Parallel Approximation Algorithms for Bin Packing

RICHARD J. ANDERSON

Department of Computer Science, University of Washington,
Seattle, Washington

ERNST W. MAYR

Department of Computer Science, Stanford University,
Stanford, California

AND

MANFRED K. WARMUTH

Department of Computer Science, University of California,
Santa Cruz, California

We study the parallel complexity of polynomial heuristics for the bin packing problem. We show that some well-known (and simple) methods like first-fit-decreasing are \(\mathcal{P} \)-complete, and it is hence very unlikely that they can be efficiently parallelized. On the other hand, we exhibit an optimal \(\mathcal{NP} \) algorithm that achieves the same performance bound as does FFD. Finally, we discuss parallelization of polynomial approximation algorithms for bin packing based on discretization.

1. INTRODUCTION

In this paper we investigate the parallel complexity of bin packing. Since bin packing is \(\mathcal{NP} \)-complete, there is little hope for finding a fast parallel algorithm to construct an optimal packing. However, quite a few efficient approximation algorithms have been developed for bin packing, so it is natural to ask if fast parallel algorithms exist that find provably good packings.

The bin packing problem requires to pack \(n \) items, each with size
\(\varepsilon (0, 1) \), into a minimal number of unit capacity bins. For an instance \(I \) of the problem, \(\text{OPT}(I) \) will denote this number.

There have been two different approaches taken in studying sequential approximation algorithms for bin packing. One has been to look at simple heuristics and to analyze their behavior. A prominent example of such a heuristic is \textit{first fit decreasing} (FFD). It considers the items in order of non-increasing size, and places each item into the first bin that has enough space remaining. It has been shown that the length of the packing generated by FFD is at most \(\frac{11}{9} \text{OPT}(I) + 3 \) (Baker, 1985; Johnson et al., 1974). The other approach for approximation algorithms is to look for algorithms with a performance bound of \((1 + \varepsilon) \text{OPT}(I) \) (Fernandez de la Vega and Lueker, 1981; Karmarkar and Karp, 1982). Although these algorithms give an asymptotically better performance bound, the known algorithms of this type are complicated and have large runtimes. In this paper we are primarily concerned with parallel algorithms using the first approach, i.e., implementing simple packing heuristics that are relatively close to optimal. However, in the final section we briefly discuss a parallel implementation of the \((1 + \varepsilon) \text{OPT}(I) \) algorithm due to Fernandez de la Vega and Lueker (1981).

There are two reasons for investigating the extent to which simple bin packing algorithms can be implemented as fast parallel algorithms. The first reason is to develop good parallel algorithms for bin packing, with good time and processor bounds and close to optimal performance. Furthermore, if the analysis of the sequential algorithms carries through to the parallel case, we can avoid the monumental task of analyzing a bin packing algorithm from scratch. Bin packing is closely related to certain scheduling problems since the items can be viewed as tasks to be scheduled on a set of processors with the size of the items being interpreted as the processing time needed. Thus it is conceivable that an efficient parallel algorithm for bin packing could be of use for scheduling tasks on a multi-processing system.

The other reason for attempting to implement the simple bin packing heuristics as fast parallel algorithms is to investigate the nature of sequential algorithms versus parallel algorithms. A number of sequential algorithms, such as the greedy algorithms for computing a maximal independent set and computing a maximal path can be shown to be inherently sequential. The bin packing heuristics also seem quite sequential in nature, so it is important to examine to what extent this is inherent. The goal is to gain insight into what types of algorithms can be sped up substantially with parallelism and what algorithms probably cannot.

In this paper we use the PRAM model of parallel computation (Fortune and Wyllie, 1978). We consider a parallel algorithm to be fast if it is an \(NC \) algorithm (Pippenger, 1979), i.e., if it runs in polylogarithmic time.
using a polynomial number of processors. However, the main algorithm
that we give will obey a far more reasonable bound, running in \(O(\log n)\)
time on an \(n/\log n\) processor EREW (exclusive read, exclusive write)
PRAM, and hence is asymptotically optimal. We say a problem is
inherently sequential if it is \(\mathcal{P}\)-complete. This is relatively strong evidence
that the problem is not in \(\mathcal{NC}\), since if it were, then \(\mathcal{P} = \mathcal{NC}\). We shall
occasionally refer to an algorithm as being a \(\mathcal{P}\)-complete algorithm. The
proper interpretation of this is that deciding the value of a specified bit of
the output of the algorithm is \(\mathcal{P}\)-complete (Anderson and Mayr, 1987).

