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ABSTRACT

In all imaging systems, the underlying process introduces undesirable distortions that cause the output signal to
be a warped version of the input. When the input to such systems can be controlled, pre-warping techniques can
be employed which consist of systematically modifying the input such that it cancels out (or compensates for)
the process losses. In this paper, we focus on the mask (reticle) design problem for ‘optical micro-lithography’, a
process similar to photographic printing used for transferring binary circuit patterns onto silicon wafers. We use a
pixel-based mask representation and model the above process as a cascade of convolution (aerial image formation)
and thresholding (high-contrast recording) operations. The pre-distorted mask is obtained by minimizing the
norm of the difference between the desired output image and the reproduced output image. We employ the
regularization framework to ensure that the resulting masks are close-to-binary as well as simple and easy to
fabricate.

Finally, we provide insight into two additional applications of pre-warping techniques. First is ‘e-beam
lithography’, used for fabricating nano-scale structures, and second is ‘electronic visual prosthesis’ which aims
at providing limited vision to the blind by using a prosthetic retinally implanted chip capable of electrically
stimulating the retinal neuron cells.

Keywords: Optical micro-lithography, mask design, OPC, image synthesis, inverse problems, sigmoid, regular-
ization, retinal prosthesis, e-beam lithography

1. INTRODUCTION

In all imaging systems, the underlying process introduces undesirable distortions which causes the output signal
to be a warped version of the input. To overcome this, when the input is controllable, pre-warping techniques
can be employed which consist of systematically modifying the input such that it will cancel out the process
losses. Thus, in effect, we are pre-compensating for the process distortions to come. This is an image synthesis1

problem which consists of finding an image that when used as the input to a given imaging system results in the
prescribed desired output image (to within some prescribed tolerance).

The problems of image restoration (reconstruction) and image synthesis (design) are similar, in both cases
the output and imaging system are known but the input is unknown.1 In the restoration case, the output image
results from an actual but unknown input image,2 and therefore at least one solution must exist in the absence
of measurement error or noise. However, the existence of solution is an issue for image synthesis, and there may
be no input capable of producing the prescribed output.3

The image formation process can be mathematically expressed as,

z(x, y) = T{i(x, y)}, (1)

where T{.} is the forward model which maps the input intensity function i(x, y) to the output intensity function
z(x, y). Let z∗(x, y) be the desired output intensity function. We seek to find a pre-distorted input intensity
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function which will give us the desired output z∗(x, y). This is achieved by searching the space of all inputs and
choosing î(x, y) which minimizes a distance d(z(x, y), z∗(x, y)), where d(·, ·) is some distance metric.

î(x, y) = arg min
i(x,y)

d(z∗(x, y), T{i(x, y)}). (2)

In this article, we focus on studying prewarping techniques to design optical and process correction (OPC)
masks for microlithography. Section 2 discusses the optical lithography procedure and introduces the forward
model employed to simulate the distortion effects of the imaging system. The optimization procedure is discussed
in Section 3 and in Section 4 we introduce two regularization functions to obtain near-binary and easy to
manufacture masks, respectively. Finally, we discuss the extensions and applications of prewarping techniques
to nanolithography and visual prosthesis along with some conclusive remarks in Section 5.

2. OPTICAL MICROLITHOGRAPHY AND OPC

2.1. Optical Microlithography
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Figure 1. Steps involved in optical microlithography
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Figure 2. A simplified view of the lithography process

Optical microlithography, a process similar to photographic printing, is used for transferring circuit patterns
onto silicon wafers and forms a very critical step in the IC fabrication flowchart.4 As illustrated in Fig. 1, the
pattern to be replicated on the wafer is first carved on a reticle (mask). An illuminator (UV source) is shone
through this mask producing an image of the pattern through the lens system, which is eventually projected
down onto a photoresist-coated silicon wafer using a projection system (typical aspect ratio 4:1). The photoresist
is chemically sensitive to light, and hence only the exposed regions are washed away leaving behind a replica of
the mask pattern on the substrate (wafer).

