
Learning Database Content for Spoken Dialogue System Design

Joseph Polifroni and Marilyn Walker

The Department of Computer Science
University of Sheffield

Regent Court
Sheffield, S1 4DP

UNITED KINGDOM
j.polifroni@dcs.shef.ac.uk

�
m.a.walker@sheffield.ac.uk

Abstract
Spoken dialogue systems are common interfaces to backend data in information retrieval domains. As more data is made available
on the Web and IE technology matures, dialogue systems, whether they be speech- or text-based, will be more in demand to provide
user-friendly access to this data. However, dialogue systems must become both easier to configure, as well as more informative than the
traditional form-based systems that are currently available. We present techniques in this paper to address the issue of automating both
content selection for use in summary responses and in system initiative queries.

1. Introduction

One of the most common applications for spoken dialogue
systems is as an interface to structured databases, where
database entities are represented in terms of a set of at-
tributes and their values. For example, in the restaurant
domain, attributes for the restaurant entity include cuisine,
neighborhood, food quality, price and neighborhood (Po-
lifroni et al., 2003; Walker et al., 2004). To provide ac-
cess to such databases, many spoken dialogue systems are
configured to have an initial information-gathering phase,
where the values for certain attributes are elicited from the
user. The attributes (also referred to as ”constraints”), as
well as a default order of elicitation, are specified by a
system developer familiar with the domain. The goal of
the information gathering phase is to reduce the number of
database tuples to a subset of the data that can be easily de-
scribed. Any information-providing utterances by the sys-
tem are thus delayed until the system has elicited enough
constraints to query the database. Table 1 shows an ex-
ample of such a system, modelled after the strategy de-
scribed in (Levin et al., 2000). Note that user utterances
User1, User2, and User3 successively narrow the restau-
rant selections, until there are only two matching tuples in
the database.

Furthermore, as shown by utterance System4, the
information-providing utterances in such systems usually
take the form of descriptions of individual entities within
the database. The attributes to be mentioned in these de-
scriptions are also specified by a system developer familiar
with the domain.
Dialogue systems designed in this way have several seri-
ous limitations. First, users may wish to browse the data,
either because they are unfamiliar with the domain or be-
cause they do not have strong preferences. Second, this
type of dialogue interaction often leads to the generation of
overspecific constraints with unsatisfiable queries. Third,
a default order of constraint elicitation may encourage the
user to provide information that will not narrow down their
choices in the most efficient way.
Our hypothesis is that these limitations can be addressed in

User1: I’d like to know about restaurants in London.
System1: Are you interested in a particular neighbor-

hood?
User2: I’d like an expensive restaurant.
System2: Are you interested in a particular neighbor-

hood?
User3: I’d like an Italian restaurant.
System3: Are you interested in a particular neighbor-

hood?
User4: Do you know of any near Leicester Square?
System4: I know of the following two Italian restau-

rants near Leicester Square. Quo Vadi, on
Dean Street, serves contemporary Italian cui-
sine. Signor Zilli, on Dean Street, serves tra-
ditional Italian cuisine.

Table 1: An example dialogue showing a traditional spo-
ken dialogue management strategy, where constraints are
elicited in a particular order (which the user is free to ig-
nore) and no information is given to the user until a small
number of database tuples is identified.

a domain independent way by applying statistical learning
techniques to the automation of constraint order elicitation
and content selection. We have applied these techniques to
dialogue management and the resulting data-driven system
responses are illustrated in Table 2. Section 2 describes
in a general way the basic idea of how to automatically
generate such responses using entropy and tree-induction.
Section 3 describes the generation algorithms in more de-
tail in the context of Bruiser (B

¯
rowsing R

¯
estaurants U

¯
sing

I
¯
nduction and S

¯
election with E

¯
ntR

¯
opy), a spoken dialogue

system targeting the London restaurant domain. Section 4
describes an exploratory experiment to evaluate these tech-
niques. Section 5 discusses related work and section 6 sum-
marizes and discusses future work.

