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Abstract. We give an algorithm for learning a permutation on-line.
The algorithm maintains its uncertainty about the target permutation
as a doubly stochastic matrix. This matrix is updated by multiplying
the current matrix entries by exponential factors. These factors destroy
the doubly stochastic property of the matrix and an iterative procedure
is needed to re-normalize the rows and columns. Even though the result
of the normalization procedure does not have a closed form, we can
still bound the additional loss of our algorithm over the loss of the best
permutation chosen in hindsight.

1 Introduction

Finding a good permutation is a key aspect of many problems such as the rank-
ing of search results or matching workers to tasks. In this paper we present an
efficient and effective algorithm for learning permutations in the on-line setting
called PermELearn. In each trial, the algorithm probabilistically chooses a per-
mutation and incurs a loss based on how appropriate the permutation was for
that trial. The goal of the algorithm is to have low total expected loss compared
to the best permutation chosen in hindsight for the whole sequence of trials.

Since there are n! permutations on n elements, it is infeasible to simply treat
each permutation as an expert and apply Weighted Majority or another expert
algorithm. Our solution is to implicitly represent the weights of the n! permu-
tations with a more concise representation. This approach has been successful
before where exponentially many experts have a suitable combinatorial structure
(see e.g. [HS97, TW03, WK06] for examples).

We encode a permutation of n elements as an n × n permutation matrix Π :
Πi,j = 1 if the permutation maps i to j and Πi,j = 0 otherwise. The uncertainty
of the algorithm about which permutation is the target is represented as a mix-
ture of permutation matrices, i.e. a doubly stochastic weight matrix1 W . The
entry Wi,j represents the algorithm’s belief that the target permutation maps
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element i to position j. Every doubly stochastic matrix is the convex combina-
tion of at most n2 − 2n+2 permutations (see e.g. [Bha97]). We present a simple
matching-based algorithm that efficiently decomposes the weight matrix into a
slightly larger than necessary convex combination. Our algorithm PermELearn
samples a permutation from this convex combination to produce its prediction.

As the algorithm is randomly selecting its permutation, an adversary simulta-
neously selects a loss matrix L ∈ [0, 1]n×n for the trial. The adversary is allowed
to see the algorithm’s doubly stochastic matrix, but not its random choice of
permutation. The loss matrix has the interpretation that Li,j is the loss for
mapping element i to j and the loss of a whole permutation is the sum of the
losses of the permutation’s mappings. This linear decomposition of the loss is
necessary to make the algorithm efficient and fits nicely with the algorithm’s
weight matrix representation. Section 3 shows how a variety of intuitive loss
motifs can be expressed in this matrix form.

Before the next trial, algorithm PermELearn makes a weighted-majority style
update to its weight matrix: each entry Wi,j is multiplied by e−ηLi,j where η is
a learning rate in [0, 1]. After this update, the weight matrix no longer has the
doubly stochastic property, and the weight matrix must be projected back into
the space of doubly stochastic matrices (called “Sinkhorn Balancing”, see Sec-
tion 4) before the next prediction can be made. Our method based on Sinkhorn
Balancing bypasses a potential issue: if the probability of each permutation Π
is proportional to

∏
i Wi,Π(i) then the normalization constant is the permanent

of W , and calculating the permanent is a known #P-complete problem.
We bound (Theorem 1) the expected loss of PermELearn over any sequence

of trials by
n lnn + ηLbest

1 − e−η
, (1)

where η is the learning rate and Lbest is the loss of the best permutation on the
entire sequence. If an upper bound Lest ≥ Lbest is known, then η can be tuned
(as in [FS97]) and the bound becomes

Lbest +
√

2Lestn lnn + n lnn. (2)

Since lnn! ≈ n lnn − n, this is close to the loss bound when Weighted Majority
is run over the n! permutations. We also can show (omitted) a lower bound of
Lbest +Ω(

√
Lbestn lnn + n lnn).

