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Abstract

We address the inverse problem of shape reconstruction of
a convex object from noisy measurements of the areas of
its silhouettes (shadows) in several directions. Such data
represent values of the brightness function of the object,
which in the 2-D case is simply a phase-shifted version of
its diameter (width) function. In the past, we have proposed
non-linear and linear algorithms for reconstructing ann-
dimensional convex body using finitely many noisy mea-
surements of its brightness function. Here we carry out a
statistical uncertainty analysis of the problem for the 2-D
case by generating asymptotic confidence regions around
the underlying shape. Confidence regions conveniently dis-
play the effect of experimental parameters like eccentric-
ity, scale, noise power, viewing direction set, on the quality
of the estimated shape. We also present a statistical per-
formance analysis of our proposed linear algorithm using
global confidence regions.

1. Introduction
The “shape from silhouettes” technique has been exten-
sively used in computer vision to reconstruct 3-D objects
using multiple 2-D shadows; see [1] and [8]. However
we consider a much weaker form of data where each mea-
surement provides only the area of the silhouette and abso-
lutely no information about its shape or location. In gen-
eral the problem we consider is that of reconstructing an
n-dimensional object using measurements of its brightness
function, that is, the function giving the(n−1)-dimensional
volume of its orthogonal projections (i.e., silhouettes) on
hyperplanes. The problem is important in geometric tomog-
raphy, the area of mathematics concerning the retrieval of
information about a geometric object from data about its
sections or projections (see [2]).

Consider an imaging scenario using a single pixel CCD
camera (for example, a photodiode element) or an object in
the far field of a camera which is so severely ill-resolved
that its entire image falls on a single pixel at any given time
(e.g., the lightcurves obtained in asteroid imaging as in [5]).
In such cases the intensity of the pixel is proportional to a

brightness function value of the object. For the 2-D case, an
application arises in robotics when the diameter (width) of
a shape is measured using a parallel-jaw gripper as in [13].
Brightness functions can also be used for target reconstruc-
tion using Doppler-resolved laser radar data (see [9]).

In this paper, we study the uncertainty associated with
estimating a shape from its noisy brightness function val-
ues. We formally introduce the problem and the Extended
Gaussian Image (EGI) parameterization in Section 2. Sec-
tion 3 presents a novel statistically efficient way to obtain
cartesian coordinates of a 2-D shape from its corrupted EGI
values. In Section 4 we develop confidence regions around
the underlying shape using the technique described by Ye,
et al in [14].

The maximum likelihood estimator (MLE), a statisti-
cally optimal algorithm, involves constrained non-linear op-
timization and thus has little practical use. Therefore in
[4] and [11], we proposed a linear estimation algorithm,
“Algorithm BrightLSQ,” for reconstructing a shape using
noisy brightness function values. However we incur a per-
formance loss by employing this algorithm (instead of the
MLE) and in Section 5 we use confidence regions in a sta-
tistical performance analysis of the linear algorithm. This
will enable us to assess the quality of the shape estimates
obtained from the linear algorithm and to compare its per-
formance to that of the optimal one.

2. Shape from area of silhouettes
The brightness functionb(v) of a suitably smooth convex
body for a given viewing directionv (a unit vector) is given
by

b(v) =
1
2

∫

S

|uT v|f(u) du, (1)

wheref(u) is the extended Gaussian image (EGI) of the
body. Integration is over the unit sphereS (in two dimen-
sions, the unit circle). The quantityf(u) is actually just
the reciprocal of the curvature at the point on the bound-
ary whereu is the outer unit normal vector. (For more de-
tails, see [3], [4], and [6].) A convex body is determined
uniquely, up to translation, by its EGI. For anN -sided poly-
gon, the EGI can be simply represented by theN vectors



akuk, each along the outer normaluk to an edge of the
polygon and with magnitude equal to the lengthak of that
edge. Ifuk = [cos θk, sin θk]T andv = [cos α, sin α]T , the
brightness function of this polygon, by (1), is

b(α) =
1
2

N∑

k=1

ak| cos(α− θk)|. (2)

The brightness function in the 2-D case simply equals the
length of the shadow and the only missing information, pro-
vided by the silhouette, is the position of the shadow. Never-
theless, this is enough to cause substantial non-uniqueness
problems. Whereas a planar convex body is uniquely deter-
mined by all its silhouettes, there can be infinitely many
convex bodies with the same (exact) brightness function
measurements from all viewing directions. However, Alek-
sandrov’s projection theorem [2, Theorem 3.3.6] says that
any two origin-symmetric convex bodies with the same
brightness functions must be equal. (Anorigin-symmetric
body is one equal to its reflection in the origin.) By seek-
ing only to reconstruct origin-symmetric convex bodies, we
therefore avoid this non-uniqueness issue.