The main results of this paper are that the FFD heuristic is a
\(\mathcal{P}\)-complete algorithm, and that a packing that obeys the same performance bound as FFD can be computed by a fast parallel algorithm. The
\(\mathcal{P}\)-completeness result holds even if the problem is given with a unary
encoding. This is interesting since most known \(\mathcal{P}\)-complete number
problems, such as network flow (Goldschläger, Shaw, and Staples, 1982)
and list scheduling (Helmhold and Mayr, 1987) can be solved by fast
parallel algorithms if the numbers involved are small. A notable exception
is linear programming which is also strongly \(\mathcal{P}\)-complete (Dobkin, Lipton,
and Reiss, 1979). Our algorithm for constructing a packing that obeys the
same \(11/\delta\) bound as FFD, packs the large items (items of size \(\geq \frac{1}{\delta}\)) in the
same manner as FFD and then fills in the remaining items. The algorithm
runs in \(O(\log n)\) time using \(n/\log n\) processors. The packing algorithm
generalizes to an algorithm that constructs an FFD packing in time
\(O(\log n)\) for all instances where all items are of size at least \(\varepsilon > 0\). It can
thus be viewed as an approximation scheme to FFD. As a subroutine, we
also develop a new and optimal EREW-PRAM algorithm to match
parentheses.

2. \(\mathcal{P}\)-Completeness Proof for FFD

In this section, we prove that, in all likelihood, the FFD bin packing
heuristic is not efficiently parallelizable. More formally, we show that the
problem whether FFD places a distinguished item into a certain bin is
\(\mathcal{P}\)-complete in the strong sense, i.e., it is \(\mathcal{P}\)-complete even if the items are
given using a unary notation. Thus, to compute an FFD packing is difficult
in parallel even for “small” item sizes, i.e., item sizes that are fractions with
small integer numerators and denominators. This should be compared to
the parallel complexity of other number problems (or problems involving
numbers in an essential way), like network flow (Goldschläger et al., 1982;
Karp, Upfal, and Wigderson, 1985) and list scheduling (Helmhold and
Mayr, 1987). These are \(\mathcal{P}\)-complete only in the weak sense and can be
solved in \(\mathcal{NC}\) or \(\mathcal{RNC}\) if the numbers involved are small.
THEOREM 1. Given a list of items, each of size between 0 and 1, in non-increasing order, and two distinguished indices i and b, it is \(\mathcal{P} \)-complete to decide whether the FFD heuristic will pack the ith item into the bth bin. This is true even if the item sizes are represented in unary.

Proof. For the proof we use a reduction from the following variant of the monotone circuit value problem: a circuit consists of AND and OR gates whose fan-out is at most two. This restricted version is clearly \(\mathcal{P} \)-complete as can be seen by an easy log space reduction from the general monotone circuit value problem (Ladner, 1975). The details of the construction are omitted here.

Our reduction is described in two stages. We first reduce the restricted monotone circuit value problem to an FFD bin packing problem featuring bins of variable sizes. The construction is then modified to give an FFD packing into unit capacity bins.

Let \(\beta_1, ..., \beta_n \) be the gates of an \(n \)-gate monotone circuit, i.e., each \(\beta_i \) is either AND\((i_1, i_2)\) or OR \((i_1, i_2)\), with \(i_1 \) and \(i_2 \) the inputs of the gate. Each input can be a constant (true or false), or the value of some other gate \(\beta_j, j < i \). In our first construction, we transform the sequence \(\beta_1, ..., \beta_n \) into a list of items and a list of bins. The list of item sizes will be non-increasing. For every gate \(\beta_i \), we obtain a segment for each of the two lists. The segments for each list are concatenated in the same order in which the gates are given. For ease of notation, let

\[
\delta_i = 1 - \frac{i}{n + 1} \quad \text{and} \quad \varepsilon = \frac{1}{5(n + 1)}.
\]

The list segments for each gate are determined by Table I, where gate \(\beta_i \) is assumed to feed into gate \(\beta_j \) if it has just one output and into gates \(\beta_j \) and \(\beta_k \) otherwise.

<table>
<thead>
<tr>
<th>TABLE I</th>
<th>Bins and Item Sizes for Various Types of Gates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fan-out one</td>
<td>(</td>
</tr>
<tr>
<td>AND</td>
<td>(</td>
</tr>
<tr>
<td>OR</td>
<td>(</td>
</tr>
<tr>
<td>Fan-out two</td>
<td>(</td>
</tr>
<tr>
<td>AND</td>
<td>(</td>
</tr>
<tr>
<td>OR</td>
<td>(</td>
</tr>
<tr>
<td>Gate (\beta_i)</td>
<td>(</td>
</tr>
<tr>
<td></td>
<td>(</td>
</tr>
</tbody>
</table>
Let T_i denote any item of size δ_i, and F_i any item of size $\delta_i - 2\epsilon$. For every constant input of gate β_i, a T_i is removed from its list of items if the input is false and an F_i if it is true.

