Unbiased estimates for linear regression via volume sampling

Michał Dereziński Manfred K. Warmuth

Linear regression

\[L(w) = \sum_{i=1}^{n} (x_i^T w - y_i)^2 \]

\[w^* = \text{argmin}_w L(w) \]

Subsampling for linear regression

Given: \(n \) points \(x_i \in \mathbb{R}^d \) with hidden labels \(y_i \in \mathbb{R} \)

Goal: Minimize loss \(L(w) = \sum (x_i^T w - y_i)^2 \) over all \(n \) points

Select \(S = \{4, 6, 9\} \)

Receive \(y_1, y_6, y_9 \)

Simple strategy: Solve the subproblem, \(w^*(S) = X^S y^S \)

Volume sampling

\[S \subseteq \{1...n\} \text{ chosen w.p.} \]

\[\sim \text{ squared volume of parallelepiped} \]

spanned by the \(\{x_i : i \in S\} \)

Distribution over all \(d \)-element subsets \(S \):

\[P(S) = \frac{\det(X_S X_S^T)}{Z} \]

Normalization factor obtained via Cauchy-Binet formula:

\[Z = \sum_{|S|=d} \det(X_S X_S^T) = \det(X X^T) \]

Unbiased estimator for pseudo-inverse \(X^+ \)

Key trick: To each subset \(S \) assign a formula \(F(S) \) at

\[F(S) = \sum_{i \in S} P(S \mid S_i) F(S_{-i}) \]

Then:

\[\mathbb{E}_S [F(S)] = F(\{1...n\}) \]

Expectation formulas for \((X_S)^+ \):

1. \(\mathbb{E}[X_S]^+] = X^+ \) (unbiasedness)
2. \(\mathbb{E}[X_S X_S^T]^{-1} = \frac{n-d}{n} \frac{(X X^T)^{-1}}{(X^T X)^{-1}} \) (variance bound)

Corollary: \(\mathbb{E}[w^*(S)] = \mathbb{E}[(X_S)^+ y] = X^+ y = w^* \)

Averaging unbiased estimators

Let \(\bar{y}(S) = X^T w^*(S) \). If \(w^*(S) \) is unbiased \(\mathbb{E}[w^*(S)] = w^* \), then:

\[\mathbb{E}[L(w^*(S))] \leq (1+c) L(w^*) \]

Take average of \(k \) i.i.d. samples of size \(s \): \(\bar{w} = \frac{1}{k} \sum_{s \in S} \bar{y}(S) \)

\[\mathbb{E}[L(\bar{w}(S))] \leq \left(1 + \frac{c}{\epsilon}\right) L(w^*) \]

With size \(d \) volume sampling, we need \(d^2/\epsilon \) labels. Is \(d/\epsilon \) possible?

Open: Is there unbiased estimator with \(s = O(d) \) and \(c = O(1) \)?