In an ideal world, the output circuit pattern on the wafer will be exactly similar to the mask pattern.
Unfortunately, the band-limited imaging system introduces distortions caused by the diffraction effects of the
lens-projection system, particularly at higher resolutions. These undesirable distortions lead to a loss of pattern
fidelity and hence the output pattern obtained on the wafer is a distorted (blurred) version of the input.5 The
semiconductor industry strives to adhere to the ITRS6 (International Technology Roadmap for Semiconductors)
road-map which is driven by Moore’s law for the past three decades. Moore’s law with regard to lithography
requires the critical dimensions (CD) to shrink by thirty percent every two years (currently CD = 65nm). This



puts very stringent requirements on lithography thereby making it one of the tightest bottlenecks faced by the
semiconductor industry.

The resolution(R) of the lithography system in Fig. 1 can be expressed using Rayleigh’s criterion as follows,

R =
kλ

NA
. (3)

Obviously the resolution can be improved by increasing the numerical aperture of the imaging system (NA) or
decreasing the wavelength (λ) and these alternatives have been actively explored by researchers in the lithography
community (current values are NA = 0.9 and λ = 193nm). Pushing the above parameters values beyond this
limit is very costly, risky and time consuming. Therefore, it has been established that the most important,
feasible, and promising method to achieve the goal of enhanced resolution is by decreasing the process constant
k using resolution enhancement techniques (RETs).7, 8

RETs are based on exploring three properties of the wavefront, namely, its amplitude, phase and direction
and are accordingly classified as optical and process correction, phase-shift method and off-axis illumination.9

Phase-shift method and optical process correction are implemented by making physical changes to the mask
(reticle) and the mask pattern. Unfortunately, these changes increase the complexity, storage requirements and
cost of the masks (currently in millions) and hence the challenge is to implement RETs constrained by the above
factors.

2.2. Optical and Process Correction

In this paper, we focus on designing OPC masks to overcome the distortions occurring in optical micro-
lithography. OPC consists of adding sub-resolution features to the original layout, a process also known as
micromanipulation. Thus we pre-compensate for the process losses by modifying the original layout, which
eventually leads to a better pattern fidelity and improved resolution (see Fig. 5).10

OPC has been carried out using two approaches; namely rule-based, or model-based. As the name suggests,
in the rule-based OPC scheme, empirical rules are developed to counteract the commonly occurring problems
around corners, edges, local interactions, etc. These are then applied throughout the pattern to provide a general
improvement in pattern fidelity. Rule-based OPC is very simple to implement but it only compensates for the
local features and does not optimize the global performance depending on the overall layout. Hence it has limited
scope, effectiveness and applications.9

Model-based methods on the other hand use a mathematical description to represent the warping process
(forward model). As such, they are more universal and represent a more aggressive OPC strategy. The success
of these methods relies heavily on accurate modelling of the distortion process which has been studied carefully
by physicists, chemists, and other researchers in the lithography community.11 Fig. 2 illustrates a simplified
view of the lithography process. It consists of two functional blocks; namely the projection optics effects (aerial
image formation), and the resist effects. The former is simulated using Hopkins scalar (or vector) model for
partially coherent imaging systems12 and the later is simulated using Dills model4 or in the simplest case using
a constant threshold model. Model-based OPC itself has two flavors. The forward model-based OPC techniques
suggested by Cobb and Zakhor13 parameterize the pattern using edges and corners and proceed by nudging
these geometric elements while simulating the output pattern (using the forward model) until certain criteria are
satisfied. Backward model based techniques invert the mathematical model and attempt to directly synthesize
the optimized pattern.9 Sherif, et al.1 and Liu-Zakhor14 employed branch and bound algorithms to design OPC
and phase-shift masks following the backward model-based technique.

2.3. Proposed Method for Mask Synthesis

In this paper, we treat the problem as an “inverse” problem, and focus on developing fast and efficient methods
for backward (or inverse) model-based OPC. We use a pixel-based mask representation, hence the input, output
and desired patterns are all represented using discrete 2-D images. We employ the approximated forward process
model illustrated in Fig. 3 in our analysis. Note that the aerial image formation step from Fig. 2 is approximated
using the convolution of the input pattern with a 2-D Gaussian kernel for the sake of simplicity. Secondly, we



employ the sigmoid type transfer function instead of the hard-thresholding (heaviside) operation to simulate the
resist effect. A heaviside step function is defined as,

Γ(u) =
{

0, u ≤ tr
1, u > tr

(4)

