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Abstract. We discuss a simple sparse linear problem that is hard to
learn with any algorithm that uses a linear combination of the training
instances as its weight vector. The hardness holds even if we allow the
learner to embed the instances into any higher dimensional feature space
(and use a kernel function to define the dot product between the em-
bedded instances). These algorithms are inherently limited by the fact
that after seeing k instances only a weight space of dimension k can be
spanned.
Our hardness result is surprising because the same problem can be ef-
ficiently learned using the exponentiated gradient (EG) algorithm: Now
the component-wise logarithms of the weights are essentially a linear
combination of the training instances and after seeing k instances. This
algorithm enforces additional constraints on the weights (all must be
non-negative and sum to one) and in some cases these constraints alone
force the rank of the weight space to grow as fast as 2k.

1 Introduction

Linear methods are inadequate for many learning problems. However, if linear
methods are enhanced by the kernel trick, then they can lead to powerful learning
methods. For this purpose, the instance domain X is mapped to a Reproducing
Kernel Hilbert Space (RKHS) F via a possibly non-linear embedding map Φ.
Now linear models in the feature space F can describe highly non-linear models
in the original instance space X and linear learning algorithms (in feature space)
can become powerful learning methods. The caveat is that this method requires a
restriction to learning algorithms whose weight vectors are linear combinations of
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the embedded training instances.3 In this case, computing dot products between
the weight vector and a new embedded instance reduces to efficiently computing
the dot product between two embedded instances, i.e., 〈φ(x), φ(x̃)〉. This is done
via the so-called kernel function k(x, x̃) = 〈φ(x), φ(x̃)〉.

In this paper the following set of conditions is called kernel paradigm: The
weight vector (in feature space) is a linear combination of embedded training
instances, the dot product of this weight vector with new instances is computed
via a kernel function and the individual features (components of the embedded
instances φ(x)) are not accessed by the algorithm.

Now, consider the following sparse linear learning problem first discussed in
Kivinen and Warmuth (1997), Kivinen et al. (1997): The instances xt are the
rows of an n-dimensional Hadamard matrix and the possible targets are one of
the n columns of the matrix. In other words, if the target is the i-th column,
then the instances are labeled by the i-th feature and this target corresponds to
the standard basis vector ei (This vector has a one in the i-th position and zeros
elsewhere). Hadamard matrices have ±1 entries and orthogonal rows. Therefore,
as argued before in Kivinen and Warmuth (1997), Kivinen et al. (1997), this
problem is hard to learn when the weight vector is required to be a linear com-
binations of instances: Any linear combination of past instances predicts zero on
any new instance (labeled ±1) and thus incurs constant loss.

In this paper, we show that even if the learner is allowed to embed the
instances into any Euclidean space (via the use of a kernel), the above sparse
linear problem is still hard to learn4. Any algorithm that predicts with a linear
combination of the embedded instances seen so far has the property that after
k instances it can only span a weight space of rank k. However, the n standard
basis vectors vectors (our possible target weight vectors) form a matrix of rank
n. We show that for any k training instances and any embedding into some
Euclidean space (of any dimension), there always is one of the targets for which
the average square loss is at least 1− k

n . Thus, after seeing half of all the instances,
the average square loss is still a half.

The first question is, what is the family of algorithms that always predicts
with a linear combination of the instances. The Representer Theorem and various
extensions (Kimeldorf and Wahba, 1971, Schölkopf et al., 2001) provide mini-
mization problems whose solutions are always linear combinations of instances.
A more general geometric condition on the learning algorithm is given in Kivinen
et al. (1997): Any linear algorithm whose predictions are invariant with respect
to a rotation of the embedded instances must predict with a weight vector that is
a linear combination of the embedded instances. However, it is important to note
that our lower bounds hold for any algorithm that predicts with a linear com-
bination of instances.5 This includes algorithms that choose the coefficients of

3 The only specialized exceptions are the algorithms of Takimoto and Warmuth (2003).
4 Our hardness result does not hold for embeddings in arbitrary dot product spaces.

However, we believe that this is only a technical restriction.
5 This includes the work of Cristianini et al. (1999) that uses the EG algorithm to

determine the coefficients of the linear combination.

