NATURAL LANGUAGE IN A DESKTOP
ENVIRONMENT

Proceedings of HCI89, 3rd International Conference on Human-Computer Interaction

Marilyn A. Walker

Hewlett Packard Laboratories
Filton Rd., Stoke Gifford

Bristol, England BS12 6QZ, U.K.
lyn%Ilwalker@hplb.hpl.hp.com

Abstract

Different modes of interaction are better suited for different tasks and both nat-
ural language and direct manipulation have strengths and weaknesses as interface
technologies. Previous studies in the evaluation of interactive natural language in-
terfaces have noted certain benefits of natural language access to information, but
have neglected to describe the features of natural language that provides these ben-
efits. We have identified a set of communicative features of natural language, such
as quantification and discourse reference, that are difficult to support with direct
manipulation. The analysis has implications for determining the tasks in a personal
information environment that natural language is suited for.

1 Introduction

In the human-computer communication community, some have touted natural language
interaction (NLI) as a critical component of future interfaces. They assume, in the main,
that some users cannot or will not learn a formal method of interacting with a system:;
Natural Language interfaces are targeted on these users. Within the community of natural
language researchers, the utility of natural language as an interface technology is rarely
questioned. The evaluation of systems has focused on comparisons of the input-output
characteristics of one natural language interface compared with another or on the lim-
itations of current NLI systems versus the full range of human conversation (Wahlster,

1986; Cohen et al., 1982; Petrick, 1976; Woods, 1977).

In contrast, proponents of alternatives to natural language have doubts about both the
feasibility and the desirability of NLI systems. Shneiderman states that since computers
display information 1000 times faster than humans can enter commands, it is reasonable
to just put more information on the screen and let people look for the piece that they need

((Shneiderman, 1986), p. 165). He gives us reports of user’s ‘joy’ in using a direct ma-
nipulation interface to a system, of feelings of control and mastery. His favourite example
of direct manipulation is the driving of an automobile and he cites the ridiculousness of
an interface to the operations of driving that requires the user to say Now left 30 degrees.
Similarly, the clumsiness of a word processor where every command has to be executed
via an English specification is apparent. These examples are well-chosen and situation
specific. However, the awkwardness of searching through a hierarchy of directories and
files to find one with a particular known attribute is not commonly recognized. To the
contrary, Shneiderman observes that the process of looking for an object in a container
hierarchy may make users feel as though they have more control over the system, because
the search is accomplished in small steps and the user can backup at any time.

Since there are no studies to date of the use of natural language in a typical personal
information environment such as the Xerox Star or the Apple Macintosh, we lack functional
comparisons. Most of the reports of benefits of one interaction style versus another are
anecdotal. This has made the debate of natural language versus direct manipulation more
religious than scientific.

Our hypothesis is that different modes of interaction are better suited for different tasks
and that natural language and direct manipulation both have strengths and weaknesses
as interface technologies. Whereas the case for direct manipulation has been well argued
(Shneiderman, 1986; Hutchins et al., 1986), we would like to know which aspects of nat-
ural language provide the greatest benefit. The question is what communicative features
provided by natural language are useful in an application, or alternatively, for what tasks
in an application is natural language a suitable interface and for what tasks might we want
to use a different interaction mode such as direct manipulation.

If one is willing to imagine a personal information environment with enough under-
lying knowledge about its own objects and operations to enable search on the items in
a file or mail system (Malone et al., 1987), then since files and mail folders are personal
databases, studies on NLI for database query may be relevant. We can classify these (as
per (Whittaker and Stenton, 1989)) as studies on (a) LEARNABILITY (Kelly and Chapanis,
1980; Hendler, 1983; Ogden and Brooks, 1983), (b) COVERAGE (Diaper, 1986; Guindon,
1988; Whittaker and Stenton, 1989; Ogden and Sorknes, 1987; Kelley, 1983), and (c)
COMPARISON (Jarke et al., 1985; Small and Weldon, 1983; Walker and Whittaker, 1989).