Using a Heaviside operator (hard threshold) would result in a discrete combinatorial optimization problem.
A sigmoid is a smooth, continuous function which closely approximates the Heaviside function.15 With this
choice we can use gradient-based continuous function optimization techniques like steepest-descent to solve the
mask design problem.
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Figure 3. Approximated forward process model

In particular, we employ the logarithmic sigmoid function,

sig(u) =
1

1 + e−a(u−tr)
, (5)

where the parameter a dictates the steepness of the sigmoid. A large value of a leads to a very steep sigmoid
which closely resembles the hard thresholding operation. The parameter tr is the threshold parameter of the
sigmoid and is set equal to the threshold level of the resist in accordance with the constant threshold resist
model. Fig. 4 illustrates the behavior of a sigmoid with a = 80 and tr = 0.5.
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Figure 4. The sigmoid function sig(u) = 1/(1 + e−80(u−0.5))

3. MODEL-BASED OPTIMIZATION

We assume that M, Z, and Z∗ are image arrays of size N × N such that [M]ij = m(xi, yj), [Z]ij = z(xi, yj),
and [Z∗]ij = z∗(xi, yj). Throughout our discussion, Z∗ represents the prescribed binary pattern, Z represents
the gray-level output pattern, and M represents the input pattern fed to the imaging system (can be binary or
gray-level). Let z, m, z∗ ∈ <N2×1 represent the raster scanned (lexicographic ordering) vectors of the respective
matrices. The forward model in Fig. 3 can be mathematically represented as,

z = sig(Hm), (6)



where H ∈ <N2×N2
is the blur matrix representing the point spread function (PSF) of the imaging system,

z = [z1, . . . , zN2 ]T , and m = [m1, . . . , mN2 ]T . Thus, every pixel undergoes a cascade of convolution followed by
the sigmoidal transformation

zi =
1

1 + exp


−a




N2∑

j=1

hijmj


 + atr




, (7)

for i = 1, . . . , N2.

3.1. Optimization Problem

We formulate the OPC-mask design problem as finding the optimized layout m̂ that minimizes the cost function
F (m), defined as the L2 norm of the difference between the desired pattern z∗ and the output pattern z,

m̂ = arg min
m
{F (m)} = arg min

m
||z∗ − z||22 = arg min

m
||z∗ − sig(Hm)||22 (8)

Therefore,

m̂ = arg min
m

N2∑

i=1

(z∗i − zi)
2 (9)

where zi is defined using (7) ∗.

Note that m consists of the transmission values of a binary mask which can only take values 0 or 1, resulting
in a combinatorial optimization problem. However, to make the problem analytically tractable, we relax the
parameter values to lie in the range [0,1]. This is achieved by imposing the following inequality constraints on
the optimization problem given in (8),

0 ≤ mj ≤ 1 for j = 1, . . . , N2 . (10)

The bound-constrained optimization problem can be reduced to an unconstrained optimization problem using
the following parametric transformation,

mj =
1 + cos(θj)

2
for j = 1, . . . , N2 (11)

where θ = [θ1, . . . , θN2 ]T is the unconstrained parameter vector. The reparameterized cost function can be
formulated in terms of the parameter vector θ as follows,

F1(θ) =
N2∑

i=1




z∗i −
1

1 + exp


−a




N2∑

j=1

hij

1 + cos(θj)
2


 + atr







2

. (12)

We now employ the steepest-descent method to find the optimum solution of the above problem which
involves finding the first order derivatives of (12). The gradient vector ∇F1(θ) ∈ <N2×1 can be calculated using
the following expression,

∇F1(θ) = d = a(HT [(z∗ − z)¯ z¯ (1− z)] )¯ sin(θ), (13)
∗As an alternative we have also considered the weighted least squares where weights are chosen according to the

importance of different parts of the pattern. This may be viewed as a mix of model-based and rule-based approaches,
where the rules determine weights in the model



where ¯ is the element-by-element multiplication operator. The kth iteration of steepest descent is given as,

θk+1 = θk − sdk (14)

where s is the step-size. We would like to highlight the useful fact that due to the structure of (13), the steepest
descent iterations can be quickly and directly carried out on the 2-D matrices with no need for the raster scanning
operation. More importantly, since we know the solution to be a perturbation of the prescribed pattern, the
iteration can be initialized with the prescribed pattern, leading to quick convergence to a global solution. The
optimized pattern M̂ can finally be obtained from Θ using (11).