User1: What do you know about restaurants in Lon-
don?

System1: There are 592 restaurants in London in total.
Most are expensive There are medium-priced
restaurants near South Kensington tube sta-
tion and in Chelsea. Is there a tube station or
street you’re interested in?

User2: How about Soho?
System2: Soho has many medium-priced restaurants

with good food quality. I know of some ex-
pensive restaurants with very good food qual-
ity near Leicester Square tube station. Do you
have a preference for cuisine?

Table 2: Example dialogue responses automatically derived
using tree-induction and entropy.

2. Generating responses in dialogue systems
using Entropy and Tree Induction

We want to be able to generate two different types of re-
sponses, intensional summaries and data-specific queries in
a data-specific and domain-independent way. Intensional
summaries allow the system to speak about the domain data
at an abstract level of generalization by using intensional
knowledge. These summaries require selection of appro-
priate pieces of information from the backend database to
present to the user.
An example of intensional summary responses can be seen
in Table 2. The two responses contain no extensional in-
formation at all; no specific instances of database tuples are
contained within it. However, the answers do summarize
the existing tuples into a statement containing information
about their neighborhoods and price ranges.
The second type of response we are interested in generating
is a data-specific system initiative (question). For example,
if a user is browsing restaurants in Boston and has told the
system s

�
he is interested in the North End neighborhood of

the city, a follow-on query about cuisine would be almost
redundant–89% of the restaurants in the North End are Ital-
ian. A better strategy might be to alert the user to this fact
in a summary response and ask for another attribute in the
system initiative. Although the user is free to ignore the
system initiative and ask about any other attribute that the
system knows about, the system initiative provides a useful
hint, especially for new users, about what constraints the
system knows about and how the user might proceed.
To generate these types of responses, the dialogue manager
must query the database at every turn in the dialogue where
the user has specified or refined a set of preferences. The
database is filtered based on the user preferences and the re-
sulting tuples are used to determine the content of the sum-
mary and system initiative responses. Both response types
make use of a measure of entropy, or information gain.
In a multivariate space, entropy calculates the amount of
information that is gained by choosing a particular path
at any given point in the exploration of that space (Wit-
ten and Frank, 2000). Entropy will tend to score highly
those attributes that have a large number of distinct val-

ues. For example, in a restaurant domain, the attribute street
will typically have a larger entropy value than the attribute
for neighborhood, given that most cities have a far greater
number of unique streets than unique neighborhoods.
To automatically learn potential summary information
about the backend, and enable more descriptive answering
behavior, we use tree induction to discover rules about the
data in focus at each turn in the dialogue. Decision tree
induction has long been used in data-mining and has been
shown to be an efficient way to compute association rules
among attributes (Kamber et al., 1997; Liu et al., 2000).
Our main purpose in applying tree induction to spoken di-
alogue systems was as a way of learning generalizations
over our backend data tuples that could serve as useful sum-
maries. Because the purpose of any tree-induction algo-
rithm is to discover those association rules with the highest
coverage, the resulting rules are used to form the basis for
system responses.
The specific instantiation of the tree-induction algorithm
used here is C4.5 (Quinlan, 1993). C4.5 is robust in cases
where there is missing data among the attributes to con-
sider, and it is able to deal with both scalar and symbolic
values for attributes. Both of these were important to insure
that the technique will be applicable to multiple domains.
Furthermore, c4.5 performs quite efficiently, meaning that
association rules for most simulated dialogue data can be
computed while preserving the requirement for real-time
dialogue performance.

3. Implementation in Bruiser
We have designed and implemented a dialogue manager
that makes use of entropy and tree induction to produce re-
sponses in the Bruiser system, targeting the London restau-
rant domain. Control is table-driven and proceeds in se-
quence through a set of operations (Seneff et al., 1999) gov-
erning a four-step process:

� Filtering the data to match user constraints

� Computing entropy on the resulting data

� Generating association rules using tree induction

� Selecting from the association rules an appropriate set
for presentation to the user

3.1. Filtering data

The first step involves filtering database tuples to match the
user’s constraints as specified up to that point in the dia-
logue. In our system, the dialogue manager interacts with
the backend database to filter data. All subsequent deci-
sions on what to speak are based on the subset of the data.

