A trivial problem, that is hard for any \textit{kernelizable algorithm}

Random data matrix, labeled by one of the features

Train on subset of rows
- labeled with some target column
- loss averaged over all \(n \) examples

Solution sparse & linear: unit vector \(e_i \) picks out \(i \)th feature
Hardness for GD with 2-norm regularization

Provably hard for any algorithm predicting with \(\hat{y} = \sigma(w \cdot x) \), where
- \(w \) = linear combination of instances
- square, logistic, hinge loss
- *any embedding* of the instances
Conjecture

Problem remains **hard** for any **deep neural net** trained with Gradient Descent + 2-norm regularization

Adding **hidden layers** does not help
Changing **transfer function** does not help
Dropout does not help

Only experimental evidence

1-norm regularization works fine