The Exponentiated Gradient family of learning algorithms uses probability
vectors as their weight vectors. In this case the normalization is straightforward
and is folded directly into the update. PermELearn’s hypothesis is a doubly
stochastic matrix. Its update step first multiplies the entries of the matrix by ex-
ponential factors and then uses Sinkhorn re-balancing to iteratively re-normalize
the rows and columns. We are able to prove bounds for our algorithm despite
the fact the re-normalization does not have a closed form solution. We show that
the multiplicative update minimizes a tradeoff between the loss and a relative
entropy between non-negative matrices. This multiplicative update takes the ma-
trix outside of the set of doubly stochastic matrices. Luckily this un-normalized
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update already makes enough progress (towards the best permutation) for the
loss bound quoted above. We interpret the iterations of Sinkhorn balancing as
projections w.r.t. the same relative entropy. Finally, using Bregman projection
methods one can show these projections only increase the progress and thus
don’t hurt the analysis.

Our new insight of splitting the update into an un-normalized step followed
by a normalization step also leads to a streamlined proof of the loss bound of
the randomized weighted majority algorithm that is interesting in its own right.
On the other hand, the bounds for the expert algorithms can be proven in many
different ways, including potential based methods (see e.g. [KW99, CBL06]).
We were not able to find a potential based proof for learning permutations with
doubly stochastic matrices, since there is no closed form solution for Sinkhorn
Balancing. Finally, Kalai and Vempala’s “Follow the Perturbed Leader” [KV05]
approach can easily be applied to our problem, but it leads to worse bounds.

We introduce our notation in the next section. Section 3 presents the per-
mutation learning model and gives several intuitive examples of appropriate
loss motifs. Section 4 describes the details of the PermELearn algorithm, while
Section 5 contains the proof of its relative mistake bound and uses the same
methodology in an alternate analysis of the Weighted Majority algorithm. In
Section 6, we apply the “Follow the Perturbed Leader” algorithm to learning
permutations. The concluding section describes extensions and further work.

2 Notation

All matrices will be n×n, and 1 and 0 denote the all all ones and all zero matrices.
For a matrix A, Ai,j is the element of A in row i, and column j. We use A • B
to denote the dot product between matrices A and B, i.e.

∑
i,j Ai,jBi,j . We use

single subscripts (e.g. Ak) to identify matrices/permutations from a sequence.
Permutations on n elements are frequently represented in two ways: as a vec-

tor, and as a matrix. We use the notationΠ (and Π̂) to represent a permutation
of elements {1, . . . , n} into positions {1, . . . , n} in either format, using the context
to indicate the appropriate representation. Thus, for each i ∈ {1, . . . , n}, we use
Π(i) to denote the position that the ith element is mapped to by permutation
Π , and matrix element Πi,j = 1 if Π(i) = j and 0 otherwise.

If L is a matrix with n rows then the product ΠL permutes the rows of L:

Π =





0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0



 L =





11 12 13 14
21 22 23 24
31 32 33 34
41 42 43 44



 ΠL =





21 22 23 24
41 42 43 44
31 32 33 34
11 12 13 14





Matrix for Π = (2, 4, 3, 1) An arbitrary matrix Permuting the rows

Our algorithm will have some uncertainty about which permutation to predict
with. Therefore it maintains a probability distribution over permutations in the
form of a n × n doubly stochastic matrix W as its data structure.
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3 The On-Line Protocol

We are interested in learning permutations in the on-line setting, where learn-
ing proceeds in a series of trials. We assume the losses are generated by an
(adversarial) process that we will call “nature”. In each trial:

– The learner (probabilistically) chooses a permutation Π̂ .
– Nature simultaneously chooses a loss matrix L ∈ [0..1]n×n for the trial with

the interpretation that Li,j is the loss for mapping element i to position j,
and the loss of a permutation is the sum of the losses of its mappings, i.e.∑

i Li,Π̂(i) = Π̂ • L.
– At the end of the trial the algorithm is given L so that it can adjust its

future predictions.

The expected loss incurred by the algorithm on the trial is E[Π̂ • L], where the
expectation is over the algorithm’s random choice of Π̂ .

Since the dot product is linear, E[Π̂ • L] = W • L, where W = E(Π̂). The
entry Wi,j is the probability that the learner chooses a permutation Π̂ such
that Π̂(i) = j. Since permutation matrices are doubly stochastic, the convex
combination W is so as well.

It is worth emphasizing that the W matrix is a convenient summary of the
distribution over permutations used by any algorithm (it doesn’t indicate which
permutations have non-zero probability, for example). However, this summary
is sufficient to determine the algorithm’s expected loss.

