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ABSTRACT

Kernel based methods have recently been used widely in im-
age denoising. Tuning the parameters of these algorithms di-
rectly affects their performance. In this paper, an iterative
method is proposed which optimizes the performance of any
kernel based denoising algorithm in the mean-squared error
(MSE) sense, even with arbitrary parameters. In this work we
estimate the MSE in each image patch, and use this estimate
to guide the iterative application to a stop, hence leading to
improve performance. We propose a new estimator for the
risk (i.e. MSE) which is different than the often-employed
SURE method. We illustrate that the proposed risk estimate
can outperform SURE in many instances.

Index Terms— Image Denoising, Anisotropic Diffusion,
Data-dependent Filtering, Risk Estimation

1. INTRODUCTION

In the past few years, non-parametric restoration methods
have become extremely popular. These new algorithms are
mostly patch-based, and also employ local and non-local
similarities in the signals [1, 2, 3]. Let us consider the mea-
surement model for the denoising problem:

yi = zi + ei, for i = 1, ..., n, (1)

where zi = z(xi) is the underlying image at position xi =
[xi,1, xi,2]

T , yi is the noisy pixel value, and ei is zero-mean,
white noise with variance σ2. The problem of denoising is to
recover the set of underlying samples z = [z(x1), ..., z(xn)]T .
The complete measurement model for the denoising problem
in vector notation is:

y = z + e (2)

The estimate of the underlying signal z is found using a
weighted least square framework [4] in which the weight
function K(.) measures the similarity between samples yi

and yj at respective xi and xj positions. Perhaps the most
well known kernel in this class is the Bilateral (BL) filter [2],
which smooths images by means of a nonlinear combination
of nearby image values. The method combines pixel values
based on both their geometric closeness and their photometric

∗This work was supported by AFOSR Grant FA9550-07-1-0365 and NSF
Grant CCF-1016018.

similarity. This kernel can be expressed in a separable fashion
as follows:

Kij = exp

{−‖xi − xj‖2
h2
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−(yi − yj)
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y

}
, (3)

in which hx and hy are control parameters. The BL ker-
nel also can be thought of as weighted Euclidean distance
between the vectors (xi, yi) and (xj , yj). The Non-Local
Means (NLM) [3] is another very popular data-dependent fil-
ter which closely resembles the bilateral filter except that the
photometric similarity is captured in a patch-wise manner:

Kij = exp

{
−‖xi − xj‖2
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h2
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}
, (4)

where yi and yi are patches centered at yi and yj respectively.
In theory (though not in actual practice,) the NLM kernel has
just the patch-wise photometric distance (hx −→ ∞). More
recently, the LARK kernel [1] was introduced which exploits
the geodesic distance based on estimated gradients:

Kij = exp{−(xi − xj)TCij(xi − xj)}, (5)

in which Cij is a local covariance matrix of the pixel gradients
computed from the given data. The gradient is computed from
the noisy measurements yj in a patch around xi. Robustness
to noise and perturbations of the data is an important advan-
tage of the LARK similarity metric. In general, all of these
restoration algorithms are based on the same framework in
which some data-adaptive weights are assigned to each pixel
contributing to the filtering. The matrix-vector multiplication
form of the denoising filter where ẑ and W denote the filtered
signal and the matrix of filter weights, respectively, is as fol-
lows:

ẑ =

⎡⎢⎢⎢⎣
wT

1

wT
2
...

wT
n

⎤⎥⎥⎥⎦ y = Wy, (6)

This filter is given by the weights defined by any one of the
kernels discussed above, where each row of the filter W can
be expressed as:

wj =
1∑n

i=1 Kij
[K1j ,K2j, . . . ,Knj]

T . (7)



