
496 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 2, NO. 4, DECEMBER 2016

Fast Multilayer Laplacian Enhancement
Hossein Talebi and Peyman Milanfar, Fellow, IEEE

Abstract—A novel, fast, and practical way of enhancing images
is introduced in this paper. Our approach builds on Laplacian op-
erators of well-known edge-aware kernels, such as bilateral and
nonlocal means, and extends these filter’s capabilities to perform
more effective and fast image smoothing, sharpening, and tone ma-
nipulation. We propose an approximation of the Laplacian, which
does not require normalization of the kernel weights. Multiple
Laplacians of the affinity weights endow our method with progres-
sive detail decomposition of the input image from fine to coarse
scale. These image components are blended by a structure mask,
which avoids noise/artifact magnification or detail loss in the out-
put image. Contributions of the proposed method to existing image
editing tools are: 1) low computational and memory requirements,
making it appropriate for mobile device implementations (e.g., as
a finish step in a camera pipeline); and 2) a range of filtering ap-
plications from detail enhancement to denoising with only a few
control parameters, enabling the user to apply a combination of
various (and even opposite) filtering effects.

Index Terms—Image enhancement, image editing, image
sharpening, local tone mapping, image smoothing.

I. INTRODUCTION

R ECENTLY, edge-preserving image operators have been
widely used in image enhancement applications. These fil-

ters allow separate processing of texture and piecewise smooth
components of the image. Given that the main structure (edges)
of the images are preserved by these edge-aware filters, ap-
plying an appropriate nonlinearity on the texture component
results in local contrast enhancement and tonal adjustment
[1]–[9]. However, when using these methods, the default as-
sumption is that undesired perturbations, such as noise or
compression artifacts are removed beforehand. In practical
imaging scenarios, boosting a detail image layer can result in
noise and artifact magnification, limiting applications of the ex-
isting detail enhancement algorithms. This issue is mitigated
in our proposed method by employing a new blending strat-
egy, which smoothes regions containing noise while sharpening
significant image details. Our experiments demonstrate that the
proposed method can be effective in improving details and local
contrast of images, whilst efficiently handling mildly degraded
cases (examples of the proposed method’s applications are il-
lustrated in Fig. 1). The existing relevant literature is reviewed
next.

Manuscript received March 7, 2016; revised June 22, 2016 and August 9,
2016; accepted August 21, 2016. Date of publication September 8, 2016; date
of current version November 4, 2016. The associate editor coordinating the
review of this manuscript and approving it for publication was Prof. Edwin A.
Marengo.

The authors are with Google Inc., Mountain View, CA 94043 USA (e-mail:
htalebi@google.com; milanfar@google.com).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCI.2016.2607142

A. Related Work

Linear unsharp masking (UM) is perhaps the simplest al-
gorithm for enhancing the edge and detail information of an
image. Linear UM is a high-pass filter, which sharpens high
frequency content of images, yet magnifies noise and produces
undesirable distortions, such as halo artifacts. Polesel et al. [10]
proposed adaptive unsharp mask to improve on the classic UM.
This method measures local image gradient to adaptively ap-
ply the UM filter on details, and leave flat regions unchanged.
Constrained unsharp mask [11] is another alternative, which
combines a denoised and a sharpened version of the input im-
age. Overall, the linear smoothing filter employed at the core of
these methods can restrict their performances. Replacing the
linear operator with a data-dependent (non-linear) smoother
diminishes this issue.

The Bilateral filter is possibly the most widely used edge-
aware filter in image processing and computer graphics [12].
Similarity of neighbor pixels is measured by bilateral range
filter, avoiding averaging across principal edges. Durand and
Dorsey [13] exploit application of the bilateral filter in contrast
reduction of high dynamic range images. A multi-scale imple-
mentation of the bilateral filter for progressive detail extraction
is explored in [14]. Variations of bilateral filter can also be used
for sharpening [15], creating cartoon effects [4], image editing
[16] and abstraction [17]. Although bilateral filter outperforms
linear smoothers, it still lacks robustness in some applications
such as denoising.

Nonlocal means filter (NLM) works similarly to the bilat-
eral kernel, except that photometric similarity of neighboring
pixels is determined by measuring patch distances [18]–[20].
NLM weights better handle noise and other image distortions
compared to bilateral kernel, yet offer competitive smoothing
properties. Choudhury and Medioni [21] propose a multi-scale
sharpness enhancement scheme based on NLM weights. A noise
suppression step is performed first, and then different detail lay-
ers are extracted by recomputing NLM weights several times
with various smoothing parameters. However, multiple realiza-
tions of the NLM filter impose a high computational complexity
on this algorithm. NLM affinity weights were also used for var-
ious image editing tasks, such as tone manipulation and edit
propagation in [22]. In that work, the global affinity matrix
is approximated by its leading eigenvectors, enabling different
filtering effects by polynomial mapping of the filter eigenval-
ues. More recently, differences of NLM smoothers are used to
sharpen mildly blurred images [23]. Overall, global filtering pa-
rameters, filter weight computation and memory storage may
limit application of these methods.

More nonlinear filters have been introduced in the past few
years. A progressive coarsening operator based on a weighted
least square optimization is proposed in [6]. Subr et al. [7]

2333-9403 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

TALEBI AND MILANFAR: FAST MULTILAYER LAPLACIAN ENHANCEMENT 497

Fig. 1. Examples of detail enhancement using our method. Each image pair shows the input (left) and enhanced image (right). Top row: Application of our
method for sharpening and local contrast enhancement. Bottom row: Application of our method for simultaneous artifact/noise removal and sharpening.

introduced a new image decomposition method by smooth-
ing large image oscillations and preserving edges. Gaussian
pyramids are also used for edge-aware filtering in local Lapla-
cian framework [3], [8], where each detail layer is mapped by
a specific function, resulting in tonal enhancement of the re-
constructed image. The domain transform paradigm proposed
by Gastal and Oliveira [24] formulates the nonlinear image
smoothing as a few iterations of one dimensional filtering. The
main edges are detected by image gradient and preserved in
the filtering process. Another gradient-based smoother is intro-
duced in [5] where image structure and texture are distinguished
by means of local covariance. Edge preserving operators are
also practically viable by guided image filtering [1], [2]. Image
smoothing while constraining the number of non-zero gradients
is another edge-aware filtering technique [25]. This approach re-
moves low-amplitude structures by progressively reducing the
number of non-zero gradients. Similar to the framework in [25],
an L1 energy minimization method for image smoothing is pro-
posed in [26]. The energy cost includes local variations and
global sparsity terms, and minimizing it results in flattening
details. Our intention in this paper is not to introduce yet an-
other nonlinear smoother. In fact, the base smoothing filter upon
which the rest of the presented framework is constructed can be
any of the existing filters mentioned above.