3.2. Computing entropy

If the resulting subset of the data is too large to speak to the
user, the dialogue manager invokes the second step, calling
a separate server whose job is to compute entropy on the
values in the filtered data. The entropy values are stored
by the dialogue manager. Entropy scores are used in two
ways by the dialogue manager. The first is in constructing
a system initiative.

As mentioned above, we wish to produce a system initia-
tive at every point in the dialogue. A menu-driven system
initiative strategy works through a set of constraints in a
pre-determined order in every dialogue. To maintain an
automated and data-driven dialogue management, the di-
alogue manager chooses the value with the highest entropy
and enters it into the response frame being constructed. The
natural language generation component of the system (Bap-
tist and Seneff, 2000) will later construct a query to the
user to determine if s

�
he has a preferred value for that at-

tribute. Entropy values for a set of attributes representing
the entire set of London restaurants are shown in Table3.
As mentioned above, attributes with many distinct values
score higher for entropy.
By using the attribute with the highest entropy value as the
system initiative (e.g., street in Table3 for all restaurants),
we reasoned that we could query the user for the value that
would reduce the search space most effectively. Because an
individual attribute may continue to appear at the top of the
entropy measure until a user has specified a value for it, our
system maintains a record of attributes it has asked about.
If an attribute has been asked about already in the dialogue,
the system will choose, in the following turn, the attribute
with the next entropy value to use in the system initiative.

3.3. Generating association rules using tree induction

In the third step of the content selection process, tree-
induction is performed by another server using the C4.5
algorithm. Trees are generated iteratively, beginning with
a randomly selected subset of the data. Multiple trees are
built and later pruned to simplify the trees. Entropy values,
calculated earlier, are sent to the C4.5 server and used in
the construction of the trees.
Trees are built to predict a dependent variable (i.e., the leaf
node) and we use the entropy values to select the depen-
dent variable for each tree. We experimented with vari-
ous ways of using entropy and finally decided on using the
attribute with the lowest entropy value (e.g., price range
in Table 3 for the set of all restaurants). When we used
values with high entropy, we found that are rules were far
too specific. For example, the attribute street often has the
highest entropy value, as evidenced from the values for en-
tropy computed for the first query in Table3. A tree de-
signed to predict a set of restaurants based on street, how-
ever, finds few clusters of restaurants. (Although there are
many streets in London with multiple restaurants, associa-
tion rules that predict street in combination with other at-
tributes find few restaurants.) In a browsing domain, at-
tributes with high entropy actually make for the best gen-
eralizations. When there are just four possible values for
a particular attribute, as is the case for price range (quan-
tized in our implementation into bins representing very ex-
pensive, expensive, medium priced, and cheap), association
rules find larger clusters of restaurants to speak about.

3.4. Selecting from the association rules for
presentation to the user

Each set of association rules in the tree is given a score rep-
resenting the number of database tuples it correctly identi-
fies minus the number of tuples that it incorrectly identifies,

