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‘ 1. Introduction |

e Boosting algorithm when there is no consistent convex combi-
nation of base hypotheses

o In O(5;log ) iterations produces a convex combination with
soft margin within § of the maximum

Boosting protocol:

e Set of examples S = ((x1,y1), .- -, (TN, YN))
e Maintains distribution d on examples

e At iteration t:

— Given current distribution d'—!, oracle provides hypothesis A;
of edge v = d'~! - u > ¢, where ul = y;hy(x;)

— Guarantee ¢g > 0 not known to algorithm

— Update distribution d‘~! to d!

LPBoost computes d? by solving:

Primal Dual
- [N
dy ! W v
s.t. d-u" <~, 1<m<t, | s.t. 5:1 w;yih; +&n 2> p, 1<n<N,
de PV d< 1. we PM >0

minimize maximum maximize minimum
edge soft margin

Non-standard LPBoost formulation
e Totally corrective
e Capping probabilities in primal < soft margin in dual

2. LPBoost does not have ()(log N) iteration bounds.

e LPBoost (Schuurmans et al) works well in practice
e No bounds have been proved for it

e In our counter examples LPBoost takes €)(/NV) iterations to
achieve margin precision § ~ 1 for separable case.

— Forces LPBoost to concentrate its distribution on single ex-
ample

— Holds regardless of LP optimization algorithm

— Shows need for regularization
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e The counter example suggests that a good algorithm should
employ two tricks:

— Cap the weight on any example

— Spread the weight on the examples via a regularization such
as the relative entropy

These two tricks used by the SoftBoost algorithm make it possible
to obtain iteration bounds that grow logarithmic in N.

‘ 3. SoftBoost |

e Designed for data that is not necessarily separable by convex
combinations of base hypotheses

e Achieves robustness by capping the the weight on any example
to be at most 1

e Capping the weights on the examples prevents the algorithm
from focusing excessively on a few examples that it can’t hope
to get right

e Produces a convex combination of hypotheses whose soft mar-
gin is within ¢ of the optimum

e SoftBoost terminates after at most [ In(N/v)] iterations.

e The algorithm does not need to know the guarantee ¢ on the
base hypotheses

Algorithm 1: SoftBoost
1.Input: S = ((x1,41),...,(xN,yyN)), desired accuracy 4, and
capping parameter v € [1, N|.

2. Initialize: d') to the uniform distribution
3.Doforit=1,...

(a) Train classifier on d’~! and {uy, ..., u_1}
and obtain hypothesis h'.
Set ul, = bl (zy)yn.
(b) Calculate the edge ~; of h! : v; = d° - u?
(c) Set 7 = (minp=1..t ym) — 0
(d) Set v* = solution to the primal linear programming problem.
(e)

t+1 : N d,
d*™ = argmin > n—1 dnlog i)
d n

s.t. d-u" <7y -4 forl <m<t
(NI~ —~f <dthenT =t — 1 and break

4.Output: fw(z) = L _ w,h™(x), where the coefficients w,
maximize the soft margin over the hypothesis set {A!,... '}
using the LP problem.

lllustration of Stopping Criterion
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® 7 := (min,,—1. ¢t ym) — 0 IS nonincreasing and 7; > g
e v* (solution to (1)) is non decreasing and v* < g
¢ Algorithm terminates when they are sufficiently close together

‘ 4. Experimental Results |

Generalization Performance of SoftBoost and LPBoost
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e Generalization performance of SoftBoost (red) and LPBoost
(blue) for different values of v

e The data is a synthetic data set with with 10% label noise in the
training set

e If v Is too small, the algorithm concentrates on a very few, pre-
sumably wrongly labeled examples and does not generalize
well

Convergence Speed Comparison
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e SoftBoost starts more slowly than LPBoost

e Both converge to within ¢ of guarantee ¢ in approximately the
same number of iterations

e BrownBoost, which was designed to deal with noisy data but
IS not a smooth boosting algorithm, does not maximize the soft
margin

e SmoothBoost, the best of previously existing smooth boosting
algorithms, converges much more slowly and does not achieve
the optimal soft margin

AdaBoost LPBoost | SoftBoost | BrownBoost
Banana |13.3 &+ 0.7 111 + 0.6 |[11.1 & 0.5 129 4+ 0.7
B.Cancer 32.1 &+ 3.8 27.8 + 4.3 |[28.0 = 4.5/30.2 £+ 3.9
Diabetes 279 &+ 1.5 244 + 1.7 (1244 + 1.7 |27.2 = 1.6
German (269 £ 1.9 (246 + 2.1 247 + 21 /248 + 1.9
Heart 201 +£ 2.7 184 + 3.0 (182 4+ 2.7 20.0 + 2.8
Ringnorm| 1.9 +£ 0.3 19+ 02 18 £ 02 19 £+ 0.2
-.Solar 36.1 + 1.5 |35.7 £+ 16 |355 4+ 14 36.1 &+ 1.4
Thyroid 4.4 + 19 49 +19 49 +£ 19 46 + 2.10
Titanic 228 + 1.0 228 £ 1.0 23.0 & 0.8 22.8 4+ 0.8
Waveform|10.5 &+ 0.4 101 =+ 0.5 9.8 £ 05 104 £ 0.4

e Generalization error estimates and standard deviations for ten
UCI benchmark data sets

e SoftBoost and LPBoost outperform AdaBoost and BrownBoost
on most data sets

e SoftBoost and LPBoost perform similarly