In addition to edge preserving filters, other contrast enhance-
ment techniques based on the retinex theory [27] have been de-
veloped in the past few years [28], [29]. Retinex theory explains
how humans can see colors consistently in spite of difference
in light levels. Inspired by this theorem, several enhancement
algorithms have been proposed recently [29]–[31]. Although
these techniques are quite efficient and produce compelling

results, noise magnification while brightening dark pixels
remains challenging.

B. Contributions

The Laplacian operator of the local affinity matrix is at the
core of our algorithm. The Laplacian operators can be computed
for any smoothing operator, yet we develop our method based on
the NLM kernel which is quite resilient to noise. Contributions
of this work to the current image enhancement literature are:

1) A novel filtering approach using normalization-free fil-
ters: Affinity weights are conventionally normalized and
applied on the image to preserve the local brightness.
In this paper we propose an efficient approximation of
the normalized affinities to provide a computationally
simplified un-normalized filtering paradigm.

2) Detail manipulation in the presence of mild image dis-
tortions: Instead of applying noise/artifact suppression as
a pre-filtering stage (which imposes extra complexity to
the framework and may remove image details), our ap-
proach naturally handles these degradations. More specif-
ically, fine detail boosting is replaced by smoothing when
dealing with noisy regions. Fig. 2 demonstrates an exam-
ple of simultaneous smoothing and sharpening using our
proposed method.

3) Substantial complexity reduction of nonlinear multi-scale
decomposition: We propose a simple, yet effective way to
compute the multi-scale detail decomposition by approx-
imating affinity weights. Typical nonlinear multi-scale
decomposition relies on successive computation of the
filter weights on the input image. Given the exponential

498 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 2, NO. 4, DECEMBER 2016

Fig. 2. Application of our method for simultaneous artifact/noise removal and sharpening. The input image is of size 1856 × 2528 and average running time for
producing this result on an Intel Xeon CPU @ 3.5 GHz is about 0.2 seconds.

affinities of the NLM and bilateral kernels, we precom-
pute the image-dependent filter weights only once and
produce different versions of the filter by simple direct
product of the weights. Significant speed up is observed
by this strategy.

The proposed method allows real-time detail manipulation
and enhancement such as examples shown in Fig. 3. The rest
of the paper is organized as follows. In Section II, a detailed
explanation of the proposed method is described. Next, in
Section III, applications of our algorithm are exemplified. We
also provide details of our implementation along with running
time comparisons. Finally, this paper is concluded in Section IV.

II. PROPOSED SCHEME

Our enhancement algorithm is broadly illustrated in Fig. 4.
The input image is filtered by different affinity-based operators
(built on the NLM weights [18]) to produce the image detail
layers. Each layer is mapped by a nonlinear function to boost or
suppress the associated detail and then, the manipulated layers
are blended through a structure mask. The proposed scheme
has parameters of the mapping functions as its filtering knobs,
which control the filter’s behavior by altering it from smoothing
to sharpening and from tone enhancement to tone compression.
Our processing is principally in the YUV domain, by filtering
luma and leaving chroma unaltered. For completeness, we also
illustrate our method for filtering RGB color channels separately
(Fig. 3). In this section, first the affinity filters are reviewed
and then the normalization-free filter weights are discussed.

We elaborate on the details of the proposed filtering scheme,
and finally our mapping functions and blending strategy are
discussed.

A. Nonlinear Edge-Aware Filters

The general construction of an edge-aware filter begins by
specifying a symmetric positive semi-definite (PSD) kernel
kij ≥ 0 that measures the similarity, or affinity, between in-
dividual or groups of pixels. This affinity can be measured as a
function of both the distance between the spatial variables (de-
noted by x), but more importantly, also using the gray or color
value (denoted by y). While the results of this paper extend to
any filter with a PSD kernel, some popular examples commonly
used in the image processing, computer vision, and graphics
literature are as follows:

1) Bilateral (BL) [12], [32]: This filter takes into account
both the spatial and value distances between two pixels,
generally in a separable fashion. For BL we have:

kij = exp
(
−‖xi − xj‖2

hx

)
exp

(
−(yi − yj)2

hy

)
(1)

As seen in the overall exponent, the similarity metric here is a
weighted Euclidean distance between the concatenated vectors
(xi , yi) and (xj , yj).

2) Nonlocal Means (NLM) [18], [20]: The NLM kernel is a
generalization of the bilateral kernel in which the value distance

TALEBI AND MILANFAR: FAST MULTILAYER LAPLACIAN ENHANCEMENT 499

Fig. 3. Example of our method applied for (b) detail smoothing, (c) detail enhancement in luma channel, and (d) detail enhancement in RGB channels. The input
image is of size 700 × 458 and average running time for producing effect 1 is about 0.015 second.

Fig. 4. The proposed pipeline: The input image is fed to multiple affinity based Laplacians obtained from NLM kernel (W l) to produce various detail layers.
The filter operators are {W1 , W2 − W1 , . . . , Wk − Wk−1 , I − Wk } and the smoothest image layer is obtained from W1 (Given the smoothing parameter
of W l as hl , for every 1 ≤ l < k we have hl > hl+1). Detail layers are mapped by nonlinear s-curves (Tl (.)) and blended by a structure mask to produce the
enhanced image.

term is measured patch-wise instead of point-wise:

kij = exp
(
−‖xi − xj‖2

hx

)
exp

(
−‖yi − yj‖2

hy

)
, (2)

where yi and yj refer now to subsets of samples (i.e. patches)
in y.

