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1. Introduction

• Boosting algorithm when there is no consistent convex combi-
nation of base hypotheses

• In Θ( 1
δ2 log N

ν ) iterations produces a convex combination with
soft margin within δ of the maximum

Boosting protocol:
• Set of examples S = 〈(x1, y1), . . . , (xN , yN )〉
•Maintains distribution d on examples
• At iteration t:

– Given current distribution dt−1, oracle provides hypothesis ht
of edge γt = dt−1 · ut ≥ g, where ut

i = ytht(xi)

– Guarantee g > 0 not known to algorithm
– Update distribution dt−1 to dt

LPBoost computes dt by solving:

Primal Dual
min
d,γ

γ max
w,ρ

ρ + 1
ν

∑N
n=1 ξn

s.t. d · um ≤ γ, 1≤m≤t, s.t.
∑t

i=1 wiyihi + ξn ≥ ρ, 1≤n≤N,

d ∈ PN , d ≤ 1
ν1. w ∈ PM , ψ ≥ 0.

minimize maximum maximize minimum
edge soft margin

Non-standard LPBoost formulation
• Totally corrective
•Capping probabilities in primal ↔ soft margin in dual

2. LPBoost does not have Ω(log N) iteration bounds.

• LPBoost (Schuurmans et al) works well in practice
•No bounds have been proved for it
• In our counter examples LPBoost takes Ω(N) iterations to

achieve margin precision δ ≈ 1 for separable case.
– Forces LPBoost to concentrate its distribution on single ex-

ample
– Holds regardless of LP optimization algorithm
– Shows need for regularization

n \m 1 2 3 4 5
1 +1 −1 + 5ε −1 + 7ε −1 + 9ε −1 + ε
2 +1 −1 + 5ε −1 + 7ε −1 + 9ε −1 + ε
3 +1 −1 + 5ε −1 + 7ε −1 + 9ε −1 + ε
4 +1 −1 + 5ε −1 + 7ε −1 + 9ε −1 + ε
5 −1 + 2ε +1 −1 + 7ε −1 + 9ε +1− ε
6 −1 + 3ε −1 + 4ε +1 −1 + 9ε +1− ε
7 −1 + 3ε −1 + 5ε −1 + 6ε +1 +1− ε
8 −1 + 3ε −1 + 5ε −1 + 7ε −1 + 8ε +1− ε

• The counter example suggests that a good algorithm should
employ two tricks:

– Cap the weight on any example
– Spread the weight on the examples via a regularization such

as the relative entropy

These two tricks used by the SoftBoost algorithm make it possible
to obtain iteration bounds that grow logarithmic in N .

3. SoftBoost

•Designed for data that is not necessarily separable by convex
combinations of base hypotheses

• Achieves robustness by capping the the weight on any example
to be at most 1

ν

•Capping the weights on the examples prevents the algorithm
from focusing excessively on a few examples that it can’t hope
to get right

• Produces a convex combination of hypotheses whose soft mar-
gin is within δ of the optimum

• SoftBoost terminates after at most d 2
δ2 ln(N/ν)e iterations.

• The algorithm does not need to know the guarantee g on the
base hypotheses

Algorithm 1: SoftBoost
1. Input: S = 〈(x1, y1), . . . , (xN , yN )〉, desired accuracy δ, and

capping parameter ν ∈ [1, N ].
2. Initialize: d0

n to the uniform distribution
3. Do for t = 1, . . .

(a) Train classifier on dt−1 and {u1, . . . ,ut−1}
and obtain hypothesis ht.
Set ut

n = ht(xn)yn.
(b) Calculate the edge γt of ht : γt = dt · ut

(c) Set γ̂t = (minm=1...t γm)− δ

(d) Set γ∗ = solution to the primal linear programming problem.
(e) Update

dt+1 = argmin
d

∑N
n=1 dn log dn

dt−1
n

s.t. d · um ≤ γ̂t − δ, for 1 ≤ m ≤ t∑
n dn = 1, d ≤ 1

ν1.

(f) If γ̂t − γ∗t ≤ δ then T = t− 1 and break

4. Output: fw(x) =
∑T

m=1 wmhm(x), where the coefficients wm

maximize the soft margin over the hypothesis set {h1, . . . , ht}
using the LP problem.

Illustration of Stopping Criterion

• γ̂t := (minm=1...t γm)− δ is nonincreasing and γ̂t ≥ g

• γ∗ (solution to (1)) is non decreasing and γ∗ ≤ g

• Algorithm terminates when they are sufficiently close together

4. Experimental Results

Generalization Performance of SoftBoost and LPBoost
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•Generalization performance of SoftBoost (red) and LPBoost
(blue) for different values of ν

• The data is a synthetic data set with with 10% label noise in the
training set

• If ν is too small, the algorithm concentrates on a very few, pre-
sumably wrongly labeled examples and does not generalize
well

Convergence Speed Comparison
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• SoftBoost starts more slowly than LPBoost
• Both converge to within δ of guarantee g in approximately the

same number of iterations
• BrownBoost, which was designed to deal with noisy data but

is not a smooth boosting algorithm, does not maximize the soft
margin

• SmoothBoost, the best of previously existing smooth boosting
algorithms, converges much more slowly and does not achieve
the optimal soft margin

AdaBoost LPBoost SoftBoost BrownBoost
Banana 13.3 ± 0.7 11.1 ± 0.6 11.1 ± 0.5 12.9 ± 0.7
B.Cancer 32.1 ± 3.8 27.8 ± 4.3 28.0 ± 4.5 30.2 ± 3.9
Diabetes 27.9 ± 1.5 24.4 ± 1.7 24.4 ± 1.7 27.2 ± 1.6
German 26.9 ± 1.9 24.6 ± 2.1 24.7 ± 2.1 24.8 ± 1.9
Heart 20.1 ± 2.7 18.4 ± 3.0 18.2 ± 2.7 20.0 ± 2.8
Ringnorm 1.9 ± 0.3∗ 1.9 ± 0.2 1.8 ± 0.2 1.9 ± 0.2
F.Solar 36.1 ± 1.5 35.7 ± 1.6 35.5 ± 1.4 36.1 ± 1.4
Thyroid 4.4 ± 1.9∗ 4.9 ± 1.9 4.9 ± 1.9 4.6 ± 2.10
Titanic 22.8 ± 1.0 22.8 ± 1.0 23.0 ± 0.8 22.8 ± 0.8
Waveform 10.5 ± 0.4 10.1 ± 0.5 9.8 ± 0.5 10.4 ± 0.4

•Generalization error estimates and standard deviations for ten
UCI benchmark data sets

• SoftBoost and LPBoost outperform AdaBoost and BrownBoost
on most data sets

• SoftBoost and LPBoost perform similarly
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