Although our algorithm is capable of handling arbitrary sequences of loss
matrices L, nature is usually significantly more restricted. Most applications
have a loss motif M that is known to the algorithm and nature is constrained
to choose (row) permutations of M as its loss matrix L. In effect, at each trial
nature chooses a “correct” permutation Π and uses the loss matrix L = ΠM .
Note that the permutation left-multiplies the loss motif, and thus permutes the
rows of M . If nature chooses the identity permutation then the loss matrix L is
the motif M itself. When M is known to the algorithm, it suffices to give the
algorithm only the permutation Π at the end of the trial, rather than L itself.

Figure 1 gives examples of loss motifs. The last loss in the table is associated
with the competitive analysis of adaptive list structures where the cost is the
number of links traversed to find the desired element2. Blum, Chawla, and Kalai
[BCK03] give very efficient algorithms for this special case. In our notation,
their bound has the same form as ours (1) but with the n lnn replaced by O(n).
However, our lower bound shows that the lnn factors in (2) are necessary in the
general permutation setting.

Note that many compositions of loss motifs are possible. For example, given
two motifs with their associated losses, any convex combination of the motifs
creates a new motif for the (same) convex combination of the associated losses.
Other component-wise combinations of two motifs (such as product or max) can
2 In the adaptive list problem the searched element can be moved forward in the list

for free, but other reorderings of the elements incur a cost not modeled here.
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loss L(Π̂, Π) motif M

the number of elements i where Π̂(i) != Π





0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0





1
n−1

∑n
i=1 |Π̂(i)−Π(i)|, how far the elements are from

there ”correct” positions (division by n−1 ensures that
the entries of M are in [0, 1].)

1
3





0 1 2 3
1 0 1 2
2 1 0 1
3 2 1 0





1
n−1

∑n
i=1

|Π̂(i)−Π(i)|
Π(i) , a position weighted version of

the above emphasizing the early positions in Π
1
3





0 1 2 3
1/2 0 1/2 1
2/3 1/3 0 1/3
3/4 1/2 1/4 0





the number of elements mapped to the first half by Π
but the second half by Π̂, or vice versa





0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0





the number of elements mapped to the first two posi-
tions by Π that fail to appear in the top three position
of Π̂





0 0 0 1 1
0 0 0 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0





the number of links traversed to find the first element
of Π in a list ordered by Π̂

1
3





0 1 2 3
0 0 0 0
0 0 0 0
0 0 0 0





Fig. 1. Loss motifs

also produce interesting loss motifs, but the combination usually cannot be dis-
tributed across the matrix dot-product calculation, and so cannot be expressed
as a simple function of the original losses.

4 Algorithm

Our permutation learning algorithm uses exponenential weights and we call it
PermELearn. It maintains an n×n dimensional doubly stochastic W as its main
data structure, where Wi,j is the probability that PermELearn predicts with a
permutation mapping element i to position j. In the absence of prior information
it is natural to start with the uniform prior, i.e. the matrix 1

n in each entry.
In each iteration PermELearn must do two things:

1. Choose a permutation Π̂ from some distribution s.t. E[Π̂ ] = W .
2. Create a new doubly stochastic matrix W̃ for use in the next trial based on

the current W and the loss matrix L.

The first step is described in Algorithm 1. The algorithm greedily decomposes
W into a convex combination of at most n2 − n + 1 permutations, and then
randomly selects one of these permutations for the prediction.3 By Birkhoff’s
theorem (see [Bha97]), every doubly stochastic matrix A is a convex combination

3 The decomposition is not unique and the implementation may have a bias as to
exactly which convex combination is chosen.
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Algorithm 1. PermELearn: Selecting a permutation
Require: a doubly stochastic n × n matrix W

A := W ;
for " = 1 to n2 − n + 1 do

Find permutation Π# such that each Ai,Π!(i) is positive
α# := mini Ai,Π(i)

A := A − α#Π#

Exit loop if all entries of A are zero
end for {at end of loop W =

∑#
k=1 αkΠk}

Randomly select Πk ∈ {Π1, . . . , Π#} using probabilities αk and return it.

