fit the function σ2

i (r) under a
reasonably limited domain.

Consider a given domain of r (e.g. r ∈ [0, 8]). We select
samples equally spaced over the domain with a relatively
small interval, say ∆r = 0.1. Then a set of sample PSFs
can be generated according to the PSF model, and their blur
spectrum {σ2

i (r)} can be calculated by equation (6) for each
basis function ti. We note that these discrete samples are only
used to generate the continuous fitting functions {σ2

i (r)}i.
Then, for each frequency i we fit the following function of

r to the samples

σ2
i (r) = exp

(
αi,pr

p+αi,p+1r
p+1+· · ·+αi,0r0+· · ·+αi,qrq

)
(12)

For defocus PSFs, blur spectrum are likely to be close to zero
in some domain locations, in which case a mild fitting error
may be exaggerated when calculating the likelihood (5). So
an exponential function is used here to promote the fitting

6

0 1 2 3 4 5 6 7 8 9

−5.6

−5.4

−5.2

−5

−4.8

−4.6

−4.4

−4.2

blur radius in pixels

lo
g
(p
(r
))

Fig. 6. log(p) versus r at three different points in the image of Fig.
5 in blurred with disc of radius r = 5. The black verical line shows
the location of the true blur radius.

accuracy for the small values. A least squares criterion is used
to get the best fitting function σ̃2

i (r) for each frequency basis
function ti.

Once the function set {σ̃2
i (r)}i is available, given a fixed

s, the optimal r̂ can be generated by maximizing function (5),
or equivalently by minimizing the following:

r̂ = arg min
r

∑
i

(
|g∇i [x]|2

sσ̃2
hi(r) + σ2

ni

+ log
(
sσ̃2
hi(r) + σ2

ni

))
(13)

Because σ̃2
hi(r) is differentiable, (13) can be optimized through

a gradient descent algorithm. Here a steepest descent proce-
dure is employed.

However, in a gradient descent optimization process calcu-
lating the spectrum values and their derivatives directly from
function (12) is computationally expensive, since this process
needs to be carried out for every frequency basis function at
every pixel. To reduce the cost, look-up tables, which store
the spectrum values, their first and second order derivatives,
are employed to replace the runtime computation. Experiments
show that using look-up tables takes only one-tenth the time
of the runtime computation.

We can also generate these tables directly from the analytic
description of the blur model, if it is available. However, in
practice we may not have a parametric model for the PSFs of a
given lens. In the calibration step it is impractical to get a huge
amount of PSF samples to generate the dense look-up tables.
It is easier to collect fewer PSF samples through calibration,
fit the spectrum curves from the sparse samples using function
(12), and finally get the dense look-up tables through the fitted
curves. Hence the benefit of the fitting and re-sampling. Since
the fitting function does not depend on any specific function
of h, our system can be implemented given any PSF model
indexed by a single scalar r as long as the blur spectrum {σ2

hi}i
are smooth over r. For example, it can be a model based
on data collected from a particular lens used on a particular
camera. A new model can be easily implemented in our system
by simply replacing the fitting function set {σ̃2

i (r)}i.

The above fixed point iteration process optimizing (5) at
each pixel x is summarized as follows:

1. Set l = 0, and initialize rl.
2. Compute sl+1 = arg maxs p

(
{g∇i [x]}i|h(rl), s

)
by (11).

3. Compute rl+1=arg maxr p
(
{g∇i [x]}i|h(r), sl+1

)
by (13).

4. l← l + 1.
5. End if stopping criterion is met, otherwise go to Step 2.
This optimization is sensitive to the initial guess r0 since (5)

is non-convex. To cover most local maxima, we make a set of
initial values. For example, we choose the integers 1, 2, · · · , 8
as the initial guess and run the optimization procedure for all
these values, so that most local maxima over the domain [0, 8]
could be captured. After such searching step, only the top 3
optimal scales {r̂1, r̂2, r̂3} and their corresponding likelihood
values {p̂1, p̂2, p̂3} are stored for each pixel x. These data will
be sent to the following stage.