through multiple iterations. The resulting rules are ordered
by score and returned to the dialogue manager for the fourth
and final step of content selection.
The dialogue manager examines the association rules and
determines the best set to send on to the natural language
generation module. Currently, we are only looking at the
best-scoring rules, i.e., the rules that account for the most
data. The top-scoring rule is always selected and subse-
quent rules are examined to find a set that both accounts for
a large number of tuples and includes a range of predicate
types. The system is configured to choose at most three
rules, for reasons of conciseness. If adjacent rules account
for the same predicate types, preference is given to lower
scoring rules that describe different predicates. A thresh-
olding parameter gives precedence to rules whose scores
are close in value and penalizes rules whose scores are very
different from the immediately preceding one. Once rules
are selected by the dialogue manager, predicates with iden-
tical values are aggregated to make the resulting response
string less verbose. In order to avoid annoying the user
by continually asking for the same attribute in the system
initiative, the dialogue manager, as a final step, examines
its history of system initiative attributes and may decide to
choose one with a lower entropy value if the user seems
uninterested in the one that has been asked about.
Table 2 shows an example of system behavior using the al-
gorithms described above. With no constraints on the data
(all restaurants are in London), the database attribute with
the lowest entropy value was price range, which was used
as the dependent variable in constructing the tree used in
content selection. The first sentence in the response (Sys-
tem1) is a generated form of the top-scoring rule, which
included the single attribute price range. The second sen-
tence is a representation of the next two rules, chosen be-
cause they have a similar score and represent different sets
of predicates (i.e., tube station and neighborhood). Since
both rules have the same value for “price,” it is spoken just
once in the resulting string. The rules used to construct this
response are shown in Table4.
The attribute from the dataset with the highest scoring en-
tropy value was street. In cases where entropy values
at the upper end are close, a heuristic is employed that
takes into account the individual scores of the entropy val-
ues as well as their spread to enable a system initiative
to be constructed using the top two attributes. The re-
sponse marked System1 in Table 2 shows an example of
this, where the system initiative offers the user a choice be-
tween tube station or street. In the example in Table 2, the
simulated user ignores the system initiative and introduces
a constraint on neighborhood in the second query (User2).
Filtering the data on the neighborhood constraint, we cal-
culate entropy on the new data set, and present those data
to the tree-induction algorithm. The resulting set of rules
in Table5 was used to construct the response marked Sys-
tem2. In this case, only two rules were selected for natu-
ral language generation because the number of tuples ac-
counted for by the third rule fell below the selection thresh-
old. Food quality, the attribute with the lowest entropy
value among the restaurants in Soho, was used as the leaf
node in tree construction.

Attribute Entropy value

street 1.5114
tube station 1.23
food range 0.6947
cuisine 0.4719
neighborhood 0.30702
price range 0.2252

Attribute Entropy value

cuisine 1.372
street 1.014
tube station 0.785
foodrange 0.49

Table 3: Example entropy values computed for the set of all
London restaurants in our corpus (top table) and for restau-
rants in Soho (bottom table).

��� � price = expensive � 330 �
:tube � “South Kensington”
��� � price � “medium” � 20 �

neighborhood � ”Chelsea”
��� � price � “medium” � 20 �

:tube � “Piccadilly Circus”
��� � price � ”expensive” � 18 �

:food � “good”&& :street � “Gerrard”
��� � price � ”expensive” � 15 �

Table 4: Example rules derived from the C4.5 tree-
induction algorithm applied to a database of London restau-
rants. The number in parentheses indicates the number of
restaurants accounted for by the rule.

Table 6 shows another example of a dialogue with re-
sponses derived using entropy and tree induction. In this
dialogue, the user has begun by specifying restaurants in
South London. Association rules cluster those restau-
rants by price range in the first utterance in System1 and
by neighborhood and food quality in the second utter-
ance in System1. A follow-up query with a constraint on
food quality results in a response grouping tube station and
price range in the response (System2 in Table 6). The sys-
tem initiative queries are different in this dialogue as com-
pared to that in Table 2. Although street appears in both
dialogues in the first query, food quality is also used in the
first system initiative in the dialogue in Table 6, compared
with tube station, in the first system query in Table 2.

:food = good ��� � :price = medium � 12 �
:tube = Leicester Square && :food = medium

��� � :price = expensive � 8 �
:cuisine = Indian && :food = good

��� � :price = medium � 4 �
:tube = Oxford Circus && :food = very good

��� � :price = expensive � 4 �

Table 5: Example rules derived from the C4.5 tree-
induction algorithm applied to a database of London restau-
rants.