We claim that packing the list of items (which is clearly non-increasing) into the sequence of bins according to the FFD heuristic, emulates evaluation of the circuit in the following sense. Consider the bins in list order. When we start packing into the first bin of β_i's segment, for $i = 1, \ldots, n$, the remaining list of items starts with β_i's segment, and two of the first four items in this segment have already been removed. The other two of these four items encode the values of the two inputs to gate β_i: a T_i stands for a true input, F_i for false. Suppose β_i is an AND-gate with fan-out two. Then β_i's second bin receives a T_i if both of its inputs are true, and an F_i otherwise. In the first case, the second bin can further accommodate only the last item in β_i's list, whereas in the second case, it has still room for the third-to-last item in the list. As a result, packing β_i's items leaves space in the amount of $\delta_j - \epsilon$ and $\delta_k - \epsilon$ in β_i's last two bins if β_i evaluates to true. If the output of β_i is false, the corresponding amounts are δ_i and δ_k. Thus, in the first case, F_j and F_k will also be packed into the last two of β_i's bins since they are the largest items to fit. In the other case, T_j and T_k fit and will be packed. Therefore, after both inputs to β_j (similarly, β_k) have been evaluated, the two remaining of the first four items in β_i's (resp., β_k's) segment again properly reflect the values of the two inputs to the gate.

Figure 1 shows the packings for two input combinations to a fan-out two OR-gate. The OR-gate functions quite similarly to the AND-gate just described, with the role played by the first two bins more or less reversed. The details of the simulations performed by the other types of gates listed in Table I are left to the reader.

In the second part of the construction, we show how to use unit size bins. Let u_1, \ldots, u_q be the non-increasing list of item sizes, and let b_1, \ldots, b_r.

![Figure 1](attachment:image.png)
be the list of variable bin sizes obtained in the first part. Define B to be the maximum of b_i, and let $C = (2r + 1)B$. We construct a list of decreasing items $v_1, ..., v_{2r}$ which when packed into r bins of size C leave space b_i in the ith bin. Let

$$v_i = \begin{cases} C - iB - b_i, & \text{if } i \leq r; \\ C - iB, & \text{if } i > r. \end{cases}$$

When these items are packed according to the FFD heuristic, items v_i and v_{2r+1-i} end up in the ith bin, thus leaving b_i empty space. Also note that v_{2r} is at least as large as u_1. Let $w_1, ..., w_{2r+q}$ be the list of item sizes obtained by concatenating the v- and u-lists, and normalizing the sizes by dividing each of them by C. Assume without loss of generality that the output gate β_n of the given circuit is an AND-gate. An FFD packing of the items in the w-list into unit bins will place the item corresponding to the second T_n in β_n's list into the last bin iff the output of the circuit is true.

The two parts of the construction described above can clearly be carried out on a multitape Turing machine using logarithmic work space. Since all numbers involved in the construction are bounded in value by a polynomial in the size of the circuit, we have shown that FFD bin packing is \mathcal{P}-complete in the strong sense (under log space reductions), i.e., it remains \mathcal{P}-complete even if numbers are represented in unary (with fractions given by a pair of integers).

FFD is a rather simple sequential algorithm to achieve bin packings relatively close to optimal. As we have just seen, however, it is another example of a \mathcal{P}-complete algorithm, a notion introduced in (Anderson and Mayr, 1987).

A number of other simple heuristics for bin packing can also be shown to be \mathcal{P}-complete, e.g., best fit decreasing (BFD). The BFD heuristic considers items in order of non-increasing size. It places each item into a bin in such a way as to minimize the leftover space.

3. A Parallel Alternative for FFD

Even though the FFD heuristic itself appears to be inherently sequential we are able to give an \mathcal{NC}-algorithm for bin packing that achieves the same overall performance bound as FFD. This algorithm works in two stages. The first stage relies on

Theorem 2. The packing obtained by the FFD heuristic can be computed by an \mathcal{NC}-algorithm for instances where all items have size at least $\epsilon > 0$. On a sorted list of n items, the algorithm uses $n/\log n$ processors and runs in time $O(\log n)$.
The proof of this theorem will be given in the next two sections. Here, we show how to apply it to get a good parallel alternative for FFD. Our two-stage algorithm first packs all items of size at least $\frac{1}{5}$ according to FFD, using the above algorithm. The second stage uses the remaining items to fill bins up in a greedy fashion. It makes sure that each bin is filled to at least $\frac{5}{6}$ before it proceeds to the next. We call the resulting packing a composite packing. There are a number of possible algorithms to use for the second stage. One possibility is to use the first-fit-increasing heuristic (FFI). An FFI packing can be computed by an $N\infty$-algorithm, but it is not known how to do so for variable size bins with a linear number of processors. Below, we give a different method which can be implemented with optimal speedup.

The following lemma establishes that the composite packing is within a factor of $\frac{1}{3}$ of optimal. Variants of this lemma have been used extensively in the analysis of bin packing algorithms.