B. Coherent Map Labeling

This section discusses how to make a coherent blur map
based on the previous probability estimation and other con-
straints (e.g. smoothness). This goal can be achieved by
minimizing the following energy function:

E(R) =
∑
x

Dx(rx) +
∑

(x,v)∈ν

λx,vV (rx, rv), (14)

which includes two major terms: a data term Dx(rx) reflecting
fidelity to the previous probability estimation at position x,
and a smoothness term V (rx, rv) regularizing the output.
The smoothness parameter λx,v controls the strength of this
constraint, and is adaptive to local image content. ν is the set of
pairs of neighboring pixels. In our system, given pixel x, only
the 8 surrounding pixels are considered for the smoothness
term. R = {rx}x denotes a solution over all positions.

Because the data term is highly non-convex, estimating the
optimal solution in the continuous domain is not trivial. To
use existing optimization techniques, without introducing too
much error, a discrete labeling procedure is carried out. In the
blur map labeling problem, labels are discrete r from a finite
set ϕ of possible values. Note that as long as the possible
labels within the required range are sufficiently dense, we can
still get a good approximation to the continuous solution.

It may seem strange that we went though considerable effort
in the preceding local probability estimation to obtain the exact
r for the top three local maxima in the continuous domain and
now switch to a discrete domain for r in this phase. However,
the effort to estimate r in the continuous domain is not
wasted. The values attained at various local maxima in the p(r)
function can be very close, as can be seen in Fig. 6. A discrete
sampling could miss a local maxima or return a lower p(r) that
is actually attained. It is the detection of these local maxima
and the values attained at them that are most important; the
exact value of r at which the maximum is attained does not
require pinpoint accuracy. Thus, the information gained in the
preceding probability estimation step will not be lost if we
round r, but not p(r), to a discrete value.

Theoretically, the data term should give the fidelity cost
of rx assigning to x with respect to the likelihood values

7

from equation (5). However, using the values directly from
(5), such as Dx(r) = − log p(h(r)), does not perform well. It
is computationally expensive, and it does not give sufficient
prominence to the top of local maxima. So in our system for
pixel x, given the estimated candidates {r̂1, r̂2, r̂3} and their
corresponding likelihood values {p̂1, p̂2, p̂3} from the first
estimation step, an artificial discrete likelihood array p̃x(r)
are made through the following scheme (see Fig. 7):

1. Create an empty array px(r) = 0, where r ∈ ϕ.
2. Set px(r̂l) = p̂l, l = 1, 2, 3.
3. Convolve p(r) with a symmetric 1D kernel κ. Then,

normalize px(r)⊗ κ to sum to 1 to get an array p̃x(r).
We set κ = [10−20, 10−12, 10−7, 10−3, 10−1, 1, 10−1, 10−3,
10−7, 10−12, 10−20].

This convolution array is just wide enough so that similar,
but not exactly equal, r values that are at adjacent pixels do
not incur a large penalty in the smoothness, V , term of the
energy function.

Finally, we let Dx(r) = − log p̃x(r). Since in the labeling
problem only a finite set of labels need to be considered, such
an array can sufficiently describe the data function Dx(r).

A simple and efficient V function for creating a coherent
blur map is

V (rx, rv) = |rx − rv| (15)

The bigger the difference between the scales, the larger the
penalty becomes. There is zero cost to setting adjacent pixels
with the same scale value. This smoothness term can reduce
the noise effect in the data term, correcting the errors caused
in the first probability estimation stage.

However, such smoothness constraint may also blur the
boundaries between different focus planes. To encourage the
discontinuity of the blur map to fall along object edges, we
define the smoothness parameter as:

λx,v = λ0 exp

(
−‖Ix − Iv‖2

2σ2
λ

)
(16)

Here λ0 is a global parameter controlling the overall strength
of the smoothness term. Ix is a 3 × 1 vector containing the
RGB values of pixel x of the input color image. Color is an
important and effective feature for object distinguishing, be-
cause different objects tend to have different colors. ‖Ix−Iv‖2
measures the color difference between x and v. σλ is another
tuning parameter. In general, the value of λx,v decreases if
the color distance between pixel x and v is large, protecting
the boundaries between the objects in different focus planes.