The most relevant of these studies are COMPARISON studies, which address the question
of how NLI compares with another interface for a particular task!. In most of these,
subjects try to complete some well-defined task that is supposedly typical of the domain.
One result of these studies is that researchers have noted the efficiency of natural language
(Jarke et al., 1985), but they do not say why it takes fewer input tokens, that is they do
not provide an analysis of the features that NLI contributes to the solution of the given
task in the domain. In addition, these studies generally report on the number of queries
per task, how much time per query, how many errors, or time-to-solution for a task, but it
is difficult to interpret such global measures. First, these measures conflate error analysis

!Many researchers have noted that there might be a trade-off between the learnability of an interface
and the complexity of the operations that are supported well by that interface. The assumption that NLI
is learnable, and indeed is nearly as learnable as a direct manipulation interface, is implicit in advocating
the potential benefits of NLI in a personal information environment. Coverage studies are not relevant
for our purposes since they do not allow comparisons across different interface modalities.

with the analysis of benefits, since if it takes longer to do a task using a particular interface
modality, we cannot tell whether it was repeated error or lack of support for operations
that contributed to the total time. Second, we are unable to assess how the task determines
the underlying operations and which operations are in some sense independent of the task.

Therefore we propose a set of linguistically-based features which correspond to opera-
tions one might want to perform to accomplish a task. The existence of such a feature set
give us one way to compare difference interfaces as well as a framework within which we can
analyse and design experimental tasks. This feature set is independent of any particular
application or domain, but we have ignored linguistic features that seem to be irrelevant
to the tasks in a typical personal information environment where direct manipulation has
come to be the preferred style of interface.

2 Communicative Features

One of the benefits of direct manipulation is that ‘what you see is what you get’, i.e. its
very directness, but some researchers might say that ‘what you see is all you get’ (Hulteen,
1988). Language takes us out of the realm of the here and now, visually present. Some
of the communicative features have to do with being able to select an item with language
rather than directly. This ability comes in handy for finding items, rather than manipulat-
ing them once they are already found. Some of the features relate to the flexibility of the
interaction with the system, and as well to the forms in which items are presented to the
user. In addition, we claim that the interplay of the features contributes to the efficiency
of natural language that has been noted in studies of NLI for database query. The list of
features given below is not claimed to be an exhaustive one, but neverthless is a beginning
of a taxonomy of such communicative features.

2.1 The features

The features are:

e DEFINITE DESCRIPTION: Finding something with a particular attribute is a type
of reference problem. Language allows us to access an object, such as a file, via
a description. We don’t have to be able to see it. DEFINITE DESCRIPTION allows
one to refer to objects by their attributes , e.g. the file whose write date is 8/15/88,
instead of searching for it. We say the object is REALIZED (Grosz et al., 1983) by its
description.

e DISCOURSE REFERENCE: The use of a pronoun such as they, it, their, him picks
out something already in context. This allows one to refer to previously evoked
objects. For instance, we have Create a file named Jazz. Send IT to Steve. 1t gives
us a convenient shorthand for referring. By allowing questions to range over a set of
objects gathered as the result of some previous command, e.g. Get me the messages
from Eric. Are any of THEM aboul today’s meeling?, discourse reference allows one
to point to more than one object at a time, using language, and the object only
needs to be realized, not visible.

e TEMPORAL SPECIFICATION: Temporal specifications allow one to specity that an
action, corresponding to a series of mouse clicks, should take place at some time
in the future, or repetitively. So, one might say, Send CHI-draft to Jarrett ON
MONDAY or Send a copy of the proposal to Susan EVERY WEEK.

e QUANTIFICATION: Quantifiers are words like all, every, each, any, some, most, how
many, how much. Quantifiers often let a user get information about the state of
the desktop without pulling up items to the top of the desktop; they can probe this
state as well as operate on it. For example, HOW MANY folders named CHI-draft
are there?, or Are there ANY files whose write date was yesterday?. Quantifiers like
all and every support operations on sets of items, e.g. Send a copy of proposal-1
to EVERY person in the dialogue project, instead of wading up and down a menu
hierarchy or scrolling through a mail browser of messages and visually checking or
performing some operation on each one.

