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Distributed Newton’s method

Task: Minimization of a convex loss:
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L(w)Z - E li(w'x;) + §HWH2 for w € R%.
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Goal: Find a good descent direction: w = w — p
Newton’s method: use both Hessian and gradient information,

p=H'g, where H=V%(w), g=VL(w).
Distributed Newton: Avoid constructing the full Hessian by replacing

it with local approximations computed on separate machines:

p: = | VQZt(W) }_1 VL(w) fort=1,....,m,
—— ——
local Hessian H; global gradient g

where £ is based on a random sample of data,
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L(w)Z E Zbi&-(wai) + §HWH2, where b; ~ Bernoulli(k/n).
i=1
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Question: How to combine local Newton estimates p1, ..., Py ?

Problem: Inversion bias

Standard averaging leads to biased estimates:

1 = . .
lim — Z P: = P (m is the number of machines)

For large m, adding more machines will not improve the accuracy

The reason for this is a general phenomenon, which we call inversion bias:
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E[H '] #H!,  eventhough E[H|=H.

Other examples of inversion bias

Consider a data covariance matrix: ¥ = £ > | x;x].

In uncertainty quantification we wish to estimate:

e the trace of X1,

e a subset of entries of X1,

Again, we encounter inversion bias when averaging estimates.

Determinantal averaging

Goal: Estimate a linear function of inverse Hessian, F/(H™!)
Given: m independent local estimates F'(H,), ..., F'(H,,)
Newton estimates: F(H; ') = H; 'g = p;, where g is the gradient.

Strategy: Weighted average of the estimates,
J > ey e (Hy )
2 t—1 Ot

Uniform averaging (a; = <) suffers from inversion bias: b, A FH™)

Determinantal averaging: use carefully-chosen non-uniform weights

a; = det(Hy) = no inversion bias!
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Asymptotically consistent inverse estimator

Determinantal averaging is asymptotically consistent:

S det(H,) F(H; )
23511 det(ﬁt)

= F(H™).

lim
m—r00

Adding more estimates always improves the accuracy

Key underlying expectation formula:

E[det(H)H ]
E[det(H)]
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Main result: Distributed Newton without inversion bias

Theorem
If expected local sample size satisfies k > Cnp~2ud? log3§ then

' D _t—1 0t Pt < Lm . H p HH with probability > 1 — ¢,
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where p = & max; 5;/(WTX7;)||XZ'H[2V2£(W)]_1 and a; = det(H,).

Proof techniques

Key lemma

If H = > .. sil;, where s; are independent random variables and Z;
are fixed square rank-1 matrices, then

(a) Ea[det<ﬁ)} :det(E[IA{])J and (b) Ea[adj(ﬁ)} :adj(E[IA{])J.

determinant commutes with expectation adjugate commutes with expectation

Adjugate matrix:  adj(A) = det(A) A~ for any invertible A

Main result relies on showing an improved matrix concentration inequality:

(1 _ L) H ! < > e, det(Hy) Hy ' < ( U ) !

vm PO det(ﬁt) bt N

Corollary
A convergence result for Distributed Newton:

< maX{L\/EHW — W’
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Z:’il %t Dt and w* = argmin L(w)
2211 Ay w

L, K, Amin - Lipschitz constant, condition number and smallest eigenvalue of H.
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for w=w —

Experiment

Newton step estimation error versus number of machines m
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