In our system, α-expansion is used to minimize the energy
function (14) [11].

1) Foreground/background segmentation:
Besides blur map labeling, another interesting application
of the proposed coherent map estimation method is fore-
ground/background segmentation, which labels the infocus
foreground subject from the rest of the input image. However,
in this case only a binary labeling map is required. This goal
can be easily achieved using the same labeling form as (14):

E(φ) =
∑
x

Dx(φx) +
∑

(x,v)∈ν

λx,vV (φx, φv), (17)

where Φ = {φx} denotes a binary labeling solution. φ = 0
is the blurry label, and φ = 1 is the in-focus label. The data
term in this case can be simplified as:

Dx(0) = − log max
r>τ

p̃x(r), Dx(1) = − log max
r≤τ

p̃x(r) (18)

where τ represents the in-focus threshold. So if there exists a
large blur (r > τ) with high probability, then there is a low
cost Dx(0) of labeling pixel x as blurry. Similarly, if there
exists a small blur r ≤ τ with high probability, then there is
a low cost Dx(1) of labeling pixel x as sharp.

The smoothness term here is defined the same as (15).
Again, we only use the 8 surrounding pixels for ν.

IV. EXPERIMENTS

Both simulated and real data experiments are carried out to
test the performance of the proposed defocus blur estimation
framework. In the local probability estimation step, we use
square windows with side length N = 41. Our default noise
setting is σ2

n = 10−4. The coherent blur maps choose the
blur radius r from the set {0, 0.1, 0.2, . . . , 7.9, 8}. Our default
parameter settings for the coherent blur labeling are λ0 = 20
and σλ = 0.1 (for intensities in the range [0, 1]). The settings
for the binary foreground/background segmentation problem
are τ = 2, λ0 = 1000 and σλ = 0.04.

Unless otherwise noted, the default parameter values are
used. As can be seen in the results, the default settings work
well for nearly all the test images shown in this section. In
fact, the only parameter we varied in these experiments is the
noise variance σ2

n. In a few of the examples presented here,
we found it useful to set σ2

n = 10−6 (very low noise).

A. Simulated Experiments

A simulated experiment is illustrated in Fig. 8, which allows
us to quantitatively test the performance of the proposed
method. The input image is generated according to the model
in (1). Similar to the test in Fig. 3 disc functions are employed
to simulate defocus PSFs. Variance of the additive white
Gaussian noise is σ2

n = 1×10−6. The latent blur map is given
in (c), where the blur radius continuously changes over the
image space. This actually violates the assumption that local
blur hx is constant within local analysis window η. However,
the proposed output seems to be robust to the violation of
this assumption (see Fig. 8 (d)): trend of the blur change is
successfully captured by our method. This is probably because
we use overlapping windows. The mean-squared-error (MSE)
of (d) with respect to the latent map (c) is 0.022.

Based on the blur map estimation {r̂x}, and further the
PSFs {ĥx} generated by the disc function, a spatially varying
deconvolution procedure is carried out through the following
optimization:

f̂ = arg min
f

∑
x

∣∣∣(ĥx ⊗ f) [x]− g[x]
∣∣∣2 + λ

∑
x

‖∇f [x]‖1

(19)
The deblurred output f̂ is given in Fig. 8 (b), where we can
observe that spatially varying blurs have been successfully
removed (see zoomed parts (e)-(h)). The peak signal-to-noise

8

Fig. 7. Making the artificial likelihood array.

(a) (b)

(e)

(f)

(c) (d)

(g)

(h)
Fig. 8. Simulated experiment for blur map estimation and spatially varying blind deblurring. (a): Simulated input image with spatially varying blur, whose
PSNR is 27.3dB. (b): Deblurred image based on the proposed estimate in (d). Its PSNR is 32.3dB. (c): Latent blur map. (d): Estimated blur map. (e), (g):
zoomed part of (a). (f), (h): zoomed part of (b).

ratio (PSNR) of the original input (a) is 27.3dB, whereas the
PSNR of (b) is 32.3dB with 5dB improved, which means in
this experiment the accuracy of our estimation method is good
enough for blind deblurring.