Lemma 3.1. The length of the composite packing $L_c(I)$ satisfies

$$L_c(I) \leq \max\{L_{\text{ffc}}(I), \frac{5}{6}\ \text{OPT}(I) + 1\} \leq \frac{11}{9}\ \text{OPT}(I) + 4.$$

Proof. Let L be the length of the FFD packing of the items with size at least $\frac{1}{5}$. Clearly $L \leq L_{\text{ffc}}(I)$, so if all the items packed by the second stage of the algorithm are placed into the first L bins, then $L_c(I) \leq L_{\text{ffc}}(I)$. If more than L bins are used, then all bins except possibly the last one are filled to at least $\frac{5}{6}$, so $L_c(I) \leq \frac{5}{6}\ \text{OPT}(L) + 1$.

We now describe the second stage of the algorithm for constructing the composite packing. It runs in $O(\log n)$ time and uses $n/\log n$ processors. Let u_1, \ldots, u_r be a list of items, all of size less than $\frac{1}{6}$. The first step is to combine these items into chunks so that all chunks (except possibly the last) have size between $\frac{1}{24}$ and $\frac{1}{6}$. The items of size at least $\frac{1}{24}$ are big enough, and each is put into a chunk by itself. For the remaining items, the partial sums $s_k = \sum_{1 \leq j \leq k} u_j$ are determined using optimal prefix summation (Ladner and Fischer, 1980). For each i, we combine the set of items $\{u_k \mid i/12 \leq s_k < (i+1)/12\}$ to form a chunk. Since the items have size less than $\frac{1}{24}$, each chunk will have a size between $\frac{1}{24}$ and $\frac{5}{24}$.

The bins packed by the FFD algorithm with items of size at least $\frac{1}{5}$ can now be filled in. We have, in parallel, each bin filled to less than $\frac{2}{3}$ pick a distinct chunk to add to the bin. Since the sizes are at least $\frac{1}{24}$, only a constant number of passes is needed. Each pass can be implemented using parallel prefix computation.

If there are left over items, they are packed in new bins. The algorithm is similar to the one just used for filling up the bins partially packed by the FFD algorithm, except that we do not know the number of bins to use. Let
u_1, \ldots, u_q be the list of left over items (chunks), each of size between $\frac{1}{2}$ and $\frac{5}{6}$, and let $U = \sum_{i=1}^{q} u_i$. Since each bin can be filled to at least $\frac{6}{5}$, $\lceil 6U/5 \rceil$ bins will certainly suffice. We start our iterative packing with this number of active bins, arranged in an array. In a pass, each active bin determines how many bins to its left (including itself) are filled to less than $\frac{5}{6}$, and how many items are currently packed in bins to its right. Two parallel prefix computations are used to find these numbers. Then the largest index is determined such that, to its right, there are enough items to satisfy the requests up to and including the bin given by the index. The items currently stored in the rightmost bins are used to fill up, one item per bin, the underfull bins to the left of or at the index. Bins that are emptied by this process become inactive. Since the items have size at least $\frac{1}{2}$ a constant number of passes suffices. As above, each pass can be executed in $O(\log n)$ time on an $n/\log n$ processor EREW-PRAM.

The results presented in this and the previous section show that it is the small items that make FFD hard to parallelize. Here, small need not even be "very small" since, as we have seen, FFD is \mathcal{P}-complete in the strong sense. Using a different approach to pack small items, however, still provides an asymptotically optimal \mathcal{NC}-algorithm to achieve a packing with the same overall performance as FFD.

4. PARALLEL FFD FOR BIG ITEMS

Let $\epsilon > 0$ be fixed. In this section, we describe our main algorithm. It constructs an FFD packing for lists of items whose size is bounded below by ϵ. The algorithm runs in time $c_\epsilon \log n$, where c_ϵ is a constant depending on ϵ. The algorithm can be implemented using $n/\log n$ processors on an EREW-PRAM, provided that the input list of items is given in non-increasing order. Otherwise, we have to sort the list first, which, for the stated time bound, requires a linear number of processors.

Performing an FFD packing on a non-increasing list of items can be viewed in two ways. The first is to consider the items in order, move each one down the list of (partially filled) bins and place it into the first bin it fits. An alternate way is to consider the bins one after another, have each move down the list of items and pick up and pack any item that fits into the available space. These two viewpoints lead to two different ways of decomposing the initial problem into simpler parts, and we shall use both methods. We first subdivide the list of items into contiguous sublists in such a way that the item sizes within any sublist are within a factor of two. This can be done generating at most $\lceil \log(\epsilon^{-1}) \rceil$ sublists. The sublists are packed sequentially since there is only a constant number of them.
Accordingly, the algorithm is subdivided into *phases*, packing in phase \(i \) the items with size in \((2^{-(i+1)}, 2^{-i}]\).