4. Evaluation
We are currently in the process of conducting experiments
to determine user preferences among three different sys-
tems within the London restaurant domain. The first is
the Bruiser system described in this paper, using machine
learning techniques to derive content for summarization
and system initiative queries. The second system is a sim-
ple baseline system, as illustrated in Table 1, which we re-
fer to as the DirectedDialogue system. This system elicits
constraints in a predetermined order by asking for a par-
ticular constraint that is absent from the underlying form-
based representation. The third system, which we call
DataDriven1, is briefly described below.
DataDriven1 is based on previous work which sought to
make dialogue design more data-driven and to generalize
more dialogue parameters with less input from system de-
velopers(Polifroni et al., 2003). DataDriven1 is similar to
Bruiser in that content selection for summarization is deter-
mined by an analysis of the backend data, filtered at each
turn to match the user constraints. Each attribute is exam-
ined and the set whose top N values accounted for M% of
the data is chosen to speak, where N and M are thresholds
set by the system developer a priori for each attribute in
the database. Although this provides a mechanism for de-
scribing the backend data, content selection is still hand-
crafted to the extent of defining thresholds and, perhaps
more critically, associations between attributes are left un-
explored. Table 7 shows an example of output derived using
the DataDriven1 system and Bruiser.
There are two important distinctions between Bruiser and
DataDriven1. The first is that DataDriven1 requires in-
put from the system developer in the form of thresholds
for speaking. For certain subsets of the data, these thresh-
olds can result in no attributes being selected for speak-
ing. Bruiser does not require such thresholds and, further-
more, always finds something to speak about in the backend
data. The second distinction is that, in the DataDriven1
approach, each attribute is evaluated individually and the
resulting responses speak about the attributes in individual
utterances. Although both systems may choose to speak
about the same set of attributes, the Bruiser system, us-
ing tree induction to discover association rules, allows us
to speak about relationships among attributes, which gives
the user a better understanding of the domain.
An examination of the two dialogues shown in Table 7 il-
lustrates these differences. Both dialogues are driven by
the same simulated user utterances. The dialogue at the
top of Table 7, the one using the DataDriven1 approach,
has terser responses that contain less information about
the backend data. The dialogue at the bottom of Table
7, using the Bruiser system, shows the result of learning
association rules from the data (e.g., the relationship be-
tween price range expensive and tube station in response
“Bruiser-1”, and the relationship among price range, neigh-
borhood, and area of London in response “Bruiser-2”). One
other distinction is that the DataDriven1 approach did not
produce a system initiative query for each response. As
with the DirectedDialogue system both of these systems
simply enumerate the set of tuples when that set contains
five or fewer members.

User1: I’d like to know about restaurants in South London?
System1: There are 178 restaurants in South London in total. There are

74 expensive ones. There are 8 in Chelsea with good food quality.
Do you have a preference for street or food quality?

User2: I’d like good food quality.
System2: There are 52 restaurants with good food quality in south London.

There are 9 medium priced restaurant near the South Kensington tube station.
There are 6 expensive restaurants near the Sloane Square tube station.
Do you have a preference for cuisine?

Table 6: Another dialogue pair showing responses automatically derived using tree-induction and entropy.

All three systems use the same architecture, giving us a
unique opportunity to derive dialogues using the same input
queries and backend data. We are performing these experi-
ments in an “overhearer” mode, where judges are presented
with three separate responses for each user query and asked
to rate each response.
An exploratory study showed that users prefer either the Di-
rectedDialogue baseline system or the Bruiser system. We
were surprised at the number of people who preferred the
directed dialogue approach, but feel that this is in keeping
with the assumption that successful dialogue strategies are
dependent on user preferences and knowledge (Kass and
Finin, 1988). In cases where a user is unfamiliar with the
knowledge contained in the backend database, responses
that provide more information might be preferred. If users
are familiar with the data, they may feel that a directed di-
alogue strategy will more efficiently allow them to reach
their goals. Individual differences related both the user’s
knowledge and their “degree of hastiness” (Komatani et al.,
2003) could also play a role in the perceived efficacy of the
strategy types. We plan to run more experiments to deter-
mine the effect of these dialogue strategies on user satisfac-
tion.