These affinities are not used directly to filter the images, but
instead in order to maintain the local average brightness, they
are normalized so that the resulting weights pointing to each
pixel sum to one. More specifically,

wij =
kij∑n

j=1 kij
, (3)

where each element of the filtered signal z is then given by

zi =
n∑

j=1

wij yj . (4)

It is worth noting that the denominator in (3) can be computed by
simply applying the filter (without normalization) to an image
of all 1’s.

In matrix notation, the collection of the weights used to pro-
duce the i-th output pixel is the vector [wi1 , . . . , win]; and this
can in turn be placed as the i-th row of a filter matrix W so that

z = Wy. (5)

We note again that due to the normalization of the weights, the
rows of the matrix W sum to one, That is, for each 1 ≤ i ≤ n,

500 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 2, NO. 4, DECEMBER 2016

Fig. 5. The proposed image decomposition framework. Input image y is de-
composed into smoothed Wy and residual (I − W)y components. k iterations
of this process on the smoothed image leads to k residual layers.

n∑
j=1

wij = 1. (6)

Viewed another way, the filter matrix W is a normalized version
of the symmetric positive definite affinity matrix K constructed
from the un-normalized affinities kij , 1 ≤ i, j,≤ n. As a result,
W can be written as a product of two matrices

W = D−1K, (7)

where D is a diagonal matrix with diagonal elements [D]ii =∑n
j=1 kij = di .

B. Motivation

In our multiscale scheme, the filtered image z is expressed as
a linear combination of k detail layers and one smooth layer:

z = β1 ysmooth + β2 ydetail1 + · · · + βk+1 ydetailk (8)

where βi denotes the boosting or shrinking factor associated
with each layer. A nonlinear filter W can be used to realize this
decomposition scheme as:

z = β1Wky + β2(I − W)Wk−1y + · · ·
+ βk (I − W)Wy + βk+1(I − W)y (9)

in which Wky represents the smooth layer obtained from k
diffusion iterations of W filter. The remaining terms consist of
k − 1 “band-pass” and one “high-pass” filters that decompose
the input image into various detail layers (This image decompo-
sition scheme is shown in Fig. 5). As shown in [22], the multi-
scale filtering in (9) corresponds to a polynomial mapping of the
filter eigenvalues. Although this interpretation provides a flexi-
ble global framework for affinity based filtering in the spectral
domain, complexity of the eigen-decomposition approximation
remains relatively high.

Our current paper’s motivation is to expedite the local com-
putation of the diffusion filtering in (9). More explicitly, given
the filter W of size n × n, the expensive matrix multiplication
of the diffusion process in computing Wk (O(kn3)) is replaced
by recomputation of the affinity weights using a larger smooth-
ing parameter hk . As it will be addressed in this work, we only
compute the affinity weights once and reuse the filter weights to

Fig. 6. Values of di for the old man photo. Large values shown in red indicate
pixels that have many “nearest neighbors” in the metric implied by the bilateral
kernel. Weights were computed over 11×11 windows (i.e. m = 121).

efficiently reevaluate the affinity kernel weights. This leads to
a quadratic filter computation complexity of O(kn2). In what
follows, the normalization-free filter is discussed first, and then,
our multiscale enhancement scheme is described in more details.

C. The Normalization-Free Filter
To avoid the normalization in (7), we will replace the filter

W with an approximation Ŵ that only involves D rather than
its inverse. More specifically,

Ŵ = I + α(K − D). (10)

Why is this a good idea? In what follows, we will motivate
and derive this approximation from first principles, while also
providing an analytically sound and numerically tractable choice
for the scalar α > 0 that gives the best approximation to W in
the least-squares sense. Before doing so, it is worth noting some
of the key properties and advantages of this approximate filter
which are evident from the above expression (10).

1) Regardless of the value of α, the rows of Ŵ always sum
to one. That is, like its counterpart W constructed with
D−1 , the approximation Ŵ, constructed with only D, is
automatically normalized. This can be easily seen by mul-
tiplying Ŵ on the right by a vector of ones, and observing
that it returns the same vector back regardless of α.

2) While the filter W is not symmetric due to the multi-
plicative normalization (see Eq. (7)), the approximate Ŵ
is always symmetric, again regardless of α. The advan-
tages of having a symmetric filter matrix are many, as
documented in the recent work [33].

3) The PSD affinity matrix K is typically also non-negative
valued, leading to filter weights in W which are also
in turn non-negative valued. The elements in Ŵ however,
can be negative valued due to the term K − D. This means
that the behavior of the approximate filter may differ from
its reference value, and must be carefully studied and
controlled. We will do this next.

TALEBI AND MILANFAR: FAST MULTILAYER LAPLACIAN ENHANCEMENT 501

Fig. 7. (Left) Input y; (Center) exact BL filter Wz , and (right) approximate BL filter Ŵz.

Fig. 8. An example of our proposed filter built on the two low-pass filters W1
and W2 . The filter weights are shown for the center pixel of the 9 × 9 texture
patch. W1 and W2 contain positive affinity weights, yet the combination of
their Laplacians may produce negative filter values.

To derive the approximation, we first note that the standard
filter can be written as:

W = I + D−1(K − D) (11)

Comparing this form to the one presented earlier in (10),
we note that the approximation is replacing the matrix in-
verse (on the right hand side) with a scalar multiple of the
identity:

D−1 ≈ αI (12)

As an illustration, an image containing the normalization terms
di (which comprise the diagonal elements of D) for the photo
in Fig. 7, are shown in Fig. 6. The proposal, as we elaborate
below, is to replace these many normalization constants in (11)
with a single constant.

