
Twizzer: The Design and Implementation of a NVM Aware OS

Matt Bryson, Daniel Bittman, Darrell Long, Ethan Miller
University of California, Santa Cruz

1 Introduction

With non-volatile byte addressable memory on the hori-
zon, it is time to consider how an operating system must
be designed to work with non-volatile memory (NVM)
on the memory bus. With this change in the memory hi-
erarchy in mind, we have created a design for a future
NVM aware OS, Twizzler. This design is centered around
the use of objects to store both data and code, and rep-
resenting these objects with 128 bit global unique iden-
tifiers (GUIDs). Objects can reference each other easily
using pointers with an id:offset model, allowing for
pointers to refer to other data objects without the need to
serialize or swizzle them when objects are written out.

Persistance drives the changes we have to make. Our
design uses a 128 bit address space to ensure we are not
limited by the creation of objects since this results in a
3.4×1038 addresses. It is important to have a large ad-
dress space for two reasons; one, to be able to track ob-
jects through the different layers of storage that are likely
to exist on this system, and secondly, to allow for objects
to be unique across machines, allowing new opportunities
in networking. Using the 128 bit GUIDs as pointers is
impractical so we have chosen to give objects local IDs
that are resolved to GUIDs using a Foreign Object Table.
Local IDs will be much smaller, with both the object ID
and the offset fitting in 64 bits. This process is described
in further detail in Section 2.

We have decided to redesign the operating system from
the ground up to not only support the data model, but
to more truly embody the principles of the Opal, Mul-
tics, and exokernel projects [3, 2, 4]. Because the kernel
will have minimal responsibilities, most operating system
functionality will be implemented in user space libraries,
thereby reducing the complexity of the kernel and “get-
ting it out of the way” of applications as they operate on
data.

Data
Foreign 

Object Table

Figure 1: Object Layout

Flags GUID or Name Resolver Other data

Flags GUID or Name Resolver Other data

Flags GUID or Name Resolver Other data

Local ID

Local ID

Local ID

Figure 2: Foreign Object Table

2 Data Model

Our 128 bit GUIDs are advantageous because they allows
us to give each object a truly global, unique ID in a flat ad-
dress space. A pointer comprised of a global object ID and
an offset would be too large to fit inside a pointer without
increasing pointer sizes to much larger than they are today,
say a 128-bit or larger CPU. A 128 bit CPU would not be
practical due to the number of design changes required
and subsequent loss in performance. Instead, we choose
to give objects local IDs such that a pointer is comprised
of a local ID and offset, equaling 64-bits in total.

To translate local object IDs to GUIDs we use a For-
eign Object Table (FOT). Objects consist of their data and
an FOT, shown in Figure 1. The FOT stores the transla-
tion data of the object local IDs to GUIDs, and also stores
flags, the GUID of the object, the resolution function (de-
scribed in Section 3), and other data, such as permissions
data. This is shown in Figure 2. This allows resolution to
be flexible, and not to involve using the GUIDs as pointers
directly. This data model allows for cross object pointers
by resolving a GUID across several FOTs.

3 Design

We are breathing rare air. Rarely does the opportunity to
change two paradigms – one in operating systems and one
in networking – present itself. This opportunity comes
from new non-volatile memory (NVM) technologies that

1



will be byte addressable. While we could make an incre-
mental change to existing operating systems, we’ve de-
cided that we have the opportunity for more. We have
taken this opportunity to design a new operating system
with NVM support in mind using core designs from sys-
tems such as Opal and Multics. Our design resolves
around the core principle of all data being represented as
objects, each associated with a 128 bit global unique ID
(GUID). We choose the 128 bit identifier size to allow for
objects to be truly global, as this provides an address space
that is intractable to exhaust. Objects are (possibly large)
blobs of data that could contain code, data, or both. This
address space is large enough for frequent object creation
with low probability of collision.

An application refers to a collection of objects operat-
ing in some manner to attain a goal (for example, a key-
value store may be a collection of data objects and a code
object which provides an interface). Objects may have
pointers to data in any object (itself or others). Point-
ers are implemented as entry:offset, where entry
refers to an entry in a per-object table called the Foreign
Object Table and offset is the offset in the object for
which the pointer is referring to. Entries in the Foreign
Object Table have a GUID, options, a pointer to a resolver,
and a pointer to additional data, shown in figure 2. The job
of the resolver is to handle the situation where an object
referred to by a Foreign Object Table entry is not present
on the system. This design allows us to associate a signifi-
cant amount of additional semantic data with each pointer
in an object, providing extreme flexibility in data access.
Because each pointer is associated with a function to re-
solve a non-local object, we can imagine different cross-
network data access semantics being associated with each
pointer, allowing applications to unify the methods with
which they access data and push the details of data net-
worked data access to an easily selectable resolution pro-
tocol, thus vastly simplifying network data access from
the point of view of application developers.

4 Implementation, Questions, &
Future Work

To best implement our proposed operating system, several
changes should be made to the CPU. One of the most im-
portant changes would be to reintroduce segments to pro-
vide native hardware support for our addressing scheme.
Additionally, increasing the virtual address space from a
flat 48 bit address space to a 64 bit address space to al-
low for our local ID + offset pointer scheme to be im-
plemented easier on current hardware. Hardware support

for the FOT would allow for faster translation. We plan
to implement two versions of this system - one that works
around existing CPU limitations and one on RISC-V open
architecture [1], allowing us to make hardware changes in
either a physical or emulated environment.

With main memory persistent, rebooting, crashing, and
restarting take on new meanings. What booting or reboot-
ing even means in this context remains open - we see it
primarily as hardware initialization since memory is no
longer cleared. Additionally, returning to a safe state is
more difficult when state is preserved between power cy-
cles. It will be important to develop a process to return
both the operating system and applications to a clean state
in the event of failure.

5 Conclusion
There is still significant work to be done in implementing
an NVM aware operating system, but we believe that we
have created a roadmap for the future. We are working on
a design that is tailored not only for NVM, but to what we
believe the future of operating systems to be. Though our
changes will work on existing hardware, we believe our
suggestions for processor change to be useful to improve
the utility of NVM and better implement our NVM-aware
OS.

References
[1] K. Asanovi and D. A. Patterson. Instruc-

tion sets should be free: The case for risc-v.
Technical report, Technical report, University of
California at Berkeley, http://www. eecs. berke-
ley. edu/Pubs/TechRpts/2014/EECS-2014-146. pdf,
2014.

[2] J. S. Chase, H. M. Levy, M. J. Feeley, and E. D. La-
zowska. Sharing and protection in a single-address-
space operating system. ACM Transactions on Com-
puter Systems, 12(4):271–307, Nov. 1994.

[3] F. J. Corbat and V. A. Vyssotsky. Introduction and
overview of the Multics system. In Proceedings of the
November 30December 1, 1965, fall joint computer
conference, part I, pages 185–196. ACM, 1965.

[4] D. R. Engler, M. F. Kaashoek, and others. Exoker-
nel: An operating system architecture for application-
level resource management, volume 29. ACM, 1995.

2