B. Real Data Experiments

Real image experiments are given in Fig. 1 and Fig. 9.
Because these data are collected from outside sources, the
corresponding calibrated defocus PSFs are not available. How-
ever, it is known that blur from an ideal lens with a circular
aperture could be modeled by the disc function in the absence
of diffraction effects [12]. Since diffraction effects are almost
always negligible once the blur is of visible size, we use the
disc function to approximate the real PSFs in our experiments.
Even though the actual blur PSF for cameras used for the
test images are unknown, the disc approximation seems to be
quite adequate. Our method still captures the amount of local

defocus blur for all these test images, depicts 3-D geometric
information for each scene, and does a good job in identifying
in-focus subjects.

For example, Fig. 1 (a) contains four focal layers: the in-
focus herdsman, the slightly defocused cattle, the background
mountain and the highly blurry sky. These layers are all
reflected in the output blur map (b), and the in-focus herdsman
is also correctly labeled in (c). In Fig. 9 (a) the lizard and part
of the rock are in-focus, which are correctly identified and
labeled by Fig. 9 (b)-(c). Note that here we are not doing pure
object segmentation, and that the segmentation only depends
on local sharpness level (which means we are not trying to
segment the lizard only from the rest of the image). Fig. 9
(j) illustrates another example with the blur smoothly varies
over the space. Again, our blur map captures the progression
of out-of-focus to in-focus to out-of-focus along the correct
angle (lower left to upper right of the image) on the wood

9

(see Fig. 9 (k)).

Next we show many additional real examples further
demonstrating that our method works well on a broad range of
inputs. Fig. 10 shows more examples of defocus blur maps and
in-focus segmentations computed using our method. Fig. 11
shows even more results of our automatic binary segmentation
algorithm into in-focus and out-of-focus regions.

We obtain high quality results on outdoor scenes with
natural objects such as animals and flowers in Fig. 10(a),(b)
and Fig. 11(a),(b),(c). The llama example in Fig. 11(e) is one
for which segmentation based on color would be difficult since
the foreground and background have similar colors. Another
such example is shown in Fig. 10(c) where the sprinkler and
the ground are the same color.

In Fig. 11(d), note how our automatic in-focus segmentation
correctly captures the depth of field for this shot. The result
in Fig. 11(f) correctly segments the sharp background from
the blurry face. The very jagged boundary near the edge of
the glasses is due to the graph cut segmentation following the
details of the background texture to place the segmentation
boundary along strong image edges.

Finally, in Fig. 12 we show some comparisons with the blur
maps produced by Defocus Magnification [9] (DM) on some
examples in [9]. In the DM blur maps in the middle column of
Fig. 12, the whiter the pixel the larger the standard deviation
in their fitted Gaussian blur model and the higher the predicted
blurriness. The DM approach estimates the blur only at image
edges and then propagates the sparse blur estimates to the rest
of the image by assuming pixels of similar intensity and color
have similar blurriness.

In general, the DM blur estimation method tends to show
the underlying image edges in places where the blur measure
is actually smooth. Examples of this in the center column of
Fig. 12(a) include the nose of the dog, and the boundary of the
legs of the stuffed animals. Our blur estimates are (correctly)
much smoother in these areas. In Fig. 12(b), the DM result on
the grass to the left of the subject has the same level of blur as
the subject, while ours captures the distinct blur levels of the
subject, the grass closer to the subject, and the patch of white
flowers further back. Both methods do well on the cup example
in Fig. 12(c), but our result has crisper blur discontinuities.

Our result in Fig. 12(d) is much better than the DM result.
DM has blur discontinuities within the hands (e.g. between
the pinky and the other hand on the left of the image) and
between the sidewalk and grass in the upper right where the
blur should be smooth. Indeed our blur estimates are smoother
in these areas, and we correctly identify the entirety of both
hands as in-focus.