3.2. Binarization of the gray-mask

The pattern M̂ obtained using the above method is not binary. Instead each pixel can have gray values anywhere
in [0,1]. This makes the resulting mask physically unrealizable and hence we need a post-processing step to obtain
the synthesized binary OPC mask M̂b. The simplest way to obtain M̂b from M̂ is using a global threshold
parameter tm, such that the error between Z∗ and the output binary pattern obtained using M̂b (as the input)
is minimized. The optimum value of tm can be obtained using a simple line search operation.16 However, the
above approach for binarization is sub-optimal and in Section 3 we propose an alternative method for this step.

3.3. Results
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Figure 5. Top row, left to right: original pattern, optimized gray pattern and binary pattern obtained using an optimum
global threshold tm. The bottom row indicates the corresponding binary output patterns. The parameters are a =
90, tr = 0.5, 15× 15 filter with σ = 5, and s = 0.4

We now present two experimental results for the OPC masks synthesized using the aforementioned method.
The bottom row in Fig. 5 illustrates the binary output patterns obtained using the original pattern (i.e. M = Z∗),
the optimized gray pattern (M = M̂) and the binary pattern (M = M̂b) as inputs. The PSF effect was simulated



using a Gaussian filter of size 15 × 15 with σ = 5 pixels, with the sigmoid parameters a = 90, tr = 0.5 and the
step size s = 0.4. The final output binary patterns were obtained by thresholding the aerial images using the
heaviside operator given in (4) with tr = 0.5.

The error F (m) associated with the above three input patterns can be calculated using (8); F (z∗) = 142.76,
F (m̂) = 4.09, and F (m̂b) = 8.46. However for the given imaging system (see Fig. 2), the aerial image is actually
subjected to the heaviside operation to obtain the binary output image. Hence, it is more appropriate to compute
the error using the binary output image instead of the sigmoidal transformed (gray level) output image. We
employ a new metric pattern error, defined as the total number of pixels which are not faithfully reproduced in
the binary output pattern,

error(m) = ||z∗ − Γ(Hm)||1. (15)

From Fig. 5, we observe that error(m) = 154, error(m̂) = 0, and error(m̂b) = 0.

Note that the imaging system was incapable of rendering the two bars distinguishable if the desired image is
itself used as the input (i.e. M = Z∗). However, the patterns are reproduced very faithfully using the synthesized
OPC mask. Fig. 6 illustrates the cost function behavior for the first 200 iterations of steepest descent, indicating
quick convergence.
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Figure 6. Cost function versus steepest-descent iter-
ations for Fig. 5
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Figure 7. Cost function versus steepest-descent iter-
ations for Fig. 8.

Fig. 8 illustrates the input and output patterns for a more complicated circuit pattern. The Gaussian filter
employed has size 11×11 with σ = 14 pixels (the high value of σ gives the effect of an averaging filter), while the
sigmoid parameters are a = 80, tr = 0.5, and s = 0.5. We observe that our algorithm performs an excellent job
in prewarping and the output is extremely faithful to the desired pattern (pattern error 447 vs 1 pixels). Note
that the binarization step employed from Section 3.2 increases the error from 1 to 18. Fig. 7 illustrates the cost
function behavior for the first 200 iterations of the steepest-descent procedure. Note that the long vertical bar
(on the extreme left) in the prescribed pattern in Fig. 8 is completely missing when reproduced using M = Z∗.
However, our optimization procedure starts adding prewarping elements to correct it at around 85th iteration,
which results in a steep decrease in the cost function observed in Fig. 7. The kinks in the curve can be eliminated
by choosing a smaller step size.