5. Related work
The summarization strategy here differs considerably from
the view of a summary as a condensed version of an original
document or set of documents. In this respect, our strategy
is closer to indicative summarization. Indicative summa-
rization (Kan et al., 2001b) has been used to provide in-
sight in the contents of documents and help guide the user
to a specific document that can then either be summarized
using other techniques, or retrieved as a whole. Features
of individual documents are examined to determine useful
summaries, in much the same way that features of individ-
ual database tuples can be examined to determine useful
aspects to summarize. Tree structures have been used to
characterize topic information, although these tree struc-
tures have been determined using section headers, for ex-
ample, in structured documents (Kan et al., 2001a). One
important difference is our use of automatically computed
association rules among tuples in the database to give users
insight into generalizations that may be inherent in the data
but not obvious to even someone experienced with the do-
main.
Another motivation in adopting this approach to content
selection comes from the field of cooperative answering.

The ability to process existing data to enable generalization
and summarization has been proposed as a mark of intelli-
gent answering (Han et al., June 1996), as well as the abil-
ity to browse the data (Motro, 1996). The user should be
able to explore what is contained within a backend with-
out necessarily having a clear goal in mind. The techniques
described in this paper automate these capabilities for dia-
logue systems.
The field of data visualization contains unexpected similar-
ities with dialogue system design (for database access), in
that both concern themselves with making sense of large
corpora of data with the purpose of providing a sensible in-
terface to users. Early work in this field (A. Buja and Stuet-
zle, 1991; Buja et al., 1996) concerned itself with selecting
subsets of the data to focus users on particular aspects of a
problem. Later work treats the problem of data visualiza-
tion as one of data summarization (Lesh and Mitzenmacher,
2004), as we do here. The emphasis in much of the data vi-
sualization literature is in the interface to the user, including
an iterative interaction via a GUI that seems very like a di-
alogue. Our work complements this approach by adding a
generation component for a natural language rendering of
the summarizations, as well as a speech and natural lan-
guage input capability.

6. Summary and future directions
We have reported here on our initial attempts at using
machine learning techniques for automatically determin-
ing both summary attributes and system initiative for dia-
logue system responses. We have implemented these tech-
niques in the context of a restaurant domain for London
and are currently running an evaluation experiment. In fu-
ture work, we will expand the dialogue manager to incor-
porate these algorithms as part of a strategy for generating
fallback responses in cases where the database returns no
tuples matching the user’s request.
Since our original motivation was to provide useful and
helpful information to the user, user modelling will fit in
well with our goals. We intend to examine the application
of user modelling to help guide content selection from both
the entropy values and the association rules we derive from
our dialogue manager.
These techniques aim to produce ways of using an
attribute

�
value data representation to construct responses

in dialogue systems. We are, therefore, exploring ways that
the same algorithms that work for the restaurant domain
could be applied to different domains. In particular, we

User1: I’m interested in expensive restaurants in London.
DataDriven1-1: I know of 320 expensive restaurants in London. There are 45 choices for cuisine.
User2: I’d like an Italian restaurant.
DataDriven1-2: There are 73 expensive Italian restaurants in total. They are predominantly

traditional and contemporary.
User3: Do you know of any near the Leicester Square tube station?
DataDriven1-3: I know the following two expensive Italian restaurants near Leicester Square tube station
User1: I’m interested in expensive restaurants in London.
Data-Driven2-1: I know of 320 expensive restaurants in London. There are

13 near the Knightsbridge tube station and 8 near the Farrington tube station.
There are also some in Saint James’s. Do you have a preference for street or tube station?

User2: I’d like an Italian restaurant.
DataDriven2-2: There are 73 expensive Italian restaurants in total. There are 8

in central London in Knightsbridge and 7 in South London in Chelsea. Do you have
a preference for a neighborhood?