The justification for this approximation is a Taylor series in
terms of D for the filter matrix. In particular, let’s consider the
first few terms in the series around a nominal D0 :

D−1K ≈ I + D−1
0 (K − D) − D−2

0 (D − D0)(K − D) (13)

The series expresses the filter as a perturbation of the identity,
where the second and third terms are linear and quadratic in
D. For simplicity, we can elect to retain only the linear term,
arriving at the approximation

D−1K ≈ I + D−1
0 (K − D). (14)

Letting D0 = α−1I, we arrive at the suggested approximation
in (10).

Choosing the best α: A direct approach to optimizing the
value of the parameter α is to minimize the following cost
function using the matrix Frobenius norm:

min
α

‖W − Ŵ(α)‖2 (15)

We can write the above difference as

J(α) = ‖W − Ŵ(α)‖2 = ‖D−1K − I − α(K − D)‖2

(16)
This is a quadratic function in α. Upon differentiating and setting
to zero, we are led to the global minimum solution:

α̂ =
tr(KD−1K) − 2tr(K) + tr(D)
tr(K2) − 2tr(KD) + tr(D2)

(17)

For sufficiently large m, where m is the size of the win-
dow over which filter weights are calculated, the terms tr(D)
and tr(D2) dominate the numerator and the denominator,
respectively. Hence,

α̂ ≈ tr(D)
tr(D2)

=
s1

s2
, (18)

where

s1 =
n∑

i=1

di, and s2 =
n∑

i=1

d2
i (19)

This ratio is in fact bounded as 1
mn ≤ s1

s2
≤ 1

d
, which for large

n justifies a further approximation:

α̂ ≈ 1
d

(20)

where d = mean(di) (the upper bound comes from the
arithmetic-geometric mean inequality [34]) . Effect of this ap-
proximation on local variance is addressed in Appendix. Prop-
erties of the normalization-free filter are further discussed in
[35].1 Next, our affinity-based multiscale image enhancement
framework is explained.

1Note that our proposed enhancement scheme is not dependent on the
normalization-free weights, yet, using this technique can further simplify our
method and result in a speed up.

502 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 2, NO. 4, DECEMBER 2016

Fig. 9. Removing compression artifacts using our proposed method in Eq. (21). (a) JPEG compressed image, (b) The base layer image smoothed by filter W1 ,
(c) The luma detail layer obtained from the band-pass filter W2 − W1 , (d) Blended output z. In this example, the baseline kernel is NLM [18], the mapping
functions Tl (.) are s-curves (see Section II-D3) and layer blending is based on a structure mask (see Section II-D4).

Fig. 10. NLM filters produced by element-wise multiplication as W l+1 =
D−1

l+1Kl+1 where Kl+1 = Kl � Kl and with W1 computed explicitly. The
filter weights are shown for the center pixel of the 9 × 9 texture patch.

D. Proposed Filtering Scheme

Our proposed filtering scheme (Fig. 4) has the following form:

z = T1 (W1y) + T2 ((W2 − W1)y) + · · ·
+ Tk ((Wk − Wk−1)y) + Tk+1 ((I − Wk)y) (21)

where Wl denotes the (normalized or normalization-free) fil-
ter weights with smoothing parameter hl and Tl(.) is a scalar
point-wise mapping function applied on each layer. It is worth
mentioning that the generic filtering scheme in (21) includes (9)
as a special case where Tl(t) = βlt and Wl = Wk−l+1 . Each
term in (21) is a filter difference applied on the input image y and
mapped through Tl(.). The proposed filter consists of one high-
pass term (I − Wk), k − 1 band-pass terms (Wl+1 − Wl) and
one low-pass term (W1y). Apparently the filtering behavior
is determined by mapping functions Tl(.) which can boost or
suppress each signal layer.

An example of the proposed filter is shown in Fig. 8. The NLM
affinity weights W1 and W2 are computed for the center pixel
in the texture patch with different smoothing parameters. The
output filter is obtained by linear mapping functions as T1(t) =
T3(t) = t and T2(t) = 5t. As can be seen, the output filter is a
band-pass filter with both negative and positive weights.

Fig. 9 illustrates application of the proposed filtering scheme
in (21). First, the degraded input image is decomposed into

smooth and detail layers. Then, each layer is mapped by a func-
tion Tl(.), and finally, all the layers are blended using a structure
mask to produce the output image. As can be seen, image de-
tails are recovered in the band-pass layer and blended into the
smooth layer, while the compression artifacts are suppressed. In
the following, the filtering steps in (21) are explained in more
depth.

1) Laplacian Interpretation: Given a linear mapper as
Tl(t) = βlt, Eq. (21) can be rewritten as:

z = β1y + (β1 − β2)L1y + · · · + (βk − βk+1)Lky (22)

in which Ll represents the random walk Laplacian Wl − I [36]
. This basically is the input image added to a linear combina-
tion of the Laplacian-filtered images. Another interpretation of
the proposed filter can be described by un-normalized graph
Laplacian [36]. As shown in Section II-C, the normalized filter
can be approximated as Wl ≈ I + αl(Kl − Dl) = I + αlLl .
Then, Eq. (22) can be expressed in terms of un-normalized
Laplacians as:

z = β1y + (β1 − β2)α1L1y + · · · + (βk − βk+1)αkLky
(23)

where αl are used in the normalization approximation. Next, we
address the multiple computations of the affinity weights in (21) .