The imaging system given in Fig. 2 is a binary-in-binary-out (BIBO) system. The binary output part is
approximated by using the sigmoid based transfer function in the process model (see Fig. 3) which guarantees
that the output pattern is always close to binary. However, the current setup does not incorporate the fact
that the input pattern should also be binary. The disadvantage is the need for an extra post-processing step
(binarization) which is sub-optimal with no guarantee that the pattern error will be under control (see Fig. 8).
There is also a possibility to jointly optimize the binarizing threshold and the gray pattern. In the next section,
we use the regularization framework to overcome this problem and complete the binary-to-binary loop.
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Figure 8. Top row, left to right: original pattern, optimized gray pattern and binary pattern obtained using an optimum
global threshold tm. The bottom row indicates the corresponding binary output patterns. The parameters are a =
80, tr = 0.5, 11× 11 filter with σ = 14, and s = 0.5

4. REGULARIZATION

If we look back again at Fig. 5, we observe that both the gray-level and binary input patterns give rise to the
same (desired) binary pattern at the output. The BIBO mask design problem can itself have multiple solutions
and the continuous domain formulation implies that now there can be infinitely many different input patterns,
all giving rise to the same binary pattern at the output. However, we want our estimated pattern to satisfy
certain properties which can be incorporated as prior knowledge about the solution. We can constrain the space
of solutions to obtain a general desirable solution using an appropriate regularization term.17 In general, the
formulation can be described as follows,

m̂ = arg min
m

[F (m) + γ R(m)] (16)

where F (m) is the data-fidelity term, R(m) is the regularization function used to direct the unknown parameter
m towards the desired solution space, and γ is the user-defined scalar for adequately weighing the first(fidelity)
term against the second(regularization) term.

In this section we discuss two regularization terms corresponding to two desirable properties we chose to
promote in our estimated solution. The first property discussed earlier is that our estimated mask should be
(close to) binary, the second is that our masks should be simple, and therefore cheap and easy to manufacture.



4.1. Quadratic Penalty Term

The first penalty term employed to obtain near binary patterns is as follows,

Rbin(m) =
N2∑

j=1

[
1− (2mj − 1)2

]
= 4mT (1−m), (17)

where 1 = [1, . . . , 1]T ∈ <N2
. Thus every pixel mj has an associated penalty given by the quadratic function

(see Fig. 9),
r(mj) = 1− (2mj − 1)2.
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Figure 9. Quadratic penalty cost function

The mask transmission values are constrained to lie in [0, 1] and hence we are only interested in the behavior
of the cost function in that range. The penalty incurred is zero for transmission values 0 or 1 and increases as
we move away from binary region in either direction (maximum at mj = 0.5).

The gradient ∇Rbin(m) ∈ <N2×1 of the quadratic penalty term is given by,

∇Rbin(m) = (−8m + 4), (18)

which can be used in conjunction with (13) and (14) while carrying out the steepest-descent iterations as before.

Fig. 10 illustrates the results with the same prescribed pattern, PSF and sigmoidal parameters used in Fig. 8
(Section 3.3). However, here we employ the quadratic regularization term and minimize the overall cost function

J(m) = F (m) + γbinRbin(m),

where F (m) is defined in (8) and Rbin(m) is defined in (17), with γbin = 0.015 and s = 1.5. Note that unlike
Fig. 8, the optimized gray-pattern is very close to binary. Hence, there is no need for the line search operation
discussed in Section 3.2 to find the optimal tm. In fact, we can simply obtain the synthesized binary pattern
M̂b by thresholding M̂ with tm = 0.5. Note that the pattern error only increases from 0 to 1 pixel due to the
above step. We also note that the inclusion of the regularization penalty that promotes binary results did not
introduce any new error when applied to the pattern in Fig. 5, and therefore, due to space constraints, we do
not show the results for that case.

4.2. Total Variation Penalty Term

A second penalty term we will incorporate is to ensure that the resulting OPC mask is less complex and therefore
cheap and easy to fabricate, and inspect. Isolated perturbations, protrusions, etc are not preferred because they
increase the storage and manufacturing cost. Hence we seek a penalty term which suppresses these effects. To
achieve this, let us first define a new pattern called the flip pattern f where,

f
j

= |mj − z∗j | for j = 1, . . . , N2.
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Figure 10. Left to right: original pattern, optimized gray pattern and binary pattern obtained using global thresholding
with tm = 0.5. The cost function minimized was F (m) + γbinRbin(m) and the parameters are a = 80, tr = 0.5, 11 × 11
filter with σ = 14, s = 1.5, and γbin = 0.015

The on pixels in f indicate the positions where pre-warping occurred; the pre-warped pattern can be obtained
by simply flipping the corresponding pixels in z∗ from 1 to 0 or 0 to 1.