The problem is to estimate the shape using corrupted
brightness function values measured from multiple viewing
directions. The noise throughout the discussion is assumed
to be Gaussian white noise with varianceσ2 and the prob-
lem is solved in two steps. In Step 1, the shape parame-
tersa1, . . . , aN andθ1, . . . , θN (i.e., the EGI of an approx-
imating polygon) are estimated from the noisy brightness
function values, and in Step 2 these estimated parameters
are used to obtain a more direct cartesian coordinate repre-
sentation of the shape. We have proposed non-linear and
linear algorithms for Step 1 in [3] and [4]; the next section
presents a systematic analysis of Step 2 from the estimation
perspective.

3. Shape from EGI
The simplest way to obtain shape from EGI is to arrange the
vectors in counterclockwise order, rotate each vector coun-
terclockwise byπ/2, and place them so that the tail of each
vector lies at the head of the preceding vector (see Fig. 1
and [10]). Then, if the EGI is{a1, . . . , aN , θ1, . . . , θN},
the vertices of the reconstructed polygon are

zt =
t∑

k=1

akei(θk+π/2), (3)

wherezt = xt +iyt is the complex number representing the
vertexzt = (xt, yt), t = 1, . . . , N .

Unfortunately this simple approach is not suitable for our
statistical analysis. The reason is that since the EGI is esti-
mated using noisy measurements of the brightness function,
it too will be corrupted. In this case (3) is inappropriate,

because it does not determine the vertices independently;
rather, the position of each vertex depends on that of the
preceding vertices. This causes the error in vertex position
to accumulate as the vertex indext increases fromt = 1
to N/2. (After t = N/2 it decreases due to the symmetry
assumption; for more details see [11] and [12]). The main
goal of this section is to overcome this problem.
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Figure 1: Cartesian shape representation from EGI.

Thus our basic aim is estimatez = [z1, . . . , zN ]T so that
the error is evenly distributed among its components. From
(3) we have

zt − zt−1 = ate
i(θt+π/2), (4)

for t = 1, . . . , N , and hence the equation

Qz = r, (5)

where

Q =




−1 1 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · −1 1
1 0 0 · · · 0 −1




and

r =
[
a1e

i(θ1+π/2), . . . , aNei(θN+π/2)
]T

.

However, rankQ = N−1, so the solution forz in (5) is not
unique. To deal with this, we observe that we may fix the
centroid of the polygon at the point with complex number
form c by adding the constraint

1
N

N∑
t=1

zt = c. (6)

Whenc is the origin, this can be written in the formeT z =
0, wheree = [1, 1, . . . , 1]T . Appending this constraint to
(5) we obtain

Q̃z = r̃, (7)

whereQ̃ = [Q, e]T is (N + 1) × N with full rank N and
r̃ = [r, 0]T is (N + 1) × 1. Therefore we can solve (7)



uniquely using linear least squares optimization byz = Dr̃,
where

D = (Q̃T Q̃)−1Q̃T = [d1,d2, . . . ,dN ]T , (8)

say, with dT
t = [dt1, . . . , dt(N+1)]T for t = 1, . . . , N .

Since the last component ofr̃ is zero, this gives

zt = dT
t r̃ =

N∑

k=1

dtkakei(θk+π/2). (9)

Comparing (9) with (3), we see thatzt now depends on
all the EGI vectors. We can show (see [11]) that this method
distributes error more evenly.

4. Confidence Region Analysis
Asymptotic confidence regions are used to analyze and vi-
sualize the performance of 2-D parametric shape estimators.
Assuming a maximum likelihood estimator (MLE) operat-
ing in the asymptotic regime, the Cramér-Rao lower bound
(CRLB) for the shape parameters can be used to define a
confidence region around the true boundary of the shape. In
our analysis below, we follow [14]. Note that the MLE is
asymptotically normal, unbiased, and asymptotically attains
the CRLB; see [7, pp. 164–167].

Consider a 2-D shape parameterizations(t;Ψ), giving
the cartesian coordinates of the point on the boundary of
the object at the point indexed byt ∈ [0, T ]. HereΨ ∈ <P

is theP -dimensional parameter vector. At each point along
the boundary (i.e., for allt ∈ [0, T ]) we determine a local
confidence regionUβ(t) ⊂ <2 centered at the true point
s(t;Ψ). The size of the local confidence region depends on
the chosen local confidence levelη ∈ [0, 1]; β is calculated
such thatPr{X ≤ β2 = η}, whereX is chi-square with
two degrees of freedom. Then, ifŝMLE(t) is estimated us-
ing an MLE operating in the asymptotic regime, we have