In phase \(i \), we can disregard all bins that have space \(2^{-(i+1)}\) or less available. Omitting these bins, we obtain a subsequence of bins called the \(i+1\)-*projection* of the original list. To pack the sublist of items in phase \(i \), we divide the \(i+1\)-projection of the list of (partially packed) bins into *runs*. A *run* is a contiguous segment of bins whose length is maximal subject to the following two conditions.

1. The available space is non-decreasing.
2. There is an integer \(t \), called the *type* of the run, such that the available space in each bin of the run is in the interval \((2^{-(i+1)}, 2^{-i}]\).

A sublist of bins satisfying just the first of these two conditions is called a *pre-run*.

Packing a sublist (or as much of it as fits) into a run is achieved by alternating two routines, *forward_pack* and *fill_in* until no more items fit into bins of the run, or all items in the sublist have been packed. The *forward_pack* routine determines how many consecutive items at the beginning of the list will fit into the first bin of the run. Let this number be \(k \). The routine then determines how many consecutive chunks of \(k \) items each can be packed into consecutive bins, following the FFD heuristic. To do so, it checks which bin could actually accommodate the first \(k + 1 \) item chunk. Finally, *forward_pack* packs, in parallel, the chunks of \(k \) items into the appropriate number of leading bins of the run, removes these bins from the run, and returns them as a pre-run.

algorithm FFD_pack \((L, \varepsilon)\);

\(L \) is a sorted list of \(n \) items to be packed according to FFD; each item has size at least \(\varepsilon \)

\(S := (\rho_0) \); \(\rho_0 \) holds a list of runs; the initial run \(\rho_0 \) consists of \(n \) empty bins

for \((i := 0; 2^{-i} \geq \varepsilon; i++) \) **do**

\(L' := \) sublist of items in \(L \) with sizes \(\varepsilon (2^{-(i+1)}, 2^{-i}] \);

if \(L' = \) then **continue** fi; go to beginning of loop

\(S' := \) ;

repeat

\(\rho := \) first run of the \(i+1 \)-projection of \(S \);

forward_pack \((\rho, \psi)\); \(\psi \) is a pre-run

\(S'' = \text{fill_in} (\psi) \); \(S'' \) is a list of runs

remove from runs in \(S'' \) bins with less than \(\varepsilon \) space;

append \(S'' \) to \(S' \)

until \(L' = \) ;

append the unused portion of the \(i+1 \)-projection of \(S \) to \(S' \);

\(S := S' \) with the bins not in the \(i+1 \)-projection of \(S \) merged back in

end.
procedure forward_pack (\(\rho, \psi\));
if \(i\) \(\leq\) type of \(\rho\) then \(\psi := \rho\); return \(fi\);
let \(L' = u_1, \ldots, u_i\);
let \(s_1 \leq s_2 \leq \cdots \leq s_{|\rho|}\) be the amounts of space available in \(\rho\)'s bins;
\(k := \max \{j \mid j \leq |L'| \text{ and } u_i + \cdots + u_j \leq s_1\}\); \(\mathbf{co}\) note that \(k > 0\) \(\mathbf{oe}\)
let \(r\) be minimal subject to
1. \(r = \min \{|\rho|, \lceil l/k \rceil\}\); or
2. \((r+1)k < l\) and \(u_{rk+1} + \cdots + u_{(r+1)k+1} \leq s_{r+1}\);
remove first \(r\) bins from \(\rho\), put them into \(\psi\);
if \(\rho = ()\) then remove \(\rho\) from \(S\) \(fi\);
in parallel for \(j = 1, \ldots, r\), add items \(u_{(j-1)k+1}, \ldots, u_{jk}\) to \(j\)th bin in \(\psi\);
return
end.

The pre-run returned by \(\text{forward-pack}\) is subject to fill-in packing. Here, smaller items further down in the list are packed into the space left after the forward packing. The function \(\text{fill-in}\) first breaks the pre-run into runs. If all bins in the pre-run were actually filled by the forward packing (that is, the number \(r\) of bins in the pre-run was determined by the second condition for \(r\) in procedure \(\text{forward-pack}\)), these runs are all of type greater than the phase number \(i\), and no more items can be packed into them in phase \(i\). Otherwise, if the pre-run contains a run of type \(i\) (possibly since \(\text{forward-pack}\) did not pack the run since it was of type \(i\)), \(\text{fill-in}\) tries to pack more items into the bins of the run. Due to the constraints on the amount of space left in type \(i\) bins and the size of items packed in phase \(i\), at most one additional item per bin can be packed by \(\text{fill-in}\).

We can compute a fill-in packing by first merging the reversal (which is non-increasing) of the list of amounts of space left in the bins of the run with the list of item sizes. When merging the two lists, we take care that all bins precede all items of the same size. We then interpret the combined list as a string of parentheses, with each bin corresponding to an opening, and each item to a closing parenthesis. The natural matching of the parentheses can be seen to give the assignment of items to bins as obtained by FFD, since every item goes into the smallest possible (and hence last in the reversed list) bin still available, and the items are considered in decreasing order.