2



the linear combination by accessing the individual components of the embedded
instances - which breaks the kernel paradigm.

Our lower bound currently only holds for linear regression with respect to
the square loss. We conjecture that changing the loss function for the linear
prediction algorithm does not alleviate this problem, i.e., we conjecture that for
any non-negative convex loss function L, s.t. L(y, ŷ) ≥ 1 whenever |y − ŷ| ≥ 1,
there always is one of the targets with average loss 1− k

n . Along these lines, we
prove in the full paper that the lower bounds hold for the following generalization
of the square loss: Lp(y, ŷ) = |y − ŷ|p, for 1 < p ≤ ∞. The proof requires
considerably more tools from linear algebra.

The lower bounds may be surprising because there are simple linear learning
algorithms that can easily learn the above sparse linear problem. One such algo-
rithm belongs to the Exponentiated Gradient (EG) family of algorithms which
essentially have the property that the component-wise logarithms of the linear
weights are a linear combination of the (embedded) training instances. By vary-
ing the coefficient of a single instance, the set of possible weight vectors reachable
is already as high as the number of distinct components in the instance. Also the
weight space based on k instances can contain up to 2k standard basis vectors.

The crucial feature of the EG algorithm seems to be that it maintains con-
straints on the weights: the weights must be non-negative and sum to one. We
can show that in some special cases these constraints alone let us reach a weight
space of rank 2k after seeing k examples. Not surprisingly, the EG algorithm, as
well as any algorithm that enforces the constraints explicitly, require access to
the weights of the individual features, and this breaks the kernel paradigm6.

Following Kivinen and Warmuth (1997), the goal of this type of research is to
characterize which type of linear learning algorithm is suitable for a given class
of linear problems. The focus of this paper is to explore which linear prediction
algorithms are suitable for sparse linear problems.

Key open problem: Can similar lower bounds be proven for linear thresh-
olded predictors, i.e., now ŷ = σ(〈w, φ(x)〉), where σ is the threshold function
and w a linear combination of the embedded instances.

Related work: There has been an on-going discussion of the advantages
and disadvantages of kernel algorithms versus the multiplicative algorithms such
as the EG algorithm and the Winnow algorithm (Littlestone, 1988). In short,
multiplicative algorithms often generalize well after seeing only few examples
in the case when the target is sparse. However, for harder learning problems,
exponentially many weights need to be manipulated explicitly and this is too
expensive ((e.g., Section 9.6 of Kivinen and Warmuth, 1997) and Khardon et al.
(2001)). In contrast, the kernel algorithm may converge slower for the same
problems, but the kernel trick allows us to implicitly manipulate exponentially
many feature weights at a low computational cost.

6 The only exceptions to this that we know of are the updates discussed in Takimoto
and Warmuth (2003), where, in polynomial time exponentially many weights are
updated with the EG algorithm. Curiously enough special kernels are used for this
update.
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The embedding map can be seen as a special case of a reduction between pre-
diction problems. For a more general notion of reduction and non-reducibility
results that take the complexity of the learning problem into account see Pitt
and Warmuth (1993), Warmuth (1989). Many worst-case loss bounds (e.g., Gen-
tile and Warmuth, 1999) and generalization bounds (Schapire et al., 1998) are
known to improve with the size of the margin. The goal is therefore to choose
embeddings with large margins. To obtain a scaling-invariant notion of margin
we must normalize the margin by the product of a pair of dual norms: the maxi-
mum p-norm of the instances and the q-norm of the target weight vector, where
1
p + 1

q = 1. In Ben-David et al. (2002) it was shown that with high probability
a large fraction of the concept classes with a fixed VC dimension cannot be em-
bedded with a 2-2-margin other than the trivial margin of 1√

n
, where n is the

number of points. On the other hand (Forster et al., 2001) showed upper bounds
on the 2-2 margin of a concept class in terms of its operator norm (the largest
singular value of a matrix).

The family of algorithms whose weight vector is a linear combination of the
instances seems to relate to the 2-2-margin. However, the performance of the EG
algorithm seems to relate to the 1-∞-margin. For our simple Hadamard problem
there is no embedding with a 2-2-margin better than 1√

n
(the trivial 2-2-margin)

(Forster et al., 2001). However, the 1-∞-margin is 1 for this problem and this
seems to be the key reason why the EG algorithm does well in this case.