2) Multiple Affinity Weight Computation: The represented
filtering scheme in (21) requires multiple computations of the
edge-aware weights Wl for l = 1, . . . , k. Ideally, an appropri-
ately tuned filter based on (21) needs the affinity kernels to be
evaluated by different smoothing parameters. This leads to a
significant slow down of the algorithm’s running time. This is
due to the multiple evaluations of the exp(.) function. Our pro-
posed solution to address this issue is an element-wise product
of the kernel weights as:

Wl+1 = D−1
l+1Kl+1 (or Wl+1 = αl+1(Kl+1 − Dl+1))

with Kl+1 = Kl � Kl (24)

where W1 is computed explicitly, l varies from 2 to k − 1,
and � denotes the element-wise Hadamard product. Given the
exponential affinities of BL or NLM, (24) leads to a set of filters
defined by smoothing parameters as hl+1 = hl/2 (both hx and
hy in (1) and (2) will be divided by 2). In practice, we can start

TALEBI AND MILANFAR: FAST MULTILAYER LAPLACIAN ENHANCEMENT 503

Fig. 11. Left: s-curve used for detail/tonal enhancement. Middle: s-curve combined with gamma correction for enhancing mid-tone contrast and boosting
dark/bright details. Right: inverse s-curve used for smoothing and tone compression.

Fig. 12. Example of our method applied for detail enhancement. The same s-curve functions were applied on the detail layers for both output images. The
base layer image of effect 1 and effect 2 are fed to s-curve and inverse s-curve, respectively. Effect 1 represents contrast enhancement and effect 2 shows tonal
compression. The input image is of size 1028 × 926 and running time for producing the enhanced images is about 0.031 second. (a) Input. (b) Enhanced
(effect 1). (c) Enhanced (effect 2).

Fig. 13. Structure masks used for blending of the detail layers. These masks
are shown for images in Figs. 2 and 16.

with a large h1 and successively compute multiple versions of
the filter using (24).

An example of the element-wise weight multiplication is
shown in Fig. 10. Starting with W1 , multiple filter weights
from W2 to W7 are computed. It’s worth pointing out that

the variable bandwidths of these weights allow a more flexible
evaluation of the proposed filtering scheme in (21).

3) Mapping Functions: The detail manipulation of the pro-
posed algorithm strictly depends on the mapping functions Tl(.).
Having the input image decomposed into multiple detail layers,
there are several ways to manipulate image texture and edges.
The linear mapping discussed earlier is the simplest way of ma-
nipulating image details. Although the linear mapper has the
interesting Laplacian interpretation, its main restrictive issue is
the over-sharpening (-smoothing) of the detail content. In other
words, a properly tuned detail mapping operator should treat
details based on their respective local gradient magnitude. Re-
cently, nonlinear detail manipulation has been successfully used
for this task [6], [8]. Our choice is a nonlinear mapping function,
specifically the sigmoid function:

T (t) = 1/(1 + exp(−at)) (25)

Our mapping operators derived from sigmoid function are
demonstrated in Fig. 11 (appropriate shifting and scaling is
applied on the sigmoid function). Application of the s-curve
mapper on the detail and base layers leads to sharpness and

504 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 2, NO. 4, DECEMBER 2016

Fig. 14. Edge-aware smoothing using our method compared to the result from guided image filtering [1]. For nearly the same running time budget (0.08 second),
our method better flattens the fine details and avoids blurring the piecewise smooth output. (a) Input. (b) [1]. (c) Ours.

Fig. 15. Edge-aware smoothing using our method compared to the result from guided image filtering [1]. For nearly the same running time budget (0.06 second),
our method better flattens the fine details and avoids blurring the piecewise smooth output. (a) Input. (b) [1]. (c) Ours.

tonal enhancement, respectively. On the other hand, the inverse
s-curve can suppress details and compress the image contrast.
Given the generic sigmoid function in (25), our mapping opera-
tor has two tuning parameters for each image layer. Parameter a
determines the strength of the mapping operator. The other con-
trol parameter of the mapping function is its width (illustrated
in the left and right plots of Fig. 11). The width parameter can
prevent generation of halo and over-sharpening artifacts around
large gradient edges. It also allows mid-tone contrast enhance-
ment without suppressing details in dark or bright regions. An-
other possible mapping function is the combination of gamma
correction with an s-curve for enhancing dark and bright details
while boosting mid-tone details (shown in the middle plot of
Fig. 11). It is worth mentioning that these mapping functions can
be computed in advance as look up tables and used at run time.

Examples of applying our mapping functions are shown in
Fig. 12. The detail layers of both enhanced images are fed to the

same s-curves, and the base (smooth) layers are fed to s-curve
(effect 1) and inverse s-curves (effect 2) mappers. As can be seen,
details are enhanced in both cases, with effect 1 offering higher
contrast and effect 2 representing relatively lower tonal range.

4) Structure Mask: Detail enhancement and artifact magni-
fication are inseparable. Conventionally it is preferable to boost
strong image structure with high signal-to-noise (SNR) and keep
the noisy regions unaltered. This requires a mechanism to de-
tect the image structure and somehow distinguish it from other
areas. Edge detection provides a rough structure mask by detect-
ing image irregularities. However, artifacts also are prone to be
recognized as image details in a gradient map. One might argue
that a pre-filtered image could possibly result in a more stable
edge detection; yet, this approach could lead to extra complexity
in the overall framework.

Interestingly, we have observed that the sum of the affin-
ity degrees [d1 , . . . , dp] (in a p-pixel neighborhood) conveys

TALEBI AND MILANFAR: FAST MULTILAYER LAPLACIAN ENHANCEMENT 505

Fig. 16. Example of our method applied for detail enhancement. The input image is of size 1289 × 1029 and running time for producing the enhanced image is
about 0.04 second. (a) Input. (b) Enhanced details.

useful information about the image structure (see Fig. 6).
A pixel located on an edge or textured region has relatively low
weight sum compared to a pixel in a flat area. A soft structure
mask for i-th pixel can be defined as:

mi = 1 − di/p (26)

where di denotes sum of the kernel weights associated with
the i-th pixel and mi takes values in [0, 1]. Examples of this
structure mask are demonstrated in Fig. 13. Blending results
using these masks are shown in Figs. 2 and 16. The detail layers
of our image decomposition scheme are modulated by these
masks to attenuate any possible noise and artifact boosting:

z = T1 (W1y) + MT2 ((W2 − W1)y) + · · ·
+ MTk ((Wk − Wk−1)y) + MTk+1 ((I − Wk)y)

where M is a diagonal matrix representing the structure mask
with values in [0, 1]. The detail layers of our image decompo-
sition scheme are modulated by these masks to attenuate any
possible noise and artifact boosting. Fig. 2 shows smoothing of
the artifacts and sharpening of the details as a result of applying
the structure mask. It is worth noting that the structure mask
costs almost no additional computation, given that the kernel
weights are already computed. Also, the structure mask is mod-
erately robust to noise, because (1) it includes many summed
weights, and (2) NLM kernel weights measure similarity
between patches.