e COORDINATION: This is exemplified by the use of words such as and and or. User
can specify the same operation on more than one entity at a time, e.g. Send the
ACL-draft AND Phil’s message to Steve, or specity different operations on the same
entity, e.g. Latex file Jazz AND print it. Coordination can be used to implicitly
create sets of objects that do not share any obvious attributes other than that the
user chose to group them.

e NEGATION: Negation is exemplified by words like not, except and without. An
example might be Are there any messages [haven’t answered?. 1t allows one to collect
desktop items that do NOT have a particular attribute or to exclude particular items
from a set.

o COMPARATIVES: Comparatives come in two types and allow users to make compar-
isons. These comparatives may range over attributes of desk-top objects, as in Are
there any messages OLDER than two months?, or they may pertain to quantities of
the objects themselves, e.g. Are there MORE THAN two messages from Eric?.

e SORTING EXPRESSIONS: These are often present in language by the use of by phrases,
such as by date or by topic, For example, Show me the messages in my in-tray by
topic. This allows one to display items in useful ways.

2.2 Features discussion

2.2.1 Here and Now

It is difficult to imagine any way to duplicate some of these features by using a combination
of icons and mouse clicks. Features like DEFINITE DESCRIPTION let us operate on items
that are not here, whereas TEMPORAL SPECIFICATION lets us specify actions that are
not intended to be executed now. These are directly contrary to the three principles of
direct manipulation, (a) continuous representation of the objects and actions of interest,
(b) physical actions or labeled button presses instead of complex syntax, (b) rapid incre-
mental reversible operations whose impact on the object of interest is immediately visible

((Shneiderman, 1986), p. 201).

Visual inspection is the only way to perform some of these operations in a direct
manipulation environment. Visual inspection can replace features such as DEFINITE DE-
SCRIPTION, NEGATION and COMPARATIVES, once we have found the relevant set of items
and brought them to the surface of the desktop. We can visually check whether the item
satisfies some combination of attributes that might be specified using one of these features.
What visual inspection does not help us do is to find particular items according to their
attributes.

2.2.2 Limited Support

A limited version of some features are provided by other interfaces. Some systems may
provide limited notions of these communicative features. For instance, the lack of any
type of DEFINITE DESCRIPTION was so bothersome to users of the Xerox Star system,
that the reference icon, providing special support for one facet of this feature, was added
to forestall one from having to look through a series of file drawers and folders to access a
file when one knew exactly where it was stored(Rosenberg, 1988). A reference icon served
as a pointer whose referent could be specified simply by typing its full pathname. Opening
the reference icon then showed the contents of the referent. However, pathnames and
names are restrictive ways of specifying a definite description since these ways of referring
only access two of the possible attributes, ie. name and location, that might be associated
with an object.

Another example is that a default for SORT EXPRESSIONS is usually provided by many
kinds of file browsers or other modes of display, normally being chronological or alphabet-
ical order. If we represent other kinds of information about the items in our desktops then
we may want to view them one way one time and another way the next. Since any type
of definite descriptor can be used in combination with a sorting operator such as arrange,
a default presentation may not be adequate.

Finally, the facility to select and manipulate sets of items rather than single items,
such as that provided by COORDINATION, some kinds of QUANTIFIERS and some DEFINITE
DESCRIPTORS is usually available in particular applications like paint or draw programs,
where one can group two items and operate on both at the same time.

2.2.3 Combination

Combining the features together provides the greatest increase in functionality. Often it is
the presence of one that pushes the utility of another over some critical threshhold. There
is a synergistic effect. For instance, without the facility to collect a group of objects via a
description, DEFINITE DESCRIPTION, the ability to quantify over them, QUANTIFICATION,
would not be as useful, e.g. Send a copy every document in the CHI folder to Steve needs
both the use of every and the ability to specify documents described as a document in the

CHI folder.

COORDINATION not only allows one to create adhoc sets of objects, but it also shows up
in combination with the other features such as definite descriptions and sort expressions.
The coordination of definite descriptions can give us multiple keys to access a document

by. User studies have shown this to be important (Malone, 1983). The coordination of
sort expressions gives us an ever increasing ability to view a set of objects in a structure
that is useful to us, e.g. by topic and by date.