In this paper we prove lower bounds for the family of algorithms that predicts
with a linear combination of the instances. However, we don’t use pairs of dual
norms (as was done in Kivinen and Warmuth (1997)) and we also completely
bypass the concept of margins. Linear classifiers with large margins have good
generalization error, but we know of no lower bounds in terms of margins (see
Herbrich et al. (2005) for related experiments). Instead, we prove our lower
bounds using the Singular Value Decomposition7 (SVD) of the matrix defining
the linear problem and a simple averaging argument.

2 Hadamard Matrices and SVD

We make use of properties of Hadamard matrices in various proofs. A Hadamard
matrix is an orthogonal matrix with {±1} elements. The following definition
allows us to recursively define Hadamard matrices: When n = 2d for some d, the
n× n Hadamard matrix Hn is given by the following recurrence:

H1 = (+1) H2 =
(

+1 +1
+1 −1

)
H4 =


+1 +1 +1 +1
+1 −1 +1 −1
+1 +1 −1 −1
+1 −1 −1 +1

 H2n =
(

Hn Hn

Hn −Hn

)
We use the shorthand H = Hn, where the dimension n is understood from

the context. Note that all rows of the Hadamard matrix H are orthogonal and
of length

√
n.

7 In Forster et al. (2001) it was shown that the 2-2 margin of a concept class is upper
bounded by the largest singular value over n.
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In the Hadamard Learning Problem, the examples are the rows of the Hadamard
matrix labeled by one of the columns. So there are n instances and n possible
targets.

A matrix M ∈ Rn×m can be decomposed as M = USV> where U ∈ Rn×n,
V ∈ Rm×m are orthogonal and S ∈ Rn×m is a diagonal matrix, i.e., Sij = 0
for i 6= j. Furthermore, the diagonal elements of S are sorted and non-negative,
i.e., S11 ≥ S22 ≥ . . . ≥ Sqq ≥ 0, where q = min{m,n}. Henceforth, we will
use si to denote Si,i. If the rank r of M is less than q, then exactly the last
q − r diagonal entries are zero. Furthermore, the numbers si (singular values)
are uniquely determined by the square roots of the eigenvalues of MM>. The
columns of U are eigenvectors of MM> and the columns of V are eigenvectors of
M>M (arranged in the same order as the corresponding eigenvalues s2

i ). Such a
decomposition is called the Singular Value Decomposition (SVD) (e.g., Theorem
7.3.5 of Horn and Johnson, 1985). Under some mild technical assumptions, the
SVD can also be extended to bounded linear operators.

The Frobenius norm of a matrix M ∈ Rn×m is defined as ||M ||F =√∑n
i=1

∑m
j=1 |Mi,j |2. It is invariant under orthogonal transformations and

||M ||2F = s2
1 + . . . + s2

q q = min{m,n}. (1)

The following theorem allows us to write the best rank-k approximation to a
given matrix M in terms of its SVD (Page 450 (Problem 1) and Example 7.4.5,
Horn and Johnson, 1985).

Theorem 1. Let M = USV> denote the SVD of M ∈ Rn×m. For k < r =
rank(M) define Mk = UŜV> where Ŝ ∈ Rn×m with ŝi = si for i = 1, . . . , k
and ŝj = 0 for k < j ≤ m. Then

min
rank(cM)=k

||M− M̂ ||2F = ||M−Mk ||2F =
q∑

j=k+1

s2
j , q = min{m,n}.

For a Hadamard matrix H of dimension n×n, it is easy to see that rank(H) =
n and HH> = n I. Thus all eigenvalues of HH> are equal to n and the n
singular values si are equal to

√
n. The flat spectrum of the Hadamard matrix

will be used later to prove our lower bounds.

3 No Embedding Leads to Small Loss

As discussed before, each of the n possible linear targets in the Hadamard Learn-
ing Problem corresponds to a standard basis vector ei. In our first theorem, we
show that any linear combination of the instances (rows of the Hadamard matrix)
in which not all instances are used is far away from all targets. So any algorithm
that predicts with a linear combination of the instances cannot express any of
the targets unless all examples have been observed.
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Theorem 2. Any linear combination of k < n instances/rows of the n-dimensional

Hadamard matrix has distance at least
√

1− k
n from any of the n-dimensional

standard basis vectors.

