Boosting Algorithms for Maximizing the Soft Margin

1. Introduction

- Boosting algorithm when there is no consistent convex combination of base hypotheses
- In $\Theta(\frac{1}{\lambda^2}\log\frac{N}{\nu})$ iterations produces a convex combination with soft margin within δ of the maximum

Boosting protocol:

- Set of examples $S = \langle (x_1, y_1), \dots, (x_N, y_N) \rangle$
- Maintains distribution d on examples
- At iteration t:
- Given current distribution d^{t-1} , oracle provides hypothesis h_t of edge $\gamma_t = \mathbf{d}^{t-1} \cdot \mathbf{u}^t \geq \mathbf{g}$, where $u_i^t = y_t h_t(x_i)$
- Guarantee g > 0 not known to algorithm
- Update distribution d^{t-1} to d^t

LPBoost computes d^t by solving:

Primal	Dual
$\min_{\mathbf{d},\gamma} \gamma$	$\max_{\mathbf{w},\rho} \qquad \rho + \frac{1}{\nu} \sum_{n=1}^{N} \xi_n$
s.t. $\mathbf{d} \cdot \mathbf{u}^m \leq \gamma, \ 1 \leq m \leq t,$	s.t. $\sum_{i=1}^{t} w_i y_i h_i + \xi_n \ge \rho$, $1 \le n \le N$,
$\mathbf{d} \in \mathcal{P}^N, \ \mathbf{d} \leq rac{1}{ u} 1.$	$\mathbf{w}\in\mathcal{P}^{M},\;oldsymbol{\psi}\geq0.$
minimize maximum	maximize minimum
edge	soft margin

Non-standard LPBoost formulation

- Totally corrective
- Capping probabilities in primal \leftrightarrow soft margin in dual

2. LPBoost does not have $\Omega(\log N)$ **iteration bounds.**

- LPBoost (Schuurmans et al) works well in practice
- No bounds have been proved for it
- In our counter examples LPBoost takes $\Omega(N)$ iterations to achieve margin precision $\delta \approx 1$ for separable case.
- -Forces LPBoost to concentrate its distribution on single example
- Holds regardless of LP optimization algorithm
- Shows need for regularization

$n \setminus m$	1	2	3	4	5
1	+1	$-1+5\epsilon$	$-1+7\epsilon$	$-1+9\epsilon$	$-1+\epsilon$
2	+1	$-1+5\epsilon$	$-1+7\epsilon$	$-1+9\epsilon$	$-1+\epsilon$
3	+1	$-1+5\epsilon$	$-1+7\epsilon$	$-1+9\epsilon$	$-1+\epsilon$
4	+1	$-1+5\epsilon$	$-1+7\epsilon$	$-1+9\epsilon$	$-1+\epsilon$
5	$-1+2\epsilon$	+1	$-1+7\epsilon$	$-1+9\epsilon$	$+1-\epsilon$
6	$-1+3\epsilon$	$-1+4\epsilon$	+1	$-1+9\epsilon$	$+1-\epsilon$
7	$-1+3\epsilon$	$-1+5\epsilon$	$-1+6\epsilon$	+1	$+1-\epsilon$
8	$-1+3\epsilon$	$-1+5\epsilon$	$-1+7\epsilon$	$-1+8\epsilon$	$+1-\epsilon$

Manfred Warmuth¹, Karen Glocer¹, Gunnar Rätsch²

1: UC Santa Cruz

2: Friedrich Miescher Laboratory of the Max Planck Society

manfred, kag@soe.ucsc.edu, gunnar.raetsch@tuebingen.mpg.de

- The counter example suggests that a good algorithm should employ two tricks:
- Cap the weight on any example
- Spread the weight on the examples via a regularization such as the relative entropy

These two tricks used by the SoftBoost algorithm make it possible to obtain iteration bounds that grow logarithmic in N.