2.2.4 Summary

In summary, direct manipulation gives us (a) visual inspection as the only way to perform
some of these operations, (b) a limited version of others, (¢) no way at all to do others.
In addition, the combination of the communicative features in a flexible manner gives the
greatest benefits. Some of the features are mainly about SELECTION, and obviously for
single visible items, pointing is the ultimate in specificity. However, COORDINATION, some
kinds of QUANTIFIERS and some DEFINITE DESCRIPTORS allow selection and manipulation
of sets of items. In addition, if we have situations where there is too much information or
it is not easily found, then the functionality of just getting exactly the right set of objects
onto the desktop in the first place is extremely useful. However, even if the greatest
payoffs of NLI are not in selection, we would like to test whether the operations provided
by COMPARATIVES, DISCOURSE REFERENCE, COORDINATION, SORTING EXPRESSIONS,
TEMPORAL SPECIFICATION and QUANTIFICATION, which are not just about selection, are
useful. These might be features that we would selectively add to direct manipulation based
environments for the greatest benefits.

3 Conclusion

We would like to validate the utility of these features, in particular to determine if the
quantity of desktop items is what makes a qualitative difference, i.e. how much clutter on
a computer desktop can one deal with?

If we use these features to design experimental tasks then we may avoid some errors
in task design. For instance, sometimes the goal in task design is to avoid biasing a user’s
syntactic constructions, but we need to be careful about the other effects this might have.
For example, a task that requires subjects to ask questions that will allow them to fill in
the missing values on the form may eliminate NEGATION because we are only interested in
positive values. It may also eliminate QUANTIFICATION, COMPARISON and COORDINATION
because we are interested in attributes of just one object. In a comparison of NLI with the
database query language SQL, Small and Weldon restricted NLI by specifying that the
English queries must specify ALL the information given in a SQL query (Small and Weldon,
1983). For instance, subjects were not allowed to assume the STAFF table was the one to
use just because it was the only one with an AGE column, so that Find the doctors whose
age ts over 35, would result in an error. This type of restriction automatically limits the use
of DEFINITE DESCRIPTIONS, DISCOURSE REFERENCE, NEGATION, and COMPARATIVES.

We might expect certain features to only be elicited by certain tasks or in particular
environments. For instance, a feature like SORTING EXPRESSIONS is not likely to be
frequently used if the desired result of the experimental task is completely specified because
subjects will have no motivation for looking at the data in different ways. It might also be
that frequent use of SORT only shows up in field studies, since in that case we could expect

subjects to be really interested in the data in order to satisfy some higher level goal.

These features may also provide a framework for the analysis of the results of empirical
studies. In a field study that we conducted, we analysed user’s interactions with a database
using some of the same features presented here (Walker and Whittaker, 1989). We found
these features to be a useful way of categorising the data since we were able to show that
the users who persisted with an error-prone system were using it in a different way, i.e.
exploiting different features, than those who gave up on using the system.

These communicative features are worth cataloguing in order to guide future research
in natural language, since it must be admitted that not all of the features are available
in their full generality in any existing NLI interface. But if we are willing to combine
language with other interfaces we may find a useful way to extract benefits from what is
already available, and avoid potential pitfalls. These features give us a way of thinking
about the functionality described, and other ways we might provide it. The future of
interface technology is surely in mixed media; we need to have a way to talk about the
features that iconic interfaces provide and we should develop those aspects of linguistic
interfaces that can give us the greatest benefit.

4 Acknowledgements

Jarrett Rosenberg, Phil Stenton, Steve Whittaker, Eric Hulteen, Peter Williams, Andy
Hunter and Nick Haddock have all provided thoughtful commentary on various versions
of this paper. Some of the ideas presented here were developed while working with the
Natural Language project at HPLabs Palo Alto, Ca.