III. EXPERIMENTAL RESULTS

Enhancement applications of the proposed filtering method
are demonstrated through some examples in this section. NLM is
our choice of affinity kernel without the spatial term given in (2),
and filter weights are computed in a 5 × 5 neighborhood win-
dow. The patch size is 3 × 3, and the smoothing parameter hy is
set as 0.7 for pixel values in [0, 1]. Three decomposition layers
are selected based on Fig. 4 (i. e. k = 2), meaning that NLM
weights are computed once (W1), and used in the element-wise
weight multiplication to form the second filter (W2).

There are three main applications for our method. First, de-
tail smoothing (shown in Figs. 14 and 15); second, sharpen-
ing mildly blurred images (shown in Figs. 16 and 17), and
finally, detail enhancement in noisy/artifacted images (shown in
Figs. 18–20). Mapping functions Tl(.) are tuned specifically for
each application to produce the best results.

Our multiscale decomposition allows smoothening fine de-
tails while preserving medium and coarse scale details. Our
method is compared to the guided edge-aware filter [1] in
Figs. 14 and 15. These results are obtained by removing the
fine scale detail layer and mapping the medium scale layer (see
Fig. 4) by an s-curve of width 0.2 and a = 10. As can be seen,
in contrast to the guided filter, our result is less blurry.

Out-of-focus blur is another common problem in mobile
imaging. Objects typically lose sharpness and local contrast
in a mildly blurred scene (see input photo in Fig. 16). Our

506 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 2, NO. 4, DECEMBER 2016

Fig. 17. Comparing existing detail enhancement methods with our proposed algorithm. (a) Input. (b) [10]. (c) [11]. (d) [6]. (e) Ours.

Fig. 18. Comparing existing detail enhancement methods with our proposed
algorithm. Running times (in seconds): (b) 1.86, (c) 0.69, (d) 0.05, (e) 0.19,
(f) 0.002.

filtering framework can effectively enhance these images (see
output photo in Fig. 16). Parameters of the s-curve functions
in each scale are: a = 20 and width of 0.66 for the fine scale
detail layer, a = 50 and width of 0.33 for the medium scale
detail layer, and a = 6 with width of 0.75 for the base layer.

Fig. 19. Comparing existing detail enhancement methods with our proposed
algorithm. Running times (in seconds): (b) 2.83, (c) 1.16, (d) 0.08, (e) 0.031,
(f) 0.003.

Comparison of the proposed method with other techniques is
demonstrated in Fig. 17. The adaptive unsharp masking [10]
and Farbman’s detail enhancement [6] tend to boost the image
sharpness and noise together. Our result demonstrates better
local contrast with no noise magnification or detail loss.

Noise is an inevitable part of any imaging pipeline. We also
used our method for enhancing images corrupted by real noise

TALEBI AND MILANFAR: FAST MULTILAYER LAPLACIAN ENHANCEMENT 507

Fig. 20. Comparing existing detail enhancement methods with our proposed algorithm. (a) Input. (b) [10]. (c) [11]. (d) [6]. (e) Ours.

Fig. 21. Removing compression artifacts using our method. Filters are ap-
plied in RGB domain and are computed in an 11 × 11 neighborhood window.
(a) Input. (b) Ours. (c) Input. (d) Ours.

Fig. 22. Removing compression artifacts using (b) guided filter [1] and
(c) our method. Both filters are applied in RGB domain and are computed
in an 11 × 11 neighborhood window. For the same running time budget, our
result is superior to [1].

and other artifacts (see input images in Figs. 9 and 18–22). To
better handle noise in the input image, the fine scale detail is sup-
pressed in our image decomposition and the base and medium
scale layers are boosted. The mapping parameters to achieve this
effect are: a = 10 and width of 1 for the fine scale detail layer
(inverse s-curve), a = 60 and width of 0.45 for the medium scale
detail layer (s-curve), and a = 5 and width of 0.75 for the base
layer (s-curve). Figs. 18–21 show examples of noisy/artifacted
images enhanced by different methods. Overall, visual com-
parisons indicate superiority of the proposed algorithm when
dealing with degraded images.

Our C++ implementation is tested on an Intel Xeon CPU @
3.5 GHz with 32 MB memory. Complexity of the proposed al-
gorithm is linearly dependent on the filter size. Running time
of our method is reported for some test images in Table I.
Examples shown in this paper are mostly based on 5 × 5 NLM
filters, leading to an average speed of 21 MP/sec. Given avail-
able implementations of the other enhancement techniques, our
method is significantly faster. For instance, processing an image
of size 0.5 Mega pixel takes 0.03, 0.91, 3.2, 30.5, 12.7 seconds
for [1], [6], [10], [31], and [11] , respectively. Our implementa-
tion takes less than 0.025 seconds to enhance the same image.

508 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 2, NO. 4, DECEMBER 2016

TABLE I
AVERAGE RUNNING TIME (SECONDS) OF THE PROPOSED ALGORITHM

COMPUTED FOR NLM KERNEL OF DIFFERENT SIZES. SIZE OF THE TEST IMAGES

ALONG WITH THE NEIGHBORHOOD WINDOW SIZES ARE SHOWN IN THE FIRST

ROW AND COLUMN OF THE TABLE

0.4 MP 1 MP 3 MP 12 MP

3 × 3 0.014 0.019 0.034 0.143
5 × 5 0.022 0.045 0.105 0.575
7 × 7 0.040 0.075 0.223 1.363
9 × 9 0.078 0.152 0.473 2.623

Fig. 23. Values of ν̂2 as a function of ρ (horizontal axis) and ν2

(vertical axis).