For all of these examples, our boundaries between in-
focus foreground and out-of-focus background are much more
sharply delinated. Also, the DM approach results in splotchy
estimates which lack the smoothness of the true blur. The
DM blur maps show the limitations of making a binary
decision as to where to compute the blur estimate, using
only high frequencies in the blur model, and subsequently
interpolating/propagating to obtain a dense answer.

V. PROBLEMS

One problem with our method for estimating blur maps is
that we do not explicitly model the case where a window
overlaps areas with different blur scales. In this case we have
found that the sub-area of a window with the smallest blur
size tends to dominate the probability analysis, as this sub-area
contributes more power per pixel to the power spectrum. Thus,
sharp areas would be enlarged by the radius of the analysis
window in a blur map produced without the coherence labeling
step. We rely on the coherence labeling step to snap the
boundary back to the closest color boundary in the underlying
image, which is usually where the actually depth discontinuity
lies. But in cases of gradually changing blur, or in cases where
there is not a good color boundary at the depth discontinuity,
this may fail.

For the coherence labeling step to have the above correcting
influence we have to set the λ parameter to a significant value.
This can cause a slight over smoothing of the blur values
and manifests as the blur values taking discrete steps in areas
where the blur changes continuously as seen in Fig.8. The
jaggedness of the contours in the same figure is partially
a result of the inherent uncertainty present in the statistical
computation.

The same comments apply to the foreground/background
segmentation case, in that we are relying on coherence to
snap the foreground mask to the nearest color boundaries
in the image. Generally the results are quite good, but we
occasionally see problems. Because there is increased energy
to follow a serpentine contour sometimes long, thin parts of
the subject of interest are cut off. See for example the feathers
of the wings in Fig. 10(a) and Fig. 11(c).

VI. CONCLUSION

In this paper we proposed a method estimating a defocus
blur map from a single image. It is capable of measuring the
probability of local blur scale in the continuous domain by
analyzing the localized Fourier (Gabor filtering) spectrum. For
each analysis window, not only the global optimum maximiz-
ing the likelihood function but also a few local optima are
detected as candidate scales. Finally, color edge information
and smoothness constraints are incorporated into the system
to select the best candidates and generate a coherent map
of the blur scale at each pixel. Experiments show that this
method can be used to approximate geometric information of
the input, help remove spatially varying blur, and segment
infocus subjects from defocused background.

Currently our MATLAB implementation takes around 10
minutes to process a 500 × 500 image using a PC with a
2.70GHz CPU. Efficiency could be improved through C++
implementation. The runtime can be reduced further by using
parallel computation. For example, the local optima searching
process starting from the 8 different initial r values described
in Section III-A could be done in parallel.

Future research will also focus on improving the statistical
model of the latent sharp image. Currently latent image
gradients are assumed to be Gaussian distributed. However,
it has been discovered that for natural images ”heavy-tailed”

10

distribution models are more proper. Such distributions can
be approximated using a Gaussian mixture model. Estimation
accuracy may be enhanced by incorporating this model.

REFERENCES

[1] R. Fergus, B. Singh, A. Hertsmann, S. T. Roweis, and W. T. Freeman,
“Removing camera shake from a single image,” SIGGRAPH, 2006.

[2] Q. Shan, J. Jia, and A. Agarwala, “High-quality motion deblurring from
a single image,” ACM Transactions on Graphics (SIGGRAPH), 2008.

[3] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, “Understanding and
evaluating blind deconvolution algorithms,” CVPR, 2009.

[4] L. Xu and J. Jia, “Two-phase kernel estimation for robust motion
deblurring,” ECCV, 2010.

[5] O. Whyte, J. Sivic, A. Zisserman, and J. Ponce, “Non-uniform deblurring
for shaken images,” CVPR, 2010.

[6] A. N. Rajagopalan, S. Chaudhuri, and U. Mudenagudi, “Depth estima-
tion and image restoration using defocused stereo pairs,” PAMI, vol. 26,
no. 11, pp. 1521–1525, Nov. 2004.

[7] A. Levin, R. Fergus, F. Durand, and W. T. Freeman, “Image and depth
from a conventional camera with a coded aperture,” SIGGRAPH, 2007.