The details of the implementation of \(\text{fill-in}\) will be given in the next section where we show that it can be made to run in time \(O(\log n)\) on an EREW-PRAM with \(n/\log n\) processors.

Assuming these resource bounds, we state

Theorem 3. Algorithm \(\text{FFD-pack}(L, \varepsilon)\) runs in time \(c_\varepsilon \log n\) on an \(n/\log n\) processor EREW-PRAM. The constant \(c_\varepsilon\) is polynomial in \(1/\varepsilon\).

Proof. To analyze the complexity of \(\text{FFD-pack}\) we introduce a generalization of the concept of a run: A stacked run or \(s\)-run of type \(j\) is a run of type \(j\) obtained from the \(j+1\)-projection of the list of bins. As a
consequence, an s-run of type j may be composed of several runs of type j separated, in the original list, by runs of higher types. Because of this, the number of runs can be larger than the number of s-runs, but at most by a factor of two. To every s-run of type j, we assign a weight of 2^{-2i}. The weight of a list of bins is the sum of the weights of all its s-runs.

Consider the effect of forward packing items in phase i into bins of an s-run of type j, $j < i$. Note that the items packed by the forward packing are not necessarily a contiguous sublist since some of the items may be used as fill-ins. For the moment, we assume that enough items are available to fully pack all bins in the s-run in the forward packing. Disregarding fill-in items, the forward packing of the s-run can create at most $2^{-i}/2^{-(i+1)} - 2^{-(i+1)/2^{-i}} = \frac{3}{2} 2^{-i}$ pre-runs which all decompose into runs of type $i + 1$ or higher (at most one run of any type per pre-run). Thus, the weight of the s-runs resulting from forward packing to capacity one s-run of type j (and disregarding fill-in terms) in phase i is bounded by

$$\frac{3}{2} 2^{-i-j} \sum_{k > i} 2^{-2k} < 2^{-2i}.$$

The forward packing routine may also leave a partially filled bin or fail to pack a whole s-run to capacity when it runs out of items. Since at most one s-run of every type can be only partially packed in this way, this adds, for the whole phase, a weight bounded by

$$\sum_{k \geq 0} 2^{-2k} = \frac{4}{3}.$$

Next, we consider the effect of the fill-in routine on the weight of s-runs. In phase i, fill_in is going to affect only s-runs of type i. Suppose when filling in an s-run of type i, fill_in creates two new s-runs of some type $j > i$. Then all items added to the bins in the first s-run come after the items of the second s-run in the item list. Let u be the size of the fill-in item packed into the first bin of the first new s-run, and v the size of the fill-in item in the second s-run. Since the item of size v came earlier in the item list, it did not fit into the first bin of the first run. After the item of size u is packed into this bin, there is still an amount of space larger than $2^{-(i+1)}$ left since the s-run is of type j. Hence, $v > u + 2^{-(i+1)}$. We conclude that every s-run of type j generated by fill_in except the last one accounts for a drop of at least $2^{-(i+1)}$ in item size. Since all item sizes in phase i are in $(2^{-i+1}, 2^{-i}]$ at most 2^{i-1} s-runs of type j can be created, causing an additional weight increase of $\leq \sum_{j > i} 2^{-2i} 2^{i-1} = 2^{2i}$.

Let w_i be the total weight of the list of bins at the beginning of phase i. Then $w_{i+1} \leq 2w_i + \frac{4}{3}$ and $w_0 = 1$. From this, we obtain $w_i = O(2^i)$. Since in the ith phase we are only concerned with the $(i+1)$-projection of the list of bins, each s-run has weight at least 2^{-2i}, and there are at most $2 \cdot 2^i w_i$
PARALLEL ALGORITHMS FOR BIN PACKING

273

runs for the algorithm to pack into. The number of runs in the last phase is therefore \(O(1/e^3) \). Since the time requirement of the algorithm is clearly

\(O(\log n) \) for every run generated, the claim follows.

5. PACKING FILL-IN ITEMS

In this section, we present asymptotically optimal EREW-PRAM algorithms for the following two problems:

1. merge two sorted lists of \(n \) elements each into a sorted list;

2. in a string of length \(n \) of opening and closing parentheses, find the matching pairs. This problem can also be phrased in terms of push and pop operations on a stack, with the goal to match pops to pushes.

Since both problems can be solved sequentially in linear time, any optimal parallel algorithm must run in time \(O(\log n) \) on an EREW-PRAM with \(n/\log n \) processors. We first describe the merge procedure. Note that for the fill-in packing we also require that the merging is done in such a way that all elements of a given value in the first sequence precede all elements of the same value from the second sequence. However, this can easily be taken care of, and we leave the corresponding details to the reader. For simplicity, we assume here that no element in the first sequence has the same value as an element in the second sequence.