Algorithm 2. PermELearn: Weight Matrix Update
Require: learning rate η, non-negative loss matrix L, and doubly stochastic weight

matrix W
for each entry i, j of W do

Create W ′ where each W ′
i,j = Wi,je

−ηLi,j

end for
Create doubly stochastic W̃ by re-scaling the rows and columns of W ′ (Sinkhorn
balancing) and update W to W̃ .

of permutation matrices. In addition, one can find a permutation Π where each
Ai,Π(i) > 0 by finding a perfect matching on the n×n bipartite graph containing
the edge (i, j) whenever Ai,j > 0. Given a permutationΠ where each Ai,Π(i) > 0
we form the new matrix A′ = A − αΠ where α = mini Ai,Π(i). Matrix A′ has
non-negative entries and A′ has more zeros than A. Furthermore, each row and
column of A′ sum to 1 −α, so A′ is 1−α times a doubly stochastic matrix (and
thus 1 − α times a convex combination of permutations).

After at most n2 − n iterations we arrive at a matrix A′ with exactly n non-
zero entries. Since the row and column sums of A′ are the same, A′ is just
a constant times a permutation matrix. Therefore, we have found a way to
express the original doubly stochastic matrix as the convex combination of (at
most) n2 − n + 1 permutation matrices (see Algorithm 1).

There are several improvements possible. In particular, we need not compute
each perfect matching from scratch. If only q entries are zeroed by a permutation,
then that permutation still represents a matching of size n − q in the graph for
the new matrix. Thus we need to find only q augmenting paths to complete the
perfect matching. The whole process requires finding O(n2) augmenting paths
at a cost of O(n2) each, for a total cost of O(n4) to decompose W into a convex
combination of permutations.

The second step first multiplies the Wi,j entries of the loss matrix by the
factors e−ηLi,j . These factors destroy the row and column normalization, so
the matrix must be re-normalized to restore the doubly-stochastic property.
There is no closed form for the normalization step. The standard iterative re-
normalization method for non-negative matrices is called Sinkhorn Balancing.
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This method first normalizes the rows of the matrix to sum to one, and then
normalizes the columns. Since normalizing the columns typically destroys the
row normalization, the process must be iterated until convergence [Sin64].

Normalizing the rows corresponds to pre-multiplying by a diagonal matrix.
The product of these diagonal matrices thus represents the combined effect of the
multiple row normalization steps. Similarly, the combined effect of the column
normalization steps can be represented by post-multiplying the matrix by a
diagonal matrix. Therefore Sinkhorn balancing a matrix A results in a doubly
stochastic matrix RAC where R and C are diagonal matrices. Each entry Ri,i

is the positive multiplier applied to row i, and each entry Cj,j is the positive
multiplier of column j in order to convert A into a doubly stochastic matrix.

Convergence: There has been much written on the scaling of matrices, and
we briefly describe only a few of the results here. Sinkhorn showed that this
procedure converges and that the RAC conversion of any matrix A is unique if
it exists4 (up to canceling multiples of R and C) [Sin64].

A number of authors consider scaling a matrix A so that the row and column
sums are 1 ± ε. Franklin and Lorenz [FL89] show that O(length(A)/ε) Sinkhorn
iterations suffice, where length(A) is the bit-length of matrix A’s binary rep-
resentation. Kalantari and Khachiyan [KK96] show that O(n4 ln n

ε ln 1
minAi,j

)
operations suffice using an interior point method. Linial, Samorodnitsky, and
Widgerson [LSW00] give a preprocessing step after which onlyO((n/ε)2) Sinkhorn
iterations suffice. They also present a strongly polynomial time iterative procedure
requiring Õ(n7 log(1/ε)) iterations. Balakrishan, Hwang, and Tomlin [BHT04]
give an interior point method with complexity O(n6 log(n/ε)). Finally, Fürer
[Fur04] shows that if the row and column sums of A are 1 ± ε then every matrix
entry changes by at most ±nε when A is scaled to a doubly stochastic matrix.

We defer further analysis of the imprecision in W̃ to the full paper, and
continue assuming that the algorithm produces a doubly stochastic W̃ .

5 Bounds for PermELearn

Our analysis of PermELearn follows the entropy-based analysis of the exponen-
tiated gradient family of algorithms [KW97]. This style of analysis first shows
a per-trial progress bound using relative entropy to a comparator as a measure
of progress, and then sums this invariant over the trials to obtain an expected
total loss of the algorithm. As with the exponentiated gradient family of algo-
rithms, we show that PermELearn’s weight update is the solution to a relative
entropy-regularized minimization problem.