User3: Do you know of any near the Leicester Square tube station?
DataDriven2-3: I know the following two expensive Italian restaurants near Leicester Square tube station

Table 7: Example dialogue responses illustrating the differences between the DataDriven1 approach to content selection
and response generation (at top) and the Bruiser system (at bottom).

are interested in domains both different in scope from tra-
ditional data-retrieval domains and with a compelling rea-
son for a dialogue interface. We are currently conducting a
preliminary study using the techniques described above to
simulate a dialogue interface to a large corpus of annotated
news articles.

7. References

J. Michalak A. Buja, J. A. McDonald and W. Stuetzle.
1991. Interactive data visualization using focusing and
linking. In Proc. of IEEE Visualization ’91, pages 156–
163, San Diego, California.

L. Baptist and S. Seneff. 2000. Genesis-ii: A versatile sys-
tem for language generation in conversational system ap-
plications. In Proc., ICSLP 2000, Beijing.

A. Buja, D. Cook, and D. Swayne. 1996. Interactive high-
dimensional data visualization. Journal of Computa-
tional and Graphical Statistics, 5:78–99.

J. Han, Y. Huang, N. Cercone, and Y. Fu. June, 1996. In-
telligent query answering by knowledge discovery tech-
niques. IEEE Transactions on Knowledge and Data En-
gineering, 8(3):373–390.

M. Kamber, L. Winstone, W. Gong, S. Cheng, and J Han.
1997. Generalization and decision tree induction: effi-
cient classification in data mining. In Proc. 7th Interna-
tional Workshop on Research Issues in Data Engineering
(RIDE ’97), pages 111–121.

M.-Y. Kan, K.R. McKeown, and J. Klavans. 2001a. Apply-
ing natural language generation to indicative summariza-
tion. In Proceedings of the Eighth European Workshop
on Natural Language Generation.

Min-Yen Kan, Kathleen R. McKeown, and Judith L. Kla-
vans. 2001b. Domain-specific informative and indica-
tive summarization for information retrieval. In Pro-
ceedings of the Document Understanding Conference,
New Orleans, U.S.A.

R. Kass and T. Finin. 1988. Modelling the user in natural
language systems. Computational Linguistics, 14:5–22.

K. Komatani, S. Ueno, T. Kawahara, and H. Okuno. 2003.
Flexible guidance generation using user model in spoken
dialogue systems. In Proc. ACL, pages 256–263, Sap-
poro, Japan.

Neal Lesh and Michael Mitzenmacher. 2004. Interac-
tive data summarization: an example application. In
Proc., Working Conference on Advanced Visual Inter-
faces, pages 183–187, Gallipoli, Italy.

E. Levin, S. Narayanan, R. Pieraccini, K. Biatov, E. Boc-
chieri, G. Di Fabbrizio, W. Eckert, S. Lee, A. Pokrovsky,
M. Rahim, P. Ruscitti, and M. Walker. 2000. The att-
darpa communicator mixed-initiative spoken dialog sys-
tem. In Proc.ICSLP, Beijing.

B. Liu, Y. Xia, and P. Yu. 2000. Clustering through deci-
sion tree construction. IBM Research Technical Report
RC21695.

Amihai Motro. 1996. Cooperative database systems. In-
ternational Journal of Intelligent Systems, II:717–731.

J. Polifroni, G. Chung, and S. Seneff. 2003. Towards the
automatic generation of mixed-initiative dialogue sys-
tems from web content. In Proceedings of Eurospeech,
pages 193–196.

J.R. Quinlan. 1993. C4.5: Programs for Machine Learn-
ing. Morgan Kaufmann, San Mateo, CA.

S. Seneff, R. Lau, and J. Polifroni. 1999. Organization,
communication, and control in the galaxy-ii conversa-
tional system. In Proc. Eurospeech ’99, pages 1271–
1474, Budapest.

M. Walker, S.J. Whitaker, A. Stent, P. Maloor, J. Moore,
M. Johnston, and G. Vasireddy. 2004. Generation and
evaluation of user tailored responses in multimodal dia-
logue. Cognitive Science, 28:811–840.

I. Witten and E. Frank. 2000. Data Mining. Morgan Kauf-
mann.