W is a positive row-stochastic matrix (every row sums up
to one). This matrix is not generally symmetric, though it has
real, positive eigenvalues [4]. The Perron-Frobenius theory
describes the spectral characteristics of this matrix. In partic-
ular, the eigenvalues of W satisfy 0 ≤ λi ≤ 1; the largest
one is uniquely equal to one, (λ1 = 1) while the correspond-
ing eigenvector is v1 = 1√

n
[1, 1, ..., 1]T . The last property

implies that a flat image stays unchanged after filtering by
W. Although W is not a symmetric matrix in general, it
can be closely approximated with a symmetric positive def-
inite matrix [4]. The symmetrized W should also stay row-
stochastic, which means we get a symmetric positive definite
matrix which is doubly (i.e., row- and column-) stochastic.
The symmetric W enables us to do the following analysis.
The spectrum of W specifies the effect of the filter on the
noisy signal. Its eigen-decomposition can be written as:

W = VSVT , (8)

where S = diag[λ1, ..., λn] contains the eigenvalues in de-
creasing order 0 ≤ λn ≤ ... < λ1 = 1, and V is an orthog-
onal matrix V = [v1, ..., vn] containing the respective eigen-
vectors of W in its columns.

The matrix W is in general a function of the given data
vector y; however, computing W from y usually involves a
pre-filtering stage in which a pilot estimate of the latent im-
age is computed. This pre-denoising guides the filter to de-
pend more closely on the signal z and less on the noise [4].

2. ITERATIVE DATA-DEPENDENT FILTERING

It is possible to improve the performance of a given filter by
applying it multiple times. More explicitly, going back to
the definition of the kernels, although the kernels are adap-
tive to different parts of image, still there is a need to take
into account the signal-to-noise (SNR) ratio of those parts. In
other words, depending on the SNR, over- or under- denois-
ing might happen in different parts of the image. The iterative
framework is given by:

ẑk = Wky, (9)

where each application of W can be interpreted as one step of
anisotropic diffusion [4, 5] with the filter W. Diffusion filter-
ing gradually removes noise in each iteration, but also takes
away latent details from the underlying signal. Choosing a
small iteration number k preserves the underlying structure,
but also does little denoising. On the other hand, a large k
tends to over-smooth and remove noise and high frequency
details at the same time. The optimal stopping time k̂ can be
expressed as:

k̂ = argmin
k

MSEk, (10)

where MSEk is the mean-squared error of the filtering model
(9). In the following, we discuss estimation of the MSEk in
the context of data-dependent filtering. First, we aim to find
the best iteration number for each patch and then, we extend
this denoising approach to the whole image.

3. ESTIMATION OF RISK

To estimate the MSEk for each patch, we propose a plug-in
risk estimator. This method is biased and works based on
a“pilot” estimate of the latent image. We also derive Stein’s
unbiased risk estimator (SURE) [6] for the data dependent
filtering scheme and compare it with the proposed one. While
[7] also uses SURE estimator to optimize the NLM kernel
parameters, we illustrate that (1) the plug-in estimator can be
superior for the same task, and (2) the adaptation approach
can be extend to be spatially varying.

3.1. Plug-in Risk Estimator

The filter in the iterative model (9) can be decomposed as:

Wk = VSkVT , (11)

in which Sk = diag[λk
1 , ..., λ

k
n]. It is important to note that

despite the earlier interpretation of k as a discrete step, the
spectral decomposition of Wk makes it clear that in practice,
k can be any positive real number. In actual implementation,
the filter can be applied with modified eigenvalues regardless
of the value of k. Considering the eigen-decomposition, the
image z can be written in the column space of V as b = VT z,
where b = [b1, b2, ..., bn]

T , and {b2i } denote the signal energy
distribution over all the modes. As shown in [4] the iterative
estimator ẑk = Wky has the following MSE:

MSEk =

n∑
i=1

(λk
i − 1)2b2i + σ2λ2k

i . (12)

This closed form of MSE is expressed succinctly in terms of
the filter, the latent signal and the additive noise variance.
In [8] we proposed an estimation of {b i} in which the la-
tent image z was estimated by an optimal“pre-processing”
stage. Here we assume that the noisy image is “pre-filtered”
(̃z = Wy) and then the components of the filter and the la-
tent image are estimated. As such, the proposed plug-in MSE
estimate can be expressed as:

M̂SEk =
n∑

i=1

(λk
i − 1)2b̃2i + σ2λ2k

i , (13)

where b̃ = VT z̃ is the estimated signal energy distribution
from the pre-filtered image z̃. Next, for the sake of compari-
son, the SURE estimator is discussed.