We now show that linear combinations of k < n rows are not just far away
from any standard basis vector, but they also have large average square loss
w.r.t. any such target. In the theorem below we give lower bounds for the noise-
free case, i.e., when the labels are consistent with a target (which is one of the
components of the instances).

Theorem 3. For any linear combination of k rows of the n-dimensional Hadamard
matrix and any n dimensional standard basis vector, the average square loss over
all n examples is at least 1− k

n .

Next we show that a similar lower bound can be proven even if the instances
can be embedded into any higher dimensional space (for instance by using a
kernel function). So this lower bound applies to all algorithms that predict with
a linear combination of the expanded instances. Our proof exploits the flat SVD
spectrum of Hadamard matrices.

Our theorem applies to any learning algorithm that follows the following
protocol: It first chooses an embedding of all n instances. It then receives a set
of k embedded training instances labeled by one of the targets (i.e., we are in
the noise-free case)8. The algorithm then produces a linear combination of the
embedded training instances as its linear weight vector in feature space and is
then evaluated w.r.t. the same target on all n instances.

Theorem 4. For any embedding of the rows of the n-dimensional Hadamard
matrix H, any subset of k rows and any n linear combinations wi of the embedded
k rows (one per target), the following holds: If `i is the average square loss of
wi on the i-th target (where the average is taken over all n examples), thenP

i `i

n ≥ 1− k
n .

The generality of the theorem might be confusing: The theorem holds for any
weight vectors that are linear combinations of the k embedded training instances,
where the coefficients of the linear combination can depend arbitrarily on the
target and the training instances. In particular, the lower bound holds for the
following learning model: The k training instances are drawn at random w.r.t.
any distribution. If the k training instances are drawn with replacement, then
the learner might end up with k′ < k unique instances and the lower bound
for those draws is then 1− k′

n instead of 1− k
n . More discussion of probabilistic

models is given in Section 5.
Note that this lower bound is weaker than the previous one in that we now

average over instances and targets. However, since we have a lower bound on
the average over targets, that same lower bound must hold for at least one of
8 Our results hold even if the learner embeds the instances after seeing the k training

instances. The only restriction is that the embedding must be the same for all targets.
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the targets. The average loss is measured w.r.t. the uniform distribution on all
n instances. This is crucial because it disallows the case in which the algorithm
predicts badly on the k training instances and well on the n− k remaining test
instances. Averaging over targets is also necessary because as we shall see later,
for some embeddings there are linear combinations of k expanded instances that
predict perfectly on k of the n targets.
Proof Let φ : Rn → Rm denote an arbitrary function that is used to map the
rows of the n×n Hadamard matrix H to a matrix Z ∈ Rn×m. We use Ĥ and Ẑ
to denote the sub-matrices of H and Z which contain the k rows corresponding
to the training instances. The weight vector must be a linear combination of the
embedded instances, i.e., the k rows of Ẑ. Let wi = Ẑ

>
ai denote the weight

vector when the instances are labeled with the i-th column of H. We use matrix
notation to combine all n learning problems into one. Let A ∈ Rk×n be the
matrix whose columns are the coefficient vectors ai. All n weight vectors form
the matrix [w1, . . . ,wn] = Ẑ

>
A. Observe that the prediction of the algorithm

on the n rows of the Hadamard matrix is given by Z Ẑ
>

A, while the target
predictions are HI = H. For the square loss we can write the total loss of the n

linear classifiers as ||Z Ẑ
>

A−H ||2F . The Hadamard matrix H has rank n while

Ẑ has rank at most k and hence Z Ẑ
>

A has rank at most k. From Theorem 1 it
is clear that the loss is minimized when Z Ẑ

>
A = UŜV> where H = USV>

is the SVD of H and ŝi = si =
√

n for i = 1, . . . , k while ŝk+1 = . . . = ŝn = 0.
The squared Frobenius norm of the residual or the total loss incurred by the
algorithm is therefore (n−k)s2

n = n(n−k). By uniformly averaging the loss over
the n targets and n instances, the expected value of the loss is 1− k

n .