Pr{ŝMLE(t) ∈ Uβ(t)} = η. (10)

The local confidence regionUβ(t) for s(t) is given by

Uβ(t) = {x ∈ <2 : (x− s(t))T Cs(t)−1(x− s(t)) ≤ β2},
(11)

where

Cs(t) = ∇Ψs(t;Ψ)CΨ [∇Ψs(t;Ψ)]T (12)

is the2 × 2 covariance matrix ofs(t;Ψ) depending on the
CRLB CΨ for the estimated parameters. A global confi-
dence region can now be obtained by movingUβ(t) along
the boundary:

Uβ =
⋃

t∈[0,T ]

Uβ(t). (13)

The asymptotic global confidence region defines an uncer-
tainty band around the entire boundary of the true shape.

For anN -sided polygon we haveΨ ∈ <2N . Thens(t) is
defined using (9) andCΨ is calculated following the proce-
dure outlined in [12]. The local confidence region for each
vertex (t = 1, . . . , N ) is an ellipse, calculated using (11)
and (12).

Fig. 2 shows the local confidence ellipses for an origin-
symmetric, regular polygon withN = 12 sides. The bright-
ness function was measured from 36 equally spaced view-
ing angles in the range[0, π], with noise strengthσ = 0.1
and local confidence levelη = 0.73 for all the ellipses. Note
that the local confidence regions for all the vertices are of
the same size since the underlying polygon is equilateral
and equiangular. (This is not true if (3) is used instead of
(9); see [11]. This is due to the error accumulation effect
mentioned in Section 3.) The global confidence regions can
be similarly obtained from (13) by allowing the parametert
to take continuous values in the range[0, N ]; see [11].

Figure 2: Confidence re-
gions for a regular poly-
gon.

Figure 3: Confidence re-
gions for an affinely regu-
lar polygon.

Fig. 3 shows the local confidence regions for an affinely
regular polygon with the same experimental parameters as
above. The polygon is stretched along the vertical direction
and therefore a uniform viewing set provides more infor-
mation along the horizontal direction thereby resulting in
unequally sized ellipses.

5. Experimental Results and Perfor-
mance Analysis

Fig. 4 illustrates true (solid line) and estimated (dotted line)
polygons obtained using our linear algorithm (specifically,
Algorithm BrightLSQ from [4] with a post-processing step
called decimation, described in [11], that reduces to a pre-
scribed numberN the edges of the output polygon). The
experiment was performed using the same underlying poly-
gon, noise power and viewing set as used in Fig. 2. The lo-
cal and global confidence regions corresponding to a local
confidence levelη = 0.8 are also shown for better illustra-
tion.



A performance analysis of an algorithm can be carried
out by comparing it with the optimal algorithm via the local
and global confidence regions. Note that the MLE operating
in the asymptotic regime is in fact the statistically optimal
algorithm since it is asymptotically unbiased and attains the
CRLB. Recall that the confidence regions developed in Sec-
tion 4 are for the MLE operating in asymptotic regime. In
this section, we analyze the performance of our proposed
linear algorithm using global confidence regions (for a per-
formance analysis using local confidence regions see [11]).

Let ŝ be the estimated shape boundary resulting from a
given algorithm and define the corresponding error proba-
bility e by

e = 1− Pr{ŝ ∈ Uβ} (14)

Thuse is the probability that the estimated boundaryŝ does
not lie completely inside the global confidence regionUβ .
Let ŝMLE and ŝalg be the estimated shape boundary ob-
tained using the MLE and the linear algorithm respectively.

Figure 4: True and es-
timated polygons with
global confidence region.
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Figure 5: Performance
evaluation using global
confidence region.

Fig. 5 compares the performance of our linear algorithm
with the MLE for the same polygon and parameters used
in Fig. 4. The probabilitieseMLE andealg were calculated
using 1000 instances of̂sMLE and ŝalg respectively. To
generatêsMLE samples, we start by drawing EGI samples
from the normal distributionN(Ψ,CΨ) whereCΨ corre-
sponds to the CRLB used in (12). TheŝMLE samples can
now be obtained from the EGI samples using (9). Theŝalg

samples are obtained using Monte-Carlo simulations of our
linear algorithm. As observed in Fig. 5, the performance of
our linear estimator is close to the optimal MLE estimator.

6. Conclusions and Further Work
An efficient method for estimating a shape from its noisy
EGI was proposed and using it we successfully recon-
structed the confidence regions for the problem of shape re-
construction from brightness functions. However, the prob-
lem of reconstructing a 3-D shape from its noisy EGI is a
very hard problem that has not yet been systematically stud-
ied. This forms a challenging direction of future research.

It will be also interesting to study shape from silhouettes
and shape from support functions using confidence region
analysis.
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