3.2. SURE Estimator

Another way to estimate MSEk is to use the SURE estimator
[6]. Denoting F (y) as an estimate of the latent signal z, for
estimating E(‖y − F (y)‖2) from y, the SURE risk estimator
is:

SURE(y) = ‖y − F (y)‖2 + 2σ2div(F (y))− nσ2, (14)

where div(F (y)) ≡ ∑
i
∂Fi(y)
∂yi

. Under the additive Gaussian
noise assumption, this random variable is an unbiased esti-
mate of the MSE. More specifically, the SURE for a filter of
the type (9) is given by:



SURE(y) = ‖(I − Wk)y‖2 + 2σ2tr(Wk)− nσ2. (15)

Considering the eigen-decomposition of the filter, replacing y
with Vb̌ (where b̌ is the energy distribution of the noisy signal
over the eigenvectors) after some simplifications, we have

SURE(y) =
n∑

i=1

(λk
i − 1)2b̌2i + 2σ2λk

i − σ2. (16)

It is easy to show that the expected value of SURE(y) will re-
place b̌2i with b2i +σ2, which after simplification indeed yields
(12).

We have discussed two MSE estimators in (13) and (16)
for finding the optimal stopping time k̂ and then the best esti-

mate of each patch as ẑ = W
̂ky. The next step is to extend the

denoising procedure to the whole image. To avoid the block-
iness effect at the patch bounderies, we overlap the patches,
so there should be an aggregation strategy. In the following,
after discussing the aggregation step, we aim to compare per-
formances of the two MSE estimators for the existing kernels.

4. AGGREGATION STRATEGY

So far, we have found the best estimate for the iteration num-
ber in each patch. Our optimized per-patch filtering can be
expressed as:

ẑj = W
̂kj yj , (17)

in which yj and ẑj are the j-th noisy and denoised patch,

respectively, and k̂j denotes the ideal stopping time for this
patch. As a result of the overlapped patches, multiple esti-
mates are obtained for each pixel. What we have now is a vec-
tor of measurements of the pixel z l which need to be weighted
and form the final denoised pixel ẑ l. Fig.1 illustrates an ex-
ample of three overlapping patches and the computed multi-
ple estimates in each of them. The aggregation method in [9]
combines the multiple estimates in an LMMSE (liner mini-
mum mean-squared-error) scheme that takes into account the
relative confidence in each estimate as measured by the in-
verse of the estimator error variance. The error covariance of
our proposed estimator is approximated as:

Ce = cov(ẑ − z) = cov(W
̂kj e) = σ2W2̂kj , (18)

Fig. 1: Overlapping patches give multiple estimates for each
pixel. Example of three overlapping patches ẑ1, ẑ2 and ẑ3
give three estimates ẑi1, ẑi2 and ẑi3 for computing the final
denoised pixel ẑl.

We denote ẑij as the denoised estimate for the i-th pixel in
the j-th patch ẑj . Then, the variance of the error associated
with the i-th pixel estimate in the j-th patch, vij , is given by
the i-th diagonal element of Ce. Inverse of the estimator error
variances {vij}, are the weights we use for the aggregation:

ẑl =
N∑
j=1

ẑij
vij

N∑
j=1

1
vij

, (19)

where N is the number of available estimates for the l-th
pixel. Now we can implement the optimized iteration number
per patch which adaptively minimizes MSE of the filtering in
each block of the image.