There are a variety of penalty terms that one can employ depending upon how one defines mask complexity.
Our experience indicates that the Total Variation (TV)17 penalty term is an appropriate choice, leading to
desirable results, hence that is what we use for now. However, we are also exploring other possibilities. TV
penalty term is defined as the L1 norm of the magnitude of the gradient of the flip pattern f ,

RTV(m) = ||∇f ||11. (19)

The flip pattern f enables us to decouple the features of the underlying prescribed pattern z∗ from m thereby
capturing only the changes occurring due to prewarping. Isolated holes, protrusions, and jagged edges have
higher associated penalty. The regularization term in (19) suppresses these effects and forces the changes to be
spatially smoother and less abrupt. This leads to simple, and easy to manufacture OPC masks.

The TV equation in (19) can also be approximated using the following equation,18

||∇f ||11 = ||Qxf ||11 + ||Qyf ||11, (20)

where Qx,Qy ∈ <N2
represent the first (directional) derivatives and are defined as Qx = I− Sx and Qy = I− Sy

where Sx and Sy shift M along horizontal (right) and vertical (up) direction by one pixel respectively. The
gradient ∇RTV(m) ∈ <N2×1 of the TV penalty term is given as,

∇RTV(m) = [Qx
T sign(Qxf) + Qy

T sign(Qyf)] ¯ sign(m− z∗), (21)
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Figure 11. Left to right: original pattern, optimized gray pattern and binary pattern obtained using global thresholding
with tm = 0.5. The cost function minimized was F (m)+γbinRbin(m)+γTVRTV(m) and the parameters are a = 90, tr =
0.5, 15× 15 filter with σ = 5, s = 1, γbin = 0.025 and γTV = 0.045

which can be used in conjunction with (13) and (14) while carrying out the steepest-descent iterations as before.

Fig. 11 illustrates the results with the same prescribed pattern, PSF, and sigmoidal parameters used in Fig. 5
(Section 3.3). However, here we employ both the quadratic and TV regularization terms and minimize the overall
cost function

J(m) = F (m) + γbinRbin(m) + γTVRTV(m),

where F (m) is defined in (8), Rbin(m) is defined in (17), and RTV(m) is defined in (19) with γbin = 0.025,
γTV = 0.045, and s = 1. We observe that the synthesized OPC pattern is much simpler than the one in Fig. 5.

Similarly, Fig. 12 illustrates the results obtained using both regularization terms with the same prescribed
pattern, PSF, and sigmoidal parameters used in Fig. 10 (Section 4.1) with γbin = 0.01, γTV = 0.02, and s = 1.
In both the above cases, we observe that the isolated holes, protrusions, and jagged edges are suppressed and
hence the resulting mask is faster, easier, and cheaper to fabricate and inspect.

5. EXTENSIONS AND APPLICATIONS OF PRE-WARPING TECHNIQUES

In this section we suggest prewarping techniques to solve related problems arising in microlithography, nano-
lithography, and the development of retinal visual prostheses. We also provide some conclusive remarks towards
the end of this section.

5.1. Extensions in Microlithography

In this paper, we discussed OPC mask synthesis problem for microlithography. However, we use a very simplified
view of the forward model and future work will comprise of incorporating more sophisticated models. An
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Figure 12. Left to right: original pattern, optimized gray pattern and binary pattern obtained using global thresholding
with tm = 0.5. The cost function minimized was F (m)+γbinRbin(m)+γTVRTV(m) and the parameters are a = 80, tr =
0.5, 11× 11 filter with σ = 14, s = 1, γbin = 0.01 and γTV = 0.02

immediate extension will be to use the sum-of-coherent-system approximation to Hopkins partial coherence
model for simulating the aerial image formation.12 The resist effects are also dependent on the time of the
exposure and the dissolution rate which need to be taken into account for higher accuracy. We can also employ
the variable threshold resist model19 where our goal now is to jointly estimate the prewarping along with the
best threshold parameter. Suitable weight functions can be used to ensure that critical regions are faithfully
reproduced. The optimization process can be sped up using constrained pre-warping which limits the pre-
distortion to only the user-defined regions. A very promising future direction to pursue is synthesizing phase
shift masks where the estimated pixels now have values -1, 0 or 1.14 The above framework will enable us
to combine phase shift mask and OPC mask design, a powerful combination of RETs.7 We can also enlist
the features and feature types totally undesirable in our optimized mask and propose new regularization terms
specifically tailored to combat those effects.