Recall that the expected loss of PermELearn on a trial is a linear function
of its W weight matrix. Therefore the gradient of the loss is independent of

4 Some non-negative matrices, like



1 1 0
0 1 0
0 1 1



 , cannot be converted into doubly stochastic

matrices because of their pattern of zeros. The weight matrices we deal with have
strictly positive entries, and thus can always be made doubly stochastic with an
RAC conversion.
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the current value of W . This property of the loss greatly simplifies the analysis.
Our analysis for this relatively simple setting provides a good foundation for
learning permutation matrices and lays the groundwork for the future study of
more complicated permutation loss functions.

We start our analysis with an attempt to mimic the standard analysis [KW97]
for the exponentiated gradient family updates which multiply by exponential
factors and re-normalize. Unfortunately, the lack of a closed form for the nor-
malization causes difficulties. Our solution is to break PermELearn’s update
(Algorithm 2) into two steps, and use only the progress made to the interme-
diate un-normalized matrix in our per-trial bound (7). After showing that the
normalization to a doubly stochastic matrix only increases the progress, we can
sum the per-trial bound to obtain our main theorem.

The per-trial invariant used to analyze the exponentiated gradient family
bounds (for every weight vector U) the decrease in relative entropy from a (nor-
malized) U to the algorithm’s weight vector by a linear combination of the
algorithm’s loss and the loss of U on the trial. In our case the weight vectors
are matrices and we use the following (un-normalized) relative entropy between
matrices A and B with non-negative entries:

∆(A, B) =
∑

i,j

Ai,j ln
Ai,j

Bi,j
+ Bi,j − Ai,j .

Note that this is just the sum of the relative entropies between the corresponding
rows (or equivalently, between the corresponding columns):

∆(A, B) =
∑

i

∆(Ai,!, Bi,!) =
∑

j

∆(A!,j , B!,j) .

A Dead End: In each trial, PermELearn multiplies each entry of its weight
matrix by an exponential factor, and the rows and columns are normalized using
one additional factor per row and column (Algorithm 2):

W̃i,j :=
Wi,je−ηLi,j

ricj
, (3)

where ri, cj are chosen so that row i and column j of the matrix W̃ sum to one.
PermELearn’s update (3) solves the the following minimization problem:

argmin
∀i :

∑
j Ai,j = 1

∀j :
∑

i Ai,j = 1

(∆(A, W ) + η (A • L)) . (4)

Lemma 1. PermELearn’s updated weight matrix W̃ (3) is the solution of (4).

Proof. We form a Lagrangian for the optimization problem:

l(A, ρ, γ) = ∆(A, W ) + η (A • L) +
∑

i

ρi(1 −
∑

j

Ai,j) +
∑

j

γj(1 −
∑

i

Ai,j).
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Setting the derivative with respect to Ai,j to 0 yields Ai,j = Wi,je
−ηLi,j eρieγj

and shows that the normalization factors ri and cj are exponentials of the La-
grange multipliers. &'

Since the linear constraints are feasible and the divergence is strictly convex,
there always is a unique solution, even though the solution does not have a
closed form.

We now examine the progress∆(U, W )−∆(U, W̃ ) towards an arbitrary stochas-
tic matrix U . Using Equation (3) and noting that all three matrices are doubly
stochastic (so their entries sum to n), we see that

∆(U, W ) −∆(U, W̃ ) = −η U • L +
∑

i

ln ri +
∑

j

ln cj .

Making this a useful invariant requires lower bounding the sums on the rhs by
a constant times W • L, the loss of the algorithm. Unfortunately we are stuck
because the normalization factors don’t even have a closed form.

Successful Analysis: We split the update (3) into two steps:

W ′
i,j := Wi,je

−ηLi,j and W̃i,j :=
W ′

i,j

ricj
, (5)

where ri and cj are chosen so that row i and column j of the matrix W̃ sum to
one, respectively. Using the Lagrangian (as in the proof of Lemma 1), it is easy
to see that these steps solve the following minimization problems:

W ′ = argmin
A

(∆(A, W ) + η (A • L)) and W̃ := argmin
∀i :

∑
j Ai,j = 1

∀j :
∑

i Ai,j = 1

∆(A, W ′). (6)

The second problem shows that the doubly stochastic matrix W̃ is the projection
of W ′ onto to the linear row and column sum constraints. The strict convexity
of the relative entropy between non-negative matrices and the feasibility of the
linear constraints ensure that the solutions for both steps are unique.