We also tested our algorithm without weight normalization and
weight re-computation approximations to measure the overall
saved time. Our experiments suggest that these approximations
lower the running time by 15–20%.

IV. CONCLUSION

We introduced a new multiscale image enhancement algo-
rithm to improve on the existing edge-aware filters. Our multi-
scale decomposition scheme provides a fast detail manipulation
paradigm with a minor complexity added to the computation
of the baseline kernel. Combination of the detail layers with a
structure mask produces state-of-the-art image enhancement re-
sults, addressing shortcomings of the existing algorithms. This
proposed work is implemented for NLM filter weights; however,
it can be easily extended to other edge-aware filters.

APPENDIX

Effect of Approximation on Local Variance: We expect that
the approximate filter should affect the variance of the output
pixels. Here we characterize this effect. Recall the pixel-wise
expressions for the exact and approximate filter, respectively:

zi =
n∑

j=1

wij yj , ẑi =
n∑

j=1

ŵij yj (27)

The variance in the output pixel in terms of the variance in the
input pixel is given by the sum-squared of the filter weights.

That is,

var(zi) =

⎛
⎝ n∑

j=1

w2
ij

⎞
⎠ var(yi) = νi var(yi) (28)

var(ẑi) =

⎛
⎝ n∑

j=1

ŵ2
ij

⎞
⎠ var(yi) = ν̂i var(yi) (29)

It is of interest to establish a relationship between the factors
νi and ν̂i . We proceed as follows:

ν̂i = ŵT
i ŵi

= (δi + αdi (wi − δi))
T (δi + αdi (wi − δi))

= α2d2
i νi + (α2d2

i − 2α(1 + α)di + 1 + 2α) (30)

where δi is the shifted Dirac delta vector [0, . . . , 0, 1, 0, . . . , 0],
with subscript i indicating that the value 1 occurs in the i-th
position. The two variance factors are linearly related when α
is small:

ν̂i ≈ ρ2
i νi + (ρi − 1)2 (31)

where ρi = αdi . The contour plot in Fig. 23, shows the values
of ν̂i as a function of ρi and νi . Also, for the specific approxi-
mation pertaining to (18), we note that di = O(m) where m is
the size of the window over which filter weights are calculated.
For instance, in the case of Fig. 7, m = 11 × 11 = 121. Given n
pixels in the image, tr(D) = O(mn). In the meantime, tr(K) =
O(n), tr(KD−1K) = O(n/m), tr(K2) = O(n2), tr(KD) =
O(mn2), and tr(D2) = O(m2n2). So for sufficiently large m
(typically larger than 5 × 5), the terms tr(D) and tr(D2) domi-
nate the numerator and denominator as claimed.

REFERENCES

[1] K. He, J. Sun, and X. Tang, “Guided image filtering,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 35, no. 6, pp. 1397–1409, Jun. 2013.

[2] Z. Li, J. Zheng, Z. Zhu, W. Yao, and S. Wu, “Weighted guided image filter-
ing,” IEEE Trans. Image Process., vol. 24, no. 1, pp. 120–129, Jan. 2015.

[3] M. Aubry, S. Paris, S. W. Hasinoff, J. Kautz, and F. Durand, “Fast local
Laplacian filters: Theory and applications,” ACM Trans. Graph., vol. 33,
no. 167, Aug. 2014, Art. no. 167.

[4] H. Cho, H. Lee, H. Kang, and S. Lee, “Bilateral texture filtering,” ACM
Trans. Graph., vol. 33, no. 4, Jul. 2014, Art. no. 128.

[5] L. Karacan, E. Erdem, and A. Erdem, “Structure-preserving image
smoothing via region covariances,” ACM Trans. Graph., vol. 32, no. 176,
Nov. 2013, Art. no. 176.

[6] Z. Farbman, R. Fattal, D. Lischinski, and R. Szeliski, “Edge-preserving
decompositions for multi-scale tone and detail manipulation,” ACM Trans.
Graph., vol. 27, no. 3, Aug. 2008, Art. no. 67.

[7] K. Subr, C. Soler, and F. Durand, “Edge-preserving multiscale image
decomposition based on local extrema,” ACM Trans. Graph., vol. 28,
no. 5, 2009, Art. no. 147.

[8] S. Paris, S. W. Hasinoff, and J. Kautz, “Local Laplacian filters: edge-aware
image processing with a Laplacian pyramid,” ACM Trans. Graph., vol. 30,
no. 4, 2011, Art. no. 68.

[9] Z. Farbman, R. Fattal, and D. Lischinski, “Diffusion maps for edge-aware
image editing,” ACM Trans. Graph., vol. 29, no. 6, Dec. 2010, Art. no.
145.

[10] A. Polesel, G. Ramponi, and V. J. Mathews, “Image enhancement via
adaptive unsharp masking,” IEEE Trans. Image Process., vol. 9, no. 3,
pp. 505–510, Mar. 2000.

[11] R. C. Bilcu and M. Vehvilainen, “Constrained unsharp masking for im-
age enhancement,” in Proc. 3rd Int. Conf. Image Signal Process., 2008,
pp. 10–19.

TALEBI AND MILANFAR: FAST MULTILAYER LAPLACIAN ENHANCEMENT 509

[12] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and colorxbrk
images,” in Proc. 6th Int. Conf. Comput. Vision, Mumbai, India, Jan. 1998,
pp. 836–846.

[13] F. Durand and J. Dorsey, “Fast bilateral filtering for the display of high-
dynamic-range images,” ACM Trans. Graph., vol. 21, no. 3, pp. 257–266,
Jul. 2002.

[14] R. Fattal, S. Agrawala, and M. Rusinkiewicz, “Multiscale shape and detail
enhancement from multi-light image collections,” ACM Trans. Graph.,
vol. 26, no. 3, 2007, Art. no. 51.