5. SIMULATION RESULTS

The performance of our denoising method is evaluated on
four 512×512 images: Peppers, Lena, Barbara, and Boat.
In our simulations the patch size is set as 21×21 and in a
Monte-Carlo simulation, 50 independent noise realizations
were used. We varied k from 0 to 5 with 0.05 as the step size.
The kernels in [2], [3] and [1] are used in our simulations. The
control parameters in the Bilateral kernel are hx = 2

√
2 and

hy = 20
√
2σ, the hy in the NLM filter is fixed as 0.32σ and

the smoothing parameter in LARK [1] is specified as 0.25σ.
Table 1 shows MSE results of the standard kernel (fixed

parameters in BL, NLM, or LARK), SURE and the plug-in
estimators. It can be seen that for Bilateral and Non-local
means kernels, the plug-in estimator shows consistent im-
provement over both the standard estimate using the kernel,
and the kernel iterated using k̂ from SURE. For the LARK

Table 1: MSE values for the application of various filters with
fixed parameters (1st column); spatially adaptive iterations
optimized with SURE estimator of section 3.2 (2nd column),
and spatially adaptive iterations optimized with the plug-in
risk estimator of section 3.1 (3rd column). (σ 2 = 100)

Bilateral Kernel
Images Standard SURE Plug-in Improvement
Peppers 27.85 30.52 24.80 3.05

Lena 28.89 30.42 24.27 4.62
Barbara 47.62 46.66 42.80 4.88

Boat 40.69 39.57 36.26 4.43
Non-local Means Kernel

Images Standard SURE Plug-in Improvement
Peppers 26.11 27.18 23.69 2.42

Lena 24.52 24.99 21.62 2.90
Barbara 31.82 30.28 27.95 3.87

Boat 34.94 34.36 32.46 2.50
LARK Kernel

Images Standard SURE Plug-in Improvement
Peppers 25.21 22.81 23.02 2.40

Lena 21.74 18.99 19.43 2.75
Barbara 52.41 32.16 38.76 20.25

Boat 33.10 30.24 31.62 2.86



Table 2: Performance of the plug-in estimator for the NLM
kernel with different parameters (σ2 = 100).

h2
y = 5 h2

y = 15
Images Standard Plug-in Standard Plug-in
Peppers 33.86 23.99 27.08 23.84

Lena 32.56 21.94 25.81 21.79
Barbara 42.43 28.61 33.85 28.20

Boat 41.71 32.81 39.02 32.91

kernel, the SURE method outperforms the plug-in estimator.
Apparently, this performance difference occurs most notice-
ably for highly textured images such as Barbara. Overall, we
can conclude that the plug-in estimator better fits “aggressive”
kernel bases (kernels with eigenvalues {λi} close to 0) such
as NLM and Bilateral.

(a) (b) (c)

Fig. 2: NLM denoising of Lena corrupted by noise with
σ2 = 25: (a) Noisy, (b) Standard, MSE=11.91, (c) Plug-in,
MSE=10.03

The effect of the parameter tuning is studied in Table 2.
In this set of simulations, NLM kernel weights with differ-
ent control parameter, hy , were computed for each image and
then fed to the plug-in estimator. As can be seen, across a
large range of hy , performance of the proposed estimator is
quite stable and shows improvement over the standard kernel.
From these results, we can see that it is possible to improve
the performance of the standard kernel with an arbitrary pa-
rameter by employing the proper number of iteration with the
proposed MSE estimator.

Fig.2 demonstrates the denoising results of Lena image
obtained by the NLM kernel and the plug-in estimator. We
can see that the proposed method provides better visual qual-
ity. Fig. 3 shows performance of the SURE estimator for the

(a) (b) (c)

Fig. 3: LARK denoising of Barbara corrupted by noise with
σ2 = 100: (a) Noisy, (b) Standard, MSE=52.34, (c) SURE,
MSE=32.12

Barbara image. As it can be seen, both texture and smooth
features of the image are preserved better than the LARK ker-
nel.

6. CONCLUSION
We hav presented a framework for denoising by using data-
dependent kernels. More specifically, by exploiting the best
iteration number which minimizes MSE in each patch, the
problems of performance of the previous kernel based meth-
ods in tuning parameters is mitigated and transformed to tun-
ing a single parameter (k), which we achieve by estimating
the risk patch-wise. The experimental results demonstrate
that the proposed approach improves the kernel based meth-
ods performance in terms of both MSE and subjective visual
quality.
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