We now lower bound the progress∆(U, W )−∆(U, W ′) in the following lemma
to get our per-trial invariant.

Lemma 2. For any η, any doubly stochastic matrices U and W and any trial
with loss matrix L,

∆(U, W ) −∆(U, W ′) ≥ (1 − eη)(W • L) − η(U • L),

where W ′ is the intermediate matrix (6) constructed by PermELearn from W .
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Proof. The proof manipulates the difference of relative entropies and applies the
inequality e−ηx ≤ 1 − (1 − e−η)x, which holds for any x ∈ [0, 1] any η:

∆(U, W ) −∆(U, W ′) =
∑

i,j

(
Ui,j ln

W ′
i,j

Wi,j
+ Wi,j − W ′

i,j

)

=
∑

i,j

(
Ui,j ln(e−ηLi,j ) + Wi,j − Wi,je

−ηLi,j
)

≥
∑

i,j

(
−ηLi,jUi,j + Wi,j − Wi,j(1 − (1 − e−η)Li,j)

)

= −η(U • L) + (1 − e−η)(W • L). !

The relative entropy is a Bregman divergence and W̃ is the relative entropy
projection of W ′ w.r.t. linear constraints. Therefore, since U satisfies the con-
straints, we have by the Generalized Pythagorean Theorem (see e.g. [HW01])

∆(U, W ′) −∆(U, W̃ ) = ∆(W̃ , W ′) ≥ 0.

Combining this with the inequality of Lemma 2 gives the critical per-trial
invariant:

∆(U, W ) −∆(U, W̃ ) ≥ (1 − e−η)(W • L) − η(U • L) . (7)

Before presenting our main theorem we introduce some notation to deal with
sequences of trials. With respect to a sequence of T trials, define Wt and W̃t to
be the initial and updated weight matrices at each trial t ∈ {1, . . . , T} so that
W̃t = Wt+1 for 1 ≤ t ≤ T . We now bound

∑T
t=1 Wt • Lt, the total expected loss

of PermELearn over the entire sequence of trials.

Theorem 1. For any learning rate η, any doubly stochastic matrices U and
initial W1, and any sequence of T trials with loss matrices Lt ∈ [0, 1]n×n (for
1 ≤ t ≤ T ), the loss of PermELearn is bounded by:

T∑

t=1

Wt • Lt ≤ ∆(U, W1) −∆(U, WT+1) + η
∑T

t=1 U • Lt

1 − e−η
.

Proof. Summing Equation (7) over the trials gives

∆(U, W1) −∆(U, WT+1) ≥ (1 − e−η)
T∑

t=1

Wt • Lt − η
T∑

t=1

U • Lt.

The bound then follows by solving for the loss of the algorithm. &'
When the entries of W1 are all initialized to 1

n and U is a permutation then
∆(U, W1) ≤ n lnn. Note that the loss

∑T
t=1 U • L is minimized when U is a

single permutation. If Lbest denotes the loss of such a permutation, then the
bound of Theorem 1 implies that the total loss of the algorithm is bounded by

n lnn + ηLbest
1 − e−η

.
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If an upper Lest ≥ Lbest is known, then η can be tuned as done by Freund and
Schapire [FS97] and the above bound becomes

Lbest +
√

2Lestn lnn + n lnn.

Splitting the Analysis of Weighted Majority: Perhaps the simplest case
where the loss is linear in the parameter vector is the “decision theoretic” setting
of [FS97]. There are N experts and the algorithm keeps a probability distribution
w over the experts. In each trial the algorithm picks expert i with probability
wi and then gets a loss vector ! ∈ [0, 1]N . Each expert i incurs loss )i and the
algorithm’s expected loss is w · !. Finally w is updated to w̃ for the next trial.

The (Randomized) Weighted Majority algorithm [LW94] or Hedge algorithm
[FS97] in this setting updates w̃i = wie

−η!i
∑

j wje−η!j
. This update is motivated by a

tradeoff between the un-normalized relative entropy and expected loss [KW99] :

w̃ := argmin∑
i ŵi=1

(∆(ŵ, w) + η ŵ · !) .