[8] A. Chakrabarti, T. Zickler, and W. T. Freeman, “Analyzing spatially-
varying blur,” CVPR, 2010.

[9] S. Bae and F. Durand, “Defocus magnification,” Computer Graphics
Forum, vol. 26, no. 3, pp. 571–579, 2007.

[10] D. Zoran and Y. Weiss, “Scale invariance and noise in natural images,”
IEEE International Conference on Computer Vision, Sep. 2009.

[11] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy mini-
mization via graph cuts,” ICCV, 1999.

[12] M. Potmesil and I. Chakravarty, “Synthetic image generation with a lens
and aperture camera model,” ACM Transactions on Graphics, vol. 1,
no. 2, April 1982.

[13] C. Rhemann, C. Rother, J. Wang, M. Gelautz, P. Kohli, and P. Rott, “A
perceptually motivated online benchmark for image matting,” in CVPR,
June 2009. [Online]. Available: http://www.alphamatting.com/

Xiang Zhu (S’08) received the B.S. and M.S.
degrees in electrical engineering from Nanjing Uni-
versity, Nanjing, China, in 2005 and 2008, respec-
tively, and is currently pursuing the Ph.D. degree in
electrical engineering at the University of California,
Santa Cruz.

His research interests are in the domain of image
processing (denoising, deblurring, super-resolution,
and image quality assessment).

Scott Cohen received the B.S. degree in mathemat-
ics from Stanford University, Stanford, CA, in 1993,
and the B.S., M.S., and Ph.D. degrees in computer
science from Stanford University in 1993, 1996, and
1999, respectively.

He is currently a Principal Scientist at Adobe
Reseach of Adobe Systems Incorporated, San Jose,
CA. His research interests include interactive image
and video segmentation, image and video matting,
stereo, upsampling, and deblurring.

Stephen Schiller received the B.S. degree in mathe-
matics from University of California, Santa Barbara,
in 1974, and the M.S. degree in computer science
from University of California, Berkeley in 1979.

He is currently a Principal Scientist at Adobe Re-
seach of Adobe Systems Incorporated, San Jose, CA.
His research interests include image segmentation,
image de-blurring, synthesis and analysis of textures,
and image-to-vector conversion.

Peyman Milanfar Peyman Milanfar is a Professor
of Electrical Engineering at UC Santa Cruz, and
was Associate Dean for research from 2010 to 2012.
He is currently on leave at Google-[x]. He received
the B.S. in EE/Mathematics from Berkeley, and his
Ph.D. in EECS from MIT. Prior to UCSC, he was at
SRI, and a Consulting Professor of CS at Stanford.
He founded MotionDSP, which has brought state of
the art video enhancement to market. His technical
expertise are in statistical signal, image and video
processing, computational photography and machine

vision. He is a fellow of IEEE.

11

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)
Fig. 9. Defocus blur map estimation experiments using real images. Left column: input images. Middle column: estimated defocus blur maps. Right column:
automatic foreground/background segmentation results.

12

input image blur radius map in-focus segmentation
(a)

(b)

(c)

Fig. 10. More blur map results on real images. (a) bosque-Edit small. c©Aravind Krishnaswamy. Used with permission. (b) input training lowres/GT01 [13].
σ2
n = 10−6. (c) autoSprinkler. Image courtesy of Katrin Eismann. Segmentation based on color would be difficult in this example.

input image in-focus segmentation input image in-focus segmentation

(a) (b)

(c) (d)

(e) (f)

Fig. 11. Automatic In-focus Segmentation Results. (a) 03Meow. (b) input lowres/plant [13]. (c) morning-Edit small. c©Aravind Krishnaswamy. Used with
permission. (d) field [9]. (e) llama. σ2

n = 10−6. Segmentation based on color would be difficult in this example. (f) ref in [9].

13

input image Defocus Magnification [9] blur map our blur radius map

(a)

(b)

(c)

(d)

Fig. 12. Comparison with Defocus Magnification [9] blur map results. (a) IMG 0419. (b) man. (c) cup. (d) hands.