5.2. Applications in Nanotechnology

The fabrication of devices at nanometer scale is performed using electron-beam lithography, which consists of
directly firing a focused beam of electrons onto a photoresist coated substrate. Unlike microlithography, a mask
is not used. Instead, the pattern is directly carved on the substrate using the electron beam. Unfortunately, once
the electrons enter the resist, they tend to scatter before depositing their energy, giving rise to proximity effects.
That is, the electron scattering causes the energy to spread throughout the substrate which results in a blurring
effect. The point spread function of the above system is commonly modelled as sum of two Gaussian kernels
accounting for the forward and backscattering of the electrons. The above effect is counteracted using electron-
beam proximity correction, a predistortion technique commonly adopted by the nanolithography community.20

The e-beam lithography process can be modelled similarly to microlithography, as shown in Fig. 3. The



pattern is carved one pixel at a time by the e-beam writer, and hence pixel-based pattern representation is
most suited for this purpose. E-beam proximity effect correction techniques fall into two sub-categories of dose
modification and shape modification. Unlike before, here the dose (or energy) of the electrons can also be modified
and hence the estimated pattern is not restricted to be binary anymore. Each pixel of M now represents the
dose given to the corresponding location. The allowable dose values may be continuous within a finite range, or
fixed to some discrete levels, depending on the properties (switching time, power, resolution, etc) of the e-beam
writer. We can adopt our proposed algorithms to fit the above framework and solve for dose precompensation
or shape precompensation or the powerful combination of both.

It is worth noting that the reticles used for microlithography are themselves fabricated using e-beam lithogra-
phy. Therefore, one needs to run one more round of prewarping techniques to solve for the distortions introduced
by the e-beam lithography process. Instead, we can cascade the e-beam lithography and optical lithography pro-
cess to form a lumped process (distortion) model. We can then directly solve for the optimum e-beam lithography
pattern required to obtain the desired pattern Z∗ on the silicon wafer. The actual reticle is just treated as an
intermediate by-product. The penalty on reticle costs, storage, complexity, time, etc are actually incurred at the
mask fabrication level and hence this approach gives us a more direct control on the above factors.

5.3. Application of Prewarping to Retinal Visual Prosthesis

Retinal Pigmentosa and Age-Related Macular Degeneration are incurable retinal diseases which result in profound
loss of vision due to non-functional photoreceptor cells. Retinal prosthesis21 aims at providing limited vision
capability using an implanted electrode array which directly stimulates the retinal ganglion cells thereby giving a
limited sense of visual perception. An externally mounted camera captures the real world data and transmits an
encoded and severely downsampled stream to this electrode array via a wireless link. Recently, a 4x4 electrode
array has been successfully implanted22 and the eventual goal is to have a 32x32 implant which will hopefully
enable the tasks of face and character recognition. Furthermore, the system only permits 8 to 16 excitation levels
and color cannot be perceived.

Unfortunately, the final image perceived by the patient will be a distorted or blurred version of the input
owing to the proximity of the densely packed electrode array, superficial ganglion cell axons, etc. To overcome this
problem, we have considered pre-distortion techniques by systematically modifying the input fed to the electrode
array such that the actual perceived image is closer to the captured real world image. A prime challenge is that
it is very hard to generalize and characterize the above imaging system, hence the model should be able to
incorporate user inputs and dynamically tune itself to cause the best prewarping.

5.4. Conclusion

We studied the distortions arising in optical microlithography (a binary-to-binary imaging system) and suc-
cessfully studied predistortion techniques to counteract them. The binary output part was modelled using the
log-sigmoid transfer function and the synthesized input pattern was forced to be binary using a quadratic penalty
regularization term. We demonstrated that the complexity of the resulting patterns can be curbed by employing
suitable penalty terms. Finally, we shed some light on application of prewarping techniques to new avenues in
nanotechnology and biotechnology.
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