From the two input sequences, we first select every \(\lceil \log n \rceil \)th element and merge the two selected subsequences. Viewing the first subsequence in increasing order and the second in decreasing order results in a bitonic sequence. It can easily be sorted in \(O(\log n) \) steps on \(n/\log n \) processors by emulating the last stage of Batcher's (1968) bitonic sort (Stone, 1971). Let \(u^{(1)}, u^{(2)}, \ldots \) be the elements selected from the first sequence, and \(v^{(1)}, v^{(2)}, \ldots \) those from the second. Also, let \(U^{(i)} \) be the interval between \(u^{(i)} \) and \(u^{(i+1)} \), including the left end \(u^{(i)} \) but excluding the right end \(u^{(i+1)} \), and let \(V^{(i)} \) be defined accordingly for the second sequence.

Assume first that two or more selected elements \(v^{(j)}, \ldots, v^{(k)} \) of the second sequence fall within \(U^{(i)} \). We broadcast the elements in \(U^{(i)} \) that are greater than \(v^{(j)} \) and less than \(v^{(k)} \) to \(v^{(j)}, \ldots, v^{(k-1)} \). To do so, we assign one processor to each of \(v^{(j)}, \ldots, v^{(k-1)} \), and use these processors to implement a balanced binary tree in such a way that each processor is responsible for at most two nodes (one leaf and possibly one internal node) in that tree. The elements in \(U^{(i)} \) can be broadcast, along this tree, in a pipelined fashion, requiring \(O(\log n) \) time. We then merge each \(V^{(l)} \), for \(l = j, \ldots, k-1 \), with the sublist of \(U^{(i)} \) between \(v^{(l)} \) and \(v^{(l+1)} \), using the processor responsible for \(v^{(l)} \). All \(U^{(i)} \) of this type are handled in this manner in parallel.
All intervals $U^{(i)}$ of the first sequence unaffected by this first phase contain at most one $v^{(j)}$. In the second phase of the merge procedure, we therefore merge intervals of the second sequence that contain remaining elements of the first sequence, into the first sequence. Let $V^{(i)}$ be such an interval, and let j and k be maximal such that $u^{(j)} < v^{(i)}$ and $u^{(k)} < v^{(i+1)}$. The elements in $V^{(i)}$ are broadcast, as above, to $u^{(j)}, ..., u^{(k)}$, and the appropriate sublists are then merged with $U^{(j)}, ..., U^{(k)}$. Again, this can be achieved in $O(\log n)$ time using one processor per selected element. Since one $U^{(j)}$ may be affected by two adjacent $V^{(i)}$s, we divide this second phase into two subphases, merging in each subphase only every other of the relevant $V^{(i)}$.

Together, we have just established

Theorem 4. Two sorted lists of length n each can be merged on an EREW-PRAM with $n/\log n$ processors in time $O(\log n)$. This result is asymptotically optimal.

Proof:

The second problem considered in this section concerns simulating a pushdown stack or matching parentheses. We use the second picture. Let an arbitrary string of n opening and closing parentheses be given. First, we employ an optimal parallel prefix routine to find and remove all those (opening or closing) parentheses that are not matched. For the remaining parentheses, we use parallel prefix once more to assign a level to each parenthesis, in the standard manner. The first (opening) parenthesis is assumed to be assigned level 1. The problem now becomes finding, for each opening parenthesis, the first closing parenthesis following it in the string and having the same level.

Imagine $n/\log n$ processors of an EREW-PRAM arranged in form of a balanced binary tree, with each leaf processor responsible for an interval of roughly $2 \log n$ parentheses. For convenience we refer to the nodes of the tree by their inorder number, and we assume that every processor knows the inorder number of its node. First, the leaf processors find all matching pairs of parentheses within their respective interval. The unmatched parentheses at every leaf form a subsequence of closing parentheses followed by a subsequence of opening parentheses. Next, each processor in the tree, from the leaves towards the root, computes a triple (c, m, o). Here, m is the number of matching pairs, with the opening parenthesis in the left and the closing parenthesis in the right subtree of the node assigned to the processor; c and o are the number of unmatched closing respectively opening parentheses in the subtree rooted at the node. Each processor at an internal node of the tree can compute its triple from those of its two children as
\[(c, m, o) = (lc + \max(0, rc - lo), \min(lo, rc), ro + \max(0, lo - rc)),\]

where \(lc\) and \(lo\) are the \(c\)- and \(o\)-value of the left child, and \(rc\) and \(ro\) correspondingly for the right child. This computation proceeds level by level, and takes \(O(\log n)\) time. Using an optimal routine for parallel prefix computation, we also compute \(b(v) = \sum_{w < v} m(w)\) for every node \(v\) in the tree.