3. SoftBoost

- Designed for data that is not necessarily separable by convex combinations of base hypotheses
- Achieves robustness by *capping* the the weight on any example to be at most $\frac{1}{\nu}$
- Capping the weights on the examples prevents the algorithm from focusing excessively on a few examples that it can't hope to get right
- Produces a convex combination of hypotheses whose *soft margin* is within δ of the optimum
- SoftBoost terminates after at most $\lceil \frac{2}{\delta^2} \ln(N/\nu) \rceil$ iterations.
- The algorithm does not need to know the guarantee g on the base hypotheses

Algorithm 1: SoftBoost

Input: $S = \langle (x_1, y_1), \ldots, (x_N, y_N) \rangle$, desired accuracy δ , and capping parameter $\nu \in [1, N]$. 2. Initialize: d_n^0 to the uniform distribution 3. Do for t = 1, ...(a) Train classifier on d^{t-1} and $\{u_1, \ldots, u_{t-1}\}$ and obtain hypothesis h^t . Set $u_n^t = h^t(x_n)y_n$. (b) Calculate the edge γ_t of $h^t : \gamma_t = \mathbf{d}^t \cdot \mathbf{u}^t$ (c) Set $\widehat{\gamma}_t = (\min_{m=1...t} \gamma_m) - \delta$ (d) Set γ^* = solution to the primal linear programming problem. (e) Update $\mathbf{d}^{t+1} = \operatorname{argmin}_{\mathbf{d}} \sum_{n=1}^{N} d_n \log \frac{d_n}{d_n^{t-1}}$ s.t. $\mathbf{d} \cdot \mathbf{u}^m \leq \widehat{\gamma}_t - \delta$, for $1 \leq m \leq t$ $\sum_{n} d_n = 1, \ \mathbf{d} \leq \frac{1}{\nu} \mathbf{1}.$ (f) If $\widehat{\gamma}_t - \gamma_t^* \leq \delta$ then T = t - 1 and break 4. Output: $f_{\mathbf{w}}(x) = \sum_{m=1}^{T} \mathbf{w}_m h^m(x)$, where the coefficients \mathbf{w}_m

maximize the soft margin over the hypothesis set $\{h^1, \ldots, h^t\}$ using the LP problem.

0.25 0.2 0.1 0.1 0.05valu -0.0 -0.-0.1*F* (-0.2 -0.25

• $\widehat{\gamma}_t := (\min_{m=1...t} \gamma_m) - \delta$ is nonincreasing and $\widehat{\gamma}_t \ge g$ • γ^* (solution to (1)) is non decreasing and $\gamma^* \leq g$ • Algorithm terminates when they are sufficiently close together

0.18 0.16 ъ 0.14 0.12 ວັ 0.1 0.08 0.06

4. Experimental Results

Generalization Performance of SoftBoost and LPBoost

• Generalization performance of SoftBoost (red) and LPBoost (blue) for different values of ν

• The data is a synthetic data set with with 10% label noise in the training set

• If ν is too small, the algorithm concentrates on a very few, pre-

Boost	LPBoost	SoftBoost	BrownBoost
± 0.7	$11.1~\pm~0.6$	$11.1~\pm~0.5$	$12.9~\pm~0.7$
\pm 3.8	$\textbf{27.8}~\pm~\textbf{4.3}$	$28.0~\pm~4.5$	$30.2~\pm~3.9$
\pm 1.5	$\textbf{24.4}~\pm~\textbf{1.7}$	$\textbf{24.4}~\pm~\textbf{1.7}$	$\textbf{27.2}~\pm~\textbf{1.6}$
\pm 1.9	$\textbf{24.6}~\pm~\textbf{2.1}$	$\textbf{24.7}~\pm~\textbf{2.1}$	$\textbf{24.8}~\pm~\textbf{1.9}$
\pm 2.7	$18.4~\pm~3.0$	$18.2~\pm~2.7$	$\textbf{20.0}~\pm~\textbf{2.8}$
\pm 0.3 *	$1.9~\pm~0.2$	$1.8~\pm~0.2$	1.9 \pm 0.2
\pm 1.5	$35.7~\pm~1.6$	$35.5~\pm~1.4$	$36.1~\pm~1.4$
\pm 1.9*	$\textbf{4.9}~\pm~\textbf{1.9}$	$4.9~\pm~1.9$	$\textbf{4.6}~\pm~\textbf{2.10}$
\pm 1.0	$\textbf{22.8}~\pm~\textbf{1.0}$	$\textbf{23.0}~\pm~\textbf{0.8}$	$\textbf{22.8}~\pm~\textbf{0.8}$
\pm 0.4	$10.1~\pm~0.5$	$9.8~\pm~0.5$	10.4 \pm 0.4

• SoftBoost and LPBoost perform similarly