Bibliography

Phillip R. Cohen, C. Raymond Perrault, and James F. Allen 1982. 1982. Beyond ques-
tion answering. In Wendy Lehnert and Martin Ringle, editors, Strategies for Natural
Language Processing, pages 245-274. Lawrence Erlbaum Ass. Inc, Hillsdale, N.J.

Dan Diaper. 1986. Identifying the knowledge requirements of an expert system’s natu-
ral language processing interface. In M.D. Harrison and A.F. Monk, editors, People
and Computers, Designing for Usability, pages 263-280. Cambridge University Press,
Cambridge, U.K.

Barbara J. Grosz, Aravind K. Joshi, and Scott Weinstein. 1983. Providing a unified
account of definite noun phrases in discourse. In Proc. 21st Annual Meeting of the
ACL, Association of Computational Linguistics, pages 44-50.

Raymonde Guindon. 1988. How to interface to advisory systems? users request help with
a very simple language. In Proc. Annual Meeting of the Computer Human Interaction

of the ACM, pages 191-196.

James A. Hendler. 1983. The effects of limited grammar on interactive natural language.
In Proc. Annual Meeting of the Computer Human Interaction of the ACM, pages 190—
192.

Eric Hulteen. 1988. October. Personal Communication.

Edwin L. Hutchins, James D. Hollan, and Don A. Norman. 1986. Direct manipulation
interfaces. In Don A. Norman and Stephen W. Draper, editors, User Centered Sys-
tem Design: New Perspectives on Human-Computer Interaction. Lawrence Erlbaum
Associates, Hillsdale, New Jersey.

Matthias Jarke, Jon A. Turner, Edward A. Stohr, Yannis Vassiliou, Norman H. White,
and Ken Michielsen. 1985. A field evaluation of natural language for data retrieval.

IEEFE Transactions on Software Engineering, SE-11, No.1:97-113.

J. F. Kelley. 1983. An empirical methodology for writing user-friendly natural language
computer applications. In Proc. Annual Meeting of the Computer Human Interaction

of the ACM, pages 193-196.

M.J. Kelly and A. Chapanis. 1980. Limited vocabulary natural language dialogue. Inter-
national Journal of Man-Machine Studies, 6:71-86.

Thomas W. Malone, Kenneth R. Grant, Franklyn A. Turbak, Stephen A. Brobst, and
Michael D. Cohen. 1987. Intelligent information-sharing systems. Communications of

the ACM, 30(5):390-402.

Thomas W. Malone. 1983. How do people organize their desks? implications for the
design of office information systems. ACM Transactions on Office Information Systems,

1(1):11-112.

William C. Ogden and Susan R. Brooks. 1983. Query languages for the casual user:
Exploring the ground between formal and natural languages. In Proc. Annual Meeting
of the Computer Human Interaction of the ACM, pages 161-65.

William C. Ogden and Ann Sorknes. 1987. What do users say to their natural language in-
terfaces? In Human-Computer Interaction, Interact 1987, Elsevier Science Publishers

B.V. North Holland, pages 561-66.

S.R. Petrick. 1976. On natural language based computer systems. IBM Journal of Re-
search and Development, pages 314-325.

Jarrett Rosenberg. 1988. October. Personal Communication.

Ben Shneiderman. 1986. Designing the User Interface: Strategies for Effective Human-
Computer Interaction. Addison Wesley.

Duane W. Small and Linda J. Weldon. 1983. An experimental comparison of natural and
structured query languages. Human Factors, 25(3):253-263.

Wolfgang Wahlster. 1986. The role of natural language in advanced knowledge-based
systems. In H. Winter, editor, Artificial Intelligence and Man-Machine Systems, pages
62-83. Springer, Berlin.

Marilyn Walker and Steve Whittaker. 1989. When natural language is better than menus:
A field study. Technical Report HPL-BRC-TR-89-020, HP Laboratories, Bristol, Eng-
land.

Steve Whittaker and Phil Stenton. 1989. User studies and the design of natural language
systems. In Proc. jth Conference of the Furopean Chapter of the ACL, Association of
Computational Linguistics, pages 116-123.

William A. Woods. 1977. A personal view of natural language processing. ACM-SIGART
Newsletter, 61:17-20, February.