As in the permutation case, we can split this update (and motivation) into two
steps: setting each w′

i = wie−η'i then w̃ = w′/
∑

i w′
i. These correspond to:

w′ := argmin
ŵ

(∆(ŵ, w) + η ŵ · !) and w̃ := argmin∑
i ŵi=1

∆(ŵ, w′).

The following lower bound has been shown on the progress towards any proba-
bility vector u serving as a comparator [LW94, FS97, KW99]:

∆(u, w) −∆(u, w̃) ≥ w · ! (1 − e−η) − η u · ! . (8)

Surprisingly the same inequality already holds for the un-normalized update5:

∆(u, w) −∆(u, w′) = −η u · ! +
∑

i

wi(1 − e−η'i) ≥ w · ! (1 − e−η) − η u · !,

where the last inequality uses e−ηx ≤ 1− (1− e−η)x, for any x ∈ [0, 1]. Since the
normalization is a projection w.r.t. a Bregman divergence onto a linear constraint
satisfied by the comparator u, ∆(u, w′) − ∆(u, w̃) ≥ 0 by the Generalized
Pythagorean Theorem [HW01]. The total progress for both steps is again (8).

When to Normalize? Probably the most surprising aspect about the proof
methodology is the flexibility about how and when to project onto the con-
straints. Instead of projecting a nonnegative matrix onto all 2n constraints at
once (as in optimization problem (6)), we could mimic the Sinkhorn balancing
algorithm and iteratively project onto the n row and n column constraints un-
til convergence. The Generalized Pythagorean Theorem shows that projecting
5 Note that if the algorithm does not normalize the weights then w is no longer a

distribution. When
∑

i wi < 1, the loss w · L amounts to abstaining (incurring 0
loss) with probability 1 −

∑
i wi, and predicting as expert i with probability wi.
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onto any convex constraint that is satisfied by the comparator class of doubly
stochastic matrices brings the weight matrix closer to every doubly stochastic
matrix6. Therefore our bound on

∑
t Wt • Lt (Theorem 1) holds if the exponen-

tial updates are interleaved with any sequence of projections to some subsets of
the constraints. However, if the normalization constraint are not enforced then
W is no longer a convex combination of permutations, and W can approach 0
(so W • L ≈ 0 for all L).

There is a direct argument that shows that the same final doubly stochastic
matrix is reached if we interleave the exponential updates with projections to
any of the constraints as long as all 2n hold at the end. To see this we partition
the class of matrices with positive entries into equivalence classes. Call two such
matrices A and B equivalent if there are diagonal matrices R and C with positive
diagonal entries such that B = RAC. Note that [RAC]i,j = Ri,iAi,jCj,j so B is
just a rescaled version of A. Projecting onto any row (and/or column) sum con-
straints amounts to pre- (and/or post-) multiplying the matrix by some positive
diagonal matrix R (and/or C). Therefore if matrices A and B are equivalent then
either projecting one onto a set of row/column sum constraints or multiplying
their corresponding entries by the same factor results in matrices that are still
equivalent. This means that any two runs from equivalent initial matrices that
involve the same exponential updates end with equivalent final matrices even if
they use different projections at different times. Finally, for any two equivalent
matrices A and RAC, where the entries of A and the diagonal entries of R and
C are positive, we have (from the Lagrangians):

argmin
∀i :

∑
j Âi,j = 1

∀j :
∑

i Âi,j = 1

∆(Â, A) = argmin
∀i :

∑
j Âi,j = 1

∀j :
∑

i Âi,j = 1

∆(Â, RAC).

Since the relative entropy is strictly convex, both minimization problems have the
same unique minimum. Curiously enough the same phenomenon already happens
in the weighted majority case: Two non-negative vectors a and b are equivalent
if a = cb, where c is any nonnegative scalar, and again each equivalence class
has exactly one normalized weight vector.

6 Follow the Perturbed Leader

Kalai and Vempala [KV05] describe and bound “follow the perturbed leader”
(FPL) algorithms for on-line prediction in a very general setting. Their FPL∗

algorithm has bounds closely related to WM and other multiplicative weight
algorithms. However, despite the apparent similarity between our representations
and the general formulation of FPL∗, the bounds we were able to obtain for FPL∗

are weaker than the bounds derived using the relative entropies.

