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Distributed Newton’s method
Task: Minimization of a convex loss:

L(w)
def
=

1

n

n∑
i=1

`i(w
>xi) +

λ

2
‖w‖2 for w ∈ Rd.

Goal: Find a good descent direction: w̃ = w − p
Newton’s method: use both Hessian and gradient information,

p = H−1g, where H = ∇2L(w), g = ∇L(w).

Distributed Newton: Avoid constructing the full Hessian by replacing
it with local approximations computed on separate machines:

p̂t =
[
∇2L̂t(w)︸ ︷︷ ︸

local Hessian Ĥt

]−1 ∇L(w)︸ ︷︷ ︸
global gradient g

for t = 1, ...,m,

where L̂ is based on a random sample of data,

L̂(w)
def
=

1

k

n∑
i=1

bi`i(w
>xi) +

λ

2
‖w‖2, where bi ∼ Bernoulli

(
k/n

)
.

Question: How to combine local Newton estimates p̂1, ..., p̂m?

Problem: Inversion bias
Standard averaging leads to biased estimates:

lim
m→∞

1

m

m∑
t=1

p̂t 6= p (m is the number of machines)

For large m, adding more machines will not improve the accuracy

The reason for this is a general phenomenon, which we call inversion bias:

E
[
Ĥ−1

]
6= H−1, even though E

[
Ĥ
]
= H.

Other examples of inversion bias
Consider a data covariance matrix: Σ = 1

n

∑n
i=1 xix

>
i .

In uncertainty quantification we wish to estimate:

• the trace of Σ−1,
• a subset of entries of Σ−1.

Again, we encounter inversion bias when averaging estimates.

Determinantal averaging
Goal: Estimate a linear function of inverse Hessian, F (H−1)
Given: m independent local estimates F (Ĥ1), ..., F (Ĥm)

Newton estimates: F (Ĥ−1t ) = Ĥ−1t g = p̂t, where g is the gradient.

Strategy: Weighted average of the estimates,

F̂m =

∑m
t=1 atF (Ĥ

−1
t )∑m

t=1 at

Uniform averaging (at = 1
n ) suffers from inversion bias: F̂m 6→ F (H−1)

Determinantal averaging: use carefully-chosen non-uniform weights
at = det(Ĥt) ⇒ no inversion bias!

Asymptotically consistent inverse estimator
Determinantal averaging is asymptotically consistent:

lim
m→∞

∑m
t=1 det(Ĥt)F (Ĥ

−1
t )∑m

t=1 det(Ĥt)
= F (H−1).

Adding more estimates always improves the accuracy

Key underlying expectation formula:

E
[
det(Ĥ)Ĥ−1

]
E
[
det(Ĥ)

] = H−1.

Main result: Distributed Newton without inversion bias

Theorem
If expected local sample size satisfies k ≥ Cη−2µd2 log3 dδ then

∥∥∥∥ ∑m
t=1 at p̂t∑m
t=1 at
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H
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m
·
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H

with probability ≥ 1− δ,

where µ = 1
d maxi `

′′
i (w

>xi)‖xi‖2[∇2L(w)]−1 and at = det(Ĥt).

Corollary
A convergence result for Distributed Newton:∥∥w̃ −w∗

∥∥ ≤ max
{ η√

m

√
κ
∥∥w −w∗

∥∥, 2L

λmin

∥∥w −w∗
∥∥2}

for w̃ = w −
∑m
t=1 at p̂t∑m
t=1 at

and w∗ = argmin
w

L(w).

L, κ, λmin - Lipschitz constant, condition number and smallest eigenvalue of H.

Proof techniques
Key lemma
If Ĥ =

∑
i siZi, where si are independent random variables and Zi

are fixed square rank-1 matrices, then

(a) E
[
det(Ĥ)

]
= det

(
E[Ĥ]

)︸ ︷︷ ︸
determinant commutes with expectation

and (b) E
[
adj(Ĥ)

]
= adj

(
E[Ĥ]

)
.︸ ︷︷ ︸

adjugate commutes with expectation

Adjugate matrix: adj(A) = det(A)A−1 for any invertible A

Main result relies on showing an improved matrix concentration inequality:
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t=1 det(Ĥt)
�
(
1 +

η√
m

)
·H−1

Experiment
Newton step estimation error versus number of machines m


