Algorithm $\text{EG}_\pm(U,(s^+, s^-), \eta)$

Parameters:
- L: a loss function from $\mathbb{R} \times \mathbb{R}$ to $[0, \infty)$,
- U: the total weight of the weight vectors,
- s^+ and s^-: a pair of start vectors in $[0, 1]^S$, with $\sum_{s^+} (s^+_i + s^-_i) = 1$, and
- η: a learning rate in $[0, \infty)$.

Initialization: Before the first trial, set $w_1^+ = Us^+$ and $w_1^- = Us^-$.

Prediction: Upon receiving the tth instance x_t, give the prediction

$$\hat{y}_t = (w_t^+ - w_t^-) \cdot x_t,$$

Update: Upon receiving the tth outcome y_t, update the weights according to the rules

$$w_{t+1}^+ = U \left(\frac{w_t^+ r_t^+}{\sum_{i=1}^U (w_t^+_i r_t^+_i + w_t^-_i r_t^-_i)} \right),$$

$$w_{t+1}^- = U \left(\frac{w_t^- r_t^-}{\sum_{i=1}^U (w_t^+_i r_t^+_i + w_t^-_i r_t^-_i)} \right),$$

where

$$r_t^+ = \exp(-\eta L^+(\hat{y}_t, y_t) \psi_{x_t}),$$

$$r_t^- = \exp(\eta L^-(\hat{y}_t, y_t) \psi_{x_t}),$$

No U in exponent

FIG. 3. Exponential gradient algorithm with positive and negative weights $\text{EG}_\pm(U,(s^+, s^-), \eta)$.

Therefore, $w_t^+ \cdot x_t = (w_t^+ - w_t^-) \cdot x_t$. Hence, the predictions of EG_\pm on S and EG_\pm on S' are identical, so EG_\pm is a result of applying a simple transformation to EG_L.

This transformation leads to an algorithm that in effect uses a weight vector $w_t^+ - w_t^-$, which can contain negative components. Further, by using the scaling factor U, we can make the weight vector $w_t^+ - w_t^-$ range over all vectors $w \in \mathbb{R}$ for which $||w||_1 \leq U$. Although $||w_t^+||_1 + ||w_t^-||_1$ is always exactly U, vectors $w_t^+ - w_t^-$ with $||w_t^+ - w_t^-||_1 < U$ result simply from having both $w_t^+, w_t^- > 0$ and $w_t^+, w_t^- > 0$ for some i. For other examples of reductions of this type, see Littlestone et al. (1995).

The parameters of EG_\pm are a loss function L, a scaling factor U, a pair (s^+, s^-) of start vectors in $[0, 1]^S$ with $\sum_{s^+} (s^+_i + s^-_i) = 1$, and a learning rate η. We simply write EG_\pm for EG_\pm where L is the square loss function. As the start vectors for EG_\pm, one would typically use $s^+ = s^- = (1/(2N), ..., 1/(2N))$. This gives $w_1^+ - w_1^- = 0$. A typical learning rate function could be $\eta = 1/(3U^2X^2)$ where X is an estimated upper bound for the maximum L_{∞} norm $\max_i ||x_i||_\infty$ of the instances. More detailed theoretical results are given in Theorem 5.11.

Again, we introduce one particular variable learning rate version of EG_\pm. We use the name EGV_\pm for the algorithm that is as EG_\pm except that (3.10) and (3.11) are replaced by