6 There is a large body of work on finding a solution subject to constraints via iterated
Bregman projections (See e.g. [CL81]).
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The FPL setting has an abstract k-dimensional decision space used to encode
predictors as well as a k-dimensional state space used to represent the losses of
the predictors. At any trial, the current loss of a particular predictor is the dot
product between that predictor’s representation in the decision space and the
state-space vector for the trial. This general setting can explicitly represent each
permutation and its loss when k = n!. The FPL setting also easily handles the
encodings of permutations and losses used by PermELearn by representing each
permutation matrix Π and loss matrix L as n2-dimensional vectors.

The FPL∗ algorithm [KV05] takes a parameter ε and maintains a cumulative
loss matrix C (initially C is the zero matrix) At each trial, FPL∗:

1. Generates a random perturbation matrix P where each Pi,j is proportional
to ±ri,j where ri,j is drawn from the standard exponential distribution.

2. Predicts with a permutation Π minimizing Π • (C + P ).
3. After getting the loss matrix L, updates C to C + L.

Note that FPL∗ is more computationally efficient that PermELearn. It takes
only O(n3) time to make its prediction (the time to compute a minimum weight
bipartite matching) and only O(n2) time to update C. Unfortunately the generic
FPL∗ loss bounds are not as good as the bounds on PermELearn. In particular,
they show that the loss of FPL∗ on any sequence of trials is at most7

(1 + ε)Lbest +
8n3(1 + lnn)

ε

where ε is a parameter of the algorithm. When the loss of the best expert is
known ahead of time, ε can be tuned and the bound becomes

Lbest + 4
√

2Lbestn3(1 + lnn) + 8n3(1 + lnn) .

Although FPL∗ gets the same Lbest leading term, the excess loss over the best
permutation grows as n3 lnn rather the n lnn growth of PermELearn’s bound.
Of course, PermELearn pays for the improved bound by requiring more time.

It is important to note that Kalai and Vempala also present a refined analysis
of FPL∗ when the perturbed leader changes only rarely. This analysis leads
to bounds on weighted majority that are similar to the bounds given by the
entropic analysis (although the constant on the square-root term is not quite as
good). However, this refined analysis cannot be directly applied with the efficient
representations of permutations because the total perturbations associated with
different permutations are no longer independent exponentials. We leave the
adaptation of the refined analysis to the permutation case as an open problem.

7 Conclusions and Further Work

The main technical insight in our analysis of PermELearn is that the per-
trial progress bound already holds for the un-normalized update and that the
7 The n3 terms in the bounds for FPL are n times the sum of the entries in the loss

motif. So if the loss motif’s entries sum to only n, then the n3 factors become n2.
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normalization step only helps. This finesses the difficulty of accounting for the
normalization (which does not have a closed form) in the analysis. The same
thing already happens in the Weighted Majority setting.

As our main contribution we showed that the problem of learning a permuta-
tion is amenable to the same techniques as learning in the expert setting. This
means that all techniques from that line of research are likely to carry over: lower
bounding the weights when the comparator is shifting, long-term memory when
shifting between a small set of comparators [BW02], capping the weights from
the top if the goal is to be close to the best set of comparators [WK06], adapting
the updates to the multi-armed bandit setting when less feedback is provided
[ACBFS02], PAC Bayes analysis of the exponential updates [McA03].

Our analysis techniques rely on Bregman projection methods. This means that
the bounds remain unchanged if we add convex side constraints on the parameter
matrix because as long as the comparator satisfies the side constraints, we can
always project onto these constraints without hurting the analysis [HW01]. With
the side constraints we can enforce relationships between the parameters, such
as Wi,j ≥ Wi,k (i is more likely mapped to j than k).

We also applied the “Follow the Perturbed Leader” techniques to our permu-
tation problem. This algorithm adds randomness to the total losses and then
predicts with a minimum weighted matching which costs O(n3) whereas our
more complicated algorithm is at least O(n4) and has precision issues. However
the bounds provable for FPL are much worse than for the WM style analysis used
here. The key open problem is whether we can have the best of both worlds: add
randomness to the loss matrix so that the expected minimum weighted matching
is the stochastic matrix produced by the PermELearn update (3). This would
mean that we could use the faster algorithm together with our tighter analysis. In
the simpler weighted majority setting this has been done already [KW05, Kal05].
However we do not yet know how to simulate the PermELearn update this way.
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