[15] B. Zhang and J. P. Allebach, “Adaptive bilateral filter for sharpness en-
hancement and noise removal,” IEEE Trans. Image Process., vol. 17, no. 5,
pp. 664–678, May 2008.

[16] J. Chen, S. Paris, and F. Durand, “Real-time edge-aware image processing
with the bilateral grid,” ACM Trans. Graph., vol. 26, no. 3, 2007, Art. no.
103.

[17] H. Winnemöller, S. C. Olsen, and B. Gooch, “Real-time video abstraction,”
ACM Trans. Graph., vol. 25, no. 3, pp. 1221–1226, 2006.

[18] A. Buades, B. Coll, and J. M. Morel, “A review of image denoising algo-
rithms, with a new one,” Multiscale Model. Simul. (SIAM Interdisciplinary
J.), vol. 4, no. 2, pp. 490–530, 2005.

[19] A. Buades, B. Coll, and J. M. Morel, “A non-local algorithm for image
denoising,” in Proc. IEEE Conf. Comput. Vision Pattern Recognit., 2005,
pp. 60–65.

[20] C. Kervrann and J. Boulanger, “Optimal spatial adaptation for patch-
based image denoising,” IEEE Trans. Image Process., vol. 15, no. 10,
pp. 2866–2878, Oct. 2006.

[21] A. Choudhury and G. G. Medioni, “Perceptually motivated automatic
sharpness enhancement using hierarchy of non-local means,” Proc. IEEE
Int. Conf. Comput. Vision Workshops, Nov. 2011, pp. 730–737.

[22] H. Talebi and P. Milanfar, “Nonlocal image editing,” IEEE Trans. Image
Process., vol. 23, no. 10, pp. 4460–4473, Oct. 2014.

[23] A. Kheradmand and P. Milanfar, “Nonlinear structure-aware image sharp-
ening with difference of smoothing operators,” Frontiers ICT, Comput.
Image Anal., vol. 2, 2015, Art. no. 22.

[24] E. S. L. Gastal and M. M. Oliveira, “Domain transform for edge-
aware image and video processing,” ACM Trans. Graph., vol. 30, no. 4,
pp. 69:1–69:12, 2011.

[25] L. Xu, C. Lu, Y. Xu, and J. Jia, “Image smoothing via L0 gradient mini-
mization,” ACM Trans. Graph., vol. 30, no. 5, 2011, Art. no. 174.

[26] S. Bi, X. Han, and Y. Yu, “An L1 image transform for edge-preserving
smoothing and scene-level intrinsic decomposition,” ACM Trans. Graph.,
vol. 34, no. 4, 2015, Art. no. 78.

[27] E. H. Land and J. J. McCann., “Lightness and retinex theory,” J. Opt. Soc.
Amer., vol. 61, no. 1, pp. 1–11, 1971.

[28] D. J. Jobson, Z. Rahman, and G. A. Woodell, “A multiscale retinex for
bridging the gap between color images and the human observation of
scenes,” IEEE Trans. Image Process., vol. 6, no. 7, pp. 965–976, Jul. 1997.

[29] R. Kimmel, M. Elad, D. Shaked, R. Keshet, and I. Sobel, “A variational
framework for retinex,” Int. J. Comput. Vision, vol. 52, no. 1, pp. 7–23,
2003.

[30] J. M. Morel, A. B. Petro, and C. Sbert, “A PDE formalization of retinex
theory,” IEEE Trans. Image Process., vol. 19, no. 11, pp. 2825–2837,
Nov. 2010.

[31] A. B. Petro, C. Sbert, and J. M. Morel, “Multiscale retinex,” Image
Process. On Line, vol. 4, pp. 71–88, (Apr. 2014). [Online]. Available:
http://dx.doi.org/10.5201/ipol.2014.107

[32] M. Elad, “On the origin of the bilateral filter and ways to improve it,”
IEEE Trans. Image Process., vol. 11, no. 10, pp. 1141–1150, Oct. 2002.

[33] P. Milanfar, “Symmetrizing smoothing filters,” SIAM J. Imag. Sci., vol. 6,
no. 1, pp. 263–284, 2013.

[34] J. M. Steele, The Cauchy–Schwarz Master Class. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[35] P. Milanfar and H. Talebi, “A new class of image filters without normaliza-
tion,” in Proc. 23rd IEEE Int. Conf. Image Process., 2016, pp. 3294–3298.

[36] P. Milanfar, “A tour of modern image filtering: New insights and methods,
both practical and theoretical,” IEEE Signal Process. Mag, vol. 30, no. 1,
pp. 106–128, Jan. 2013.

Hossein Talebi received the B.S. and M.S. degrees
in electrical engineering from Isfahan University of
Technology, Isfahan, Iran, and the Ph.D. degree in
electrical engineering from the University of Califor-
nia at Santa Cruz, Santa Cruz, CA, USA. Since 2015,
he has been with Google Research, Mountain View,
CA, where he works on computational imaging,
image processing, and machine learning problems.

Peyman Milanfar (F’10) received the undergradu-
ate degree in electrical engineering and mathemat-
ics from the University of California, Berkeley, CA,
USA, and the M.S. and Ph.D. degrees in electrical
engineering from Massachusetts Institute of Tech-
nology, Cambridge, MA, USA. He leads the Compu-
tational Imaging/Image Processing team in Google
Research. Prior to this, he was a Professor of electri-
cal engineering at the University of California, Santa
Cruz, CA, from 1999 to 2014, where he is currently
a visiting faculty. He was an Associate Dean for re-

search at the School of Engineering from 2010 to 2012. From 2012 to 2014,
he was on leave at Google-x, where he helped develop the imaging pipeline for
Google Glass He founded MotionDSP in 2005. He has been keynote speaker
at numerous technical conferences including PCS, SIAM Imaging, SPIE, and
ICME. Along with his students, has received several best paper awards from
the IEEE Signal Processing Society. He became a Fellow of the IEEE for
contributions to inverse problems and superresolution in imaging.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

