Hedging Structured Concepts

Wouter M. Koolen Manfred K. Warmuth Jyrki Kivinen
CWI Amsterdam UC Santa Cruz University of Helsinki

Sunday 27 June, 2010
Prediction With Expert Advice

Hedge algorithm

Structured Concepts

$\text{SC + Hedge} \Rightarrow \text{range factor problem}$

Component Hedge

$\text{SC + CH} \Rightarrow \text{range factor problem solved}$

Conclusion
Setting

- Several sources of predictions (experts)
- Choose an expert each trial (randomised)
- Incur loss of the selected expert (0/1)
- Observe loss of all experts (full information)

Goal

- Cumulative loss close to the best expert
- Efficient algorithm
The Hedge Algorithm (Freund & Schapire 1997)

- Maintains uncertainty as a distribution w_t on n experts w_1 is uniform

- For each trial $t = 1, 2, \ldots$
 - Select expert i with probability $w_{t,i}$
 - Receive loss vector $\ell_t \in [0, 1]^n$, incur loss $\ell_{t,i}$
 - Expected loss $w_t \cdot \ell_t$
 - Update $w_{t+1,i} \propto w_{t,i} \beta^{\ell_{t,i}}$

- With $\ell^H = \sum_{t=1}^{T} w_t \cdot \ell_t$ and $\ell^* = \min_i \sum_{t=1}^{T} \ell_{t,i}$,
 $$\ell^H - \ell^* \leq \sqrt{2 \ell^* \ln n + \ln n}$$
Structured Concepts

- **Concepts composed of components**

<table>
<thead>
<tr>
<th>concept</th>
<th>component</th>
</tr>
</thead>
<tbody>
<tr>
<td>set</td>
<td>element</td>
</tr>
<tr>
<td>permutation</td>
<td>assignment</td>
</tr>
<tr>
<td>bipartite matchings</td>
<td>edges</td>
</tr>
<tr>
<td>spanning trees</td>
<td>edges</td>
</tr>
<tr>
<td>paths</td>
<td>edges</td>
</tr>
</tbody>
</table>
Goal: on-line prediction with “combinatorial experts”

- Route planning: shortest path
- Media multicasting: directed spanning trees

Loss of concept is sum of losses of its components

Helps: losses of concepts highly related

Hurts: combinatorial explosion (many concepts)
Expanded Hedge (EH)

- Treat each structured concept as an expert
- Run Hedge algorithm
- Consider size k subsets of n elements
 - Component loss in $[0, 1]$, so concept loss in $[0, k]$.
 - Number of concepts $\binom{n}{k} \approx n^k$.
 - Regret bound
 \[
 \ell_{EH} - \ell^* \leq \sqrt{2\ell^* k k \ln n} + k k \ln n
 \]
 - But lower bound has $k \ln n$. Range factor problem
- Identify concepts with incidence vectors
- Loss of C is $C \cdot \ell$ (with ℓ component losses)
- Randomly select a concept C with probability W_C
- Expected loss is
 \[
 \sum C W_C (C \cdot \ell) = \left(\sum C W_C C \right) \cdot \ell
 \]
 - Only the usage (i.e. mean concept) matters
- Set of usages is the convex hull of concepts
Sets of 2 out of 4 elements

\[
\left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \\ \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ \end{pmatrix} \right\}
\]

The usage of the distribution (.3, .3, .2, .1, .1, 0) on sets

\[
.3 \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ \end{pmatrix} + .3 \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \\ \end{pmatrix} + .2 \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \\ \end{pmatrix} + .1 \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \\ \end{pmatrix} + .1 \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ \end{pmatrix} + 0 \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \\ \end{pmatrix} = \begin{pmatrix} .8 \\ .5 \\ .4 \\ .3 \\ \end{pmatrix}
\]
Two-step EH update

\[
\hat{W}_{t+1} = \arg\min_{W} \Delta(W \parallel W_t) + \sum_{C} W_C (C \cdot \ell_t)
\]

\[
W_{t+1} = \arg\min_{W \text{ a p.d.}} \Delta(W \parallel \hat{W}_{t+1})
\]

\[
\Delta(x \parallel y) = \sum_{i} x_i \ln \frac{x_i}{y_i} - x_i + y_i
\]
Idea: do the same trick on the level of usages

\[\hat{u}_{t+1} = \arg\min_u \Delta(u||u_t) + u \cdot \ell_t \]

\[u_{t+1} = \arg\min_u \Delta(u||\hat{u}_{t+1}) \quad u \text{ a usage} \]
Let u_1 be the usage of the uniform distribution.

For trial $t = 1, 2, \ldots$

- Decompose $u_t = \sum_i \alpha_i C_i$
- Sample C_i with probability α_i
- Expected loss $u_t \cdot \ell_t$
- Update and relative entropy projection

Regret has no range factor. E.g. for k-of-n sets

$$\ell^{CH} - \ell^* \leq \sqrt{2\ell^* k \ln n} + k \ln n$$
Usage vectors u_t are small

No closed form for relative entropy projection

$$u_{t+1} = \arg\min_{u \text{ a usage}} \Delta(u \parallel \hat{u}_{t+1})$$

The usage polytope is the convex hull of exponentially many concepts. Fortunately, it can often be represented by polynomially many linear inequalities. E.g. Birkhoff and flow polytope.

Idea: iteratively reestablish most violated constraint

Known as Sinkhorn balancing for permutations
 Cheryl is optimal: we have matching lower bounds for sets, permutations, bipartite matchings, spanning trees and paths.

In each case, reduction from the basic expert case.
Philosophy

- Uncertainty
 - EH: Probability distribution on concepts
 - CH: Convex combination of concepts

- Relative entropy regularisation seems universal
 - Possible to incorporate constraints into divergence
 - But RE works in all cases