Every pair of matching parentheses can now be assigned a uniquely determined index \((b, i)\). Consider a pair matched at node \(v\). Then \(b = b(v)\), and \(i\) gives the nesting depth of the pair in the subsequence of pairs matched at \(v\). Thus, the outermost pair of parentheses being matched at \(v\) has index \((b(v), 0)\), the innermost \((b(v), m(v) - 1)\), where \(m(v)\) is the \(m\)-value in \(v\)'s triple computed above. Originally, the index of a matching pair of parentheses is known at the node in the tree where the pair matches.

The goal of the next stage of the algorithm is to communicate its index to every parenthesis in the string that is left after the preprocessing. Consider node \(v\) in the tree. It matches an inverting of \(m(v)\) opening parentheses which it received from its left child with an interval of \(m(v)\) closing parentheses received from its right child. The processor at \(v\) sends the indices describing the endpoints of each part to the corresponding child, together with a parameter describing the position of the interval in the sequence of parentheses originally passed up from that child. Upon receiving this information from its parent, the processor at a (non-leaf) descendant node can break the corresponding interval into two intervals, one that came from its left child and one from its right child, and send the appropriate information on to its children. Leaf processors distribute index interval information to the corresponding parentheses in their subinterval. With some care in the implementation, each leaf processor requires only \(O(\log n)\) time. Therefore, if all processors start out simultaneously to propagate the index information for the intervals of parentheses they match, the whole stage obviously takes time \(O(\log n)\).

Finally, all opening parentheses in parallel write their address to position \(b + i\) of some global array of length \(n\), where \((b, i)\) is the index received by the parenthesis. In the following step, all closing parentheses can read the cell of the array given in the same manner by their index, and in this way find their matching opening parenthesis. Since all sums \(b + i\) are distinct, no write or read conflicts will occur.

Theorem 5. All matching pairs in an arbitrary string of \(n\) parentheses can be found in time \(O(\log n)\) on an \(n\) processor EREW-PRAM.

We remark that a (completely different) CREW-PRAM algorithm for this problem obeying the same asymptotic resource bounds has been given in Bar-On and Vishkin (1985).
6. Parallel Approximation by Discretization

It is natural to ask if it is possible to do better than FFD with a parallel approximation algorithm for bin packing. The answer is yes, since it is possible to implement the algorithm in Fernandez de la Vega and Lueker (1981) as a fast parallel algorithm. This algorithm constructs a packing that is within a factor of $1 + \varepsilon$ of the optimum for any fixed ε in $O(n)$ time. The run time for the algorithm is enormous, having a constant term which is exponential in $1/\varepsilon$.

The basic idea of the algorithm in Fernandez de la Vega and Lueker (1981) is to first consider a packing problem where the number of item sizes is fixed and the size of the smallest item is bounded below by a constant. They show that such a packing problem can be solved to within an additive constant in constant\(^1\) time. The algorithm reduces the packing problem to the restricted version by dividing elements into a number of groups and then rounding the size of the elements in a group up to the same value. They also show that this packing gives a good approximation to the original packing problem. There are no obstacles to implementing this as an \(\mathcal{NC}\)-algorithm, using, among other things, some of the techniques presented in Section 3. Further details involved in the construction of the packing are left to the reader.

7. Conclusion

We have seen that some very simple sequential bin packing heuristics are \(\mathcal{P}\)-complete and hence in all likelihood are not efficiently parallelizable. With FFD, we have established one of the first number problems (other than LP) known to be \(\mathcal{P}\)-complete in the strong sense. Interestingly enough, however, we have also been able to present an \(\mathcal{NC}\)-algorithm that can be viewed as a parallel approximation scheme for FFD.

While there exist polynomial time and \(\mathcal{NC}\) approximation schemes for the \(\mathcal{NP}\)-complete problem of bin packing, the constants involved in these algorithms are prohibitively large. An interesting open problem is whether more efficient sequential approximation schemes can be parallelized. More generally, one might ask whether there are natural parallel approximation schemes for bin packing, i.e., schemes not derived from sequential ones.

Another interesting question is to study the application of parallel approximation techniques to scheduling problems, some of which are very

\(^1\) The number of arithmetic operations in this algorithm is constant. The numbers involved are not large, so the number of bit operations used is polynomial in \(n\). Using parallel algorithms for the arithmetic operations, this can safely be considered an \(O(\log n)\) time parallel algorithm.
closely related to bin packing. For instance, there are many sequential heuristics based on list schedules; the parallel complexity of these methods, however, is largely unknown.

RECEIVED February 22, 1988; ACCEPTED June 16, 1988

REFERENCES

FERNANDEZ DE LA VEGA, W., AND LUEKER, G. (1981), Bin packing can be solved within \(1 + \varepsilon\) in linear time, Combinatorica 1, No. 4, 349–355.

LADNER, R. (1975), The circuit value problem is log-space complete for \(P\), SIGACT News 7, 1, 553–590.

