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Abstract

Boosting algorithms can be viewed as a zero-sum game. At each iteration a new column
/ hypothesis is chosen from a game matrix representing the entire hypotheses class. There
are algorithms for which the gap between the value of the sub-matrix (the t columns chosen

so far) and the value of the entire game matrix is O(
√

logn
t ). A matching lower bound has

been shown for random game matrices for t up to nα where α ∈ (0, 12 ). We conjecture that
with Hadamard matrices we can build a certain game matrix for which the game value
grows at the slowest possible rate for t up to a fraction of n.

1. Boosting as a zero-sum game

Boosting algorithms follow the following protocol in each iteration (e.g. Freund and Schapire,
1997; Freund, 1995): The algorithm provides a distribution d on a given set of n examples.
Then an oracle provides “weak hypothesis” from some hypotheses class and the distribution
is updated. At the end, the algorithm outputs a convex combination w of the hypotheses
it received from the oracle.

One can view Boosting as a zero-sum game between a row and a column player (Freund
and Schapire, 1997). Each possible hypothesis provided by the oracle is a column chosen
from an underlying game matrix U that represents the entire hypotheses class available to
the oracle. The examples correspond to the rows of this matrix. At the end of iteration
t, the algorithm has received t columns/hypotheses so far, and we use Ut to denote this
sub-matrix of U. The minimax value of Ut is defined as follows:

val(Ut) = min
d∈Sn

max
w∈St

d>Ut w = max
w∈St

min
r=1,...,n

[Ut w]r. (1)

Here d is the distribution on the rows/examples and w represents a convex combination
of the t columns of Ut. Finally [Ut w]r is the margin of row/example r wrt the convex
combination w of the current hypotheses set. So in Boosting the value of Ut is the maximum
minimum margin of all examples achievable with the current t columns of Ut.

The value of Ut increases as columns are added and in this view of Boosting, the goal
is to raise the value of Ut as quickly as possible to the value of the entire underlying game
matrix U. There are boosting algorithms that guarantee that after O( logn

ε2
) iterations, the
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gap val(U)− val(Ut) is at most ε (Freund and Schapire, 1997; Rätsch and Warmuth, 2005;

Warmuth et al., 2008). In other words, the gap at iteration t is at most O(
√

logn
t ). Here

we are interested in finding game matrices with a matching lower bound for the value gap.
The lower bound should hold for any boosting algorithm, and therefore the gap in this case
is defined as the maximum over all submatrices Ut of t columns of U:1

gapt(U) := val(U)−max
Ut

val(Ut).

First notice that the gap is non-zero only when t ≤ n, since for any n ×m (m > n) game
matrix, its value is always attained by one of its sub-matrices of size n × (n + 1). This
follows from Carathodory theorem which implies that for any column player w ∈ Sm, there
is ŵ with support of size at most n+ 1 satisfying Uw = Uŵ. So wlog m ≤ n.

Klein and Young (1999) showed that for a limited range of t (log n ≤ t ≤ nα with

α ∈ (0, 12)), the gap is Ω(
√

logn
t ) with high probability for random bit matrices U.2 We

claim that with certain game matrices the range of t in this lower bound can be increased.

2. Lower bounds with Hadamard matrices

Hadamard matrices have been used before for proving hardness results in Machine Learning
(eg Kivinen et al., 1997; Warmuth and Vishwanathan, 2005) and for iteratively constructing
game matrices with large gaps (Nemirovski and Yudin, 1983; Ben-Tal et al., 2001). We begin
by giving a simple but weak lower bound using these matrices (an adaptation of Proposition
4.2 of Ben-Tal et al. (2001)).

Let n = 2k and H be the n × n Hadamard matrix. Define Ĥ to be H with first row

removed. We use game matrix U =

[
Ĥ

−Ĥ

]
and let valD(U) denote val

([
U
−U

])
. Notice

that by definition 1, valD(U) = −minw∈Sn ‖Uw‖∞ ≤ 0.

Theorem For 1 ≤ t ≤ n
2 , valD(Ĥ) −maxĤt

valD(Ĥt) ≥
√

1
2t , where the maximum is

over all sub-matrices Ĥt of t columns of Ĥ.

Proof First we show valD(Ĥ) = 0. Notice that Ĥ has row sum zero and

valD(Ĥ) = − min
w∈Sn

‖Ĥw‖∞ ≥ −‖Ĥ
1

n
‖∞ = 0.

Since H has orthogonal columns, we have that for any Ĥt, Ĥ
>
t Ĥt = n It − 1t1

>
t and

min
w∈St

‖Ĥtw‖∞ ≥ min
w∈St

‖Ĥtw‖2√
n− 1

= min
w∈St

√
w>Ĥ>t Ĥtw

n− 1
= min

w∈St

√
n

n− 1
w>w − 1

n− 1

≥
√

(n− t)/(n− 1)t.

1. Freund (1995) originally gave an adversarial oracle that iteratively produces a hypothesis of error ε w.r.t.
the current distribution, and for any particular algorithm, the oracle can make this go on for Ω( logn

ε2
)

iterations. A lower bound of Ω(
√

(logn)/t) on the value gap is a much stronger type of lower bound.
2. The same lower bound translates to random ±1 matrices via shifting and scaling.
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Finally we have for t ≤ n
2 , valD(H)−maxĤt

valD(Ĥt) ≥
√

n−t
(n−1)t ≥

√
1
2t .

Note that this weaker lower bound holds for a larger range of t (1 ≤ t ≤ n
2 ) than the stronger

lower bound of
√

logn
t proven by Klein and Young (1999) for a restricted range. We first

conjecture that the stronger lower bound holds for the larger range for our matrices:

Conjecture 1 There are fixed fractions c, c′ ∈ (0, 1) and n0 such that the gap of Ĥ is lower

bounded as follows: ∀n ≥ n0 and log n ≤ t ≤ c n : valD(Ĥ)−maxĤt
valD(Ĥt) ≥ c′

√
logn
t .

We further conjecture that our modified Hadamard matrices give the largest gaps among all
±1 matrices with game value 0. We have verified this conjecture by tedious combinatorial
arguments for n = 2, 4, 8 and t ≤ n as well as for n = 2k and n− 2 ≤ t ≤ n.

Conjecture 2 For any (n−1)×n dimensional ±1 valued matrix U satisfying valD(U) = 0,
the following inequality holds for 1 ≤ t ≤ n: maxĤt

valD(Ĥt) ≤ maxUt valD(Ut), where

Ĥt is any t column sub-matrix of Ĥ and Ut is any t column sub-matrix of U.
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