If the hypotheses are allowed to be a bias plus a linear combination of the
k chosen training instances, then the total loss of the n classifiers becomes
||Z Ẑ

>
A+B−H ||2F , where the bias matrix B is any n× n matrix with identi-

cal entries in each column. Since B has rank one, Z Ẑ
>

A+B has rank at most
k +1. Thus the lower bound in the above theorem changes to 1− k+1

n instead of
1− k

n . So the lower bounds discussed in this section are not majorly affected by
allowing a bias, and for the sake of simplicity we only state our results for the
homogeneous case.

There is a trivial kernel that shows that the above theorem can be tight: We
let the ith row of H map to the n-dimensional standard basis vector ei (i.e.,
Z = I). After seeing a subset of k training instances (labeled by one of the
targets), we build a hypothesis weight vector w as follows: wi is set to yi if the
ith row was a training instance labeled with yi and zero otherwise. This weight
vector w ∈ Rn is a linear combination of the training instances (which are all
standard basis vectors ej s.t. row j of Z is one of the k training instances). The
predictions of w are as follows: They agree with the labels of the target on the
k training instances and are zero on the remaining n− k instances. We call any
weight vector with the above predictions a memorizing weight vector. Whenever
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the target labels are ±1, any memorizing weight vector has average loss 1 − k
n

on the n instances. So for any of the n standard basis vectors the average loss
on the n instances is exactly 1− k

n .
Note that the Hadamard matrix itself is a rotated and scaled unit matrix. So

the embedding Z = H (i.e., the identity embedding) could also be used to realize
memorizing weight vectors for each target. In other words an optimal embedding
for the Hadamard problem is the identity embedding (used in theorems 2 and
3). Theorem 4 shows that no kernel can lead to an improvement (when averaged
over targets).

The following embedding shows that averaging over targets is necessary in
the above theorem and the lower bound does not necessarily hold for the average
loss w.r.t. each target (as was the case for the identity kernel (Theorem 3)). In
this embedding Z consists of the first k columns of H (i.e., the dimension of
the instances is shrunk from n down to k). Furthermore let Ẑ be the first k

rows of Z (in other words Ẑ = H(1 : k, 1 : k) and is nonsingular). We first
define a weight vector wi for each target ei and then show that these weight
vectors are realizable as linear combinations of the k training instances: Let wi

be zero if i > k and wi = ei otherwise. To realize these weight vectors as linear
combinations of the k training instances set the coefficient vector ai to zero if
i > k and to the ith column of (Ẑ

T
)−1 otherwise. Now the prediction vector Zwi

is the ith column of H, if i ≤ k, and zero otherwise. In other words, using this
embedding, k of the targets can be predicted perfectly (average loss 0), and the
remaining n−k targets have average loss 1. When we average over all n instances
and targets, then this average is still 1− k

n (So again the above theorem is tight).
However now the average loss for each target is not lower bounded by 1− k

n , and
therefore Theorem 4 cannot be strengthened as discussed above.

Note that the only fact about the Hadamard matrix that enters into the
previous theorem is that its SVD spectrum is flat and it is straightforward to
generalize the above theorems to arbitrary matrices. For the sake of simplicity
we go back to averaging over all instances.

Corollary 1. As in Theorem 4, but now H is any n × n dimensional matrix
with SVD spectrum si. Then the lower bound on the expected square loss over
all n instances changes to 1

n2

∑n
i=k+1 s2

i . When all singular values are equal to
s, then the lower bound becomes (1− k

n ) s2

n .

4 Random Matrices are Hard

Hadamard matrices seem rather special. However we will show that if the Hadamard
matrix is replaced by a random ±1 matrix, then (with high probability) the lower
bound of Theorem 4 holds with slightly smaller constants. The reason for this
is that the SVD spectrum of random ±1 matrices has a heavy tail and hence
when learning the columns of a random matrix, the expected loss is large for at
least one column (as in Corollary 1). In Figure 1 we plot the spectrum si (as
a function of i) of the Hadamard matrix which is a flat line at level

√
n, where
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n = 1024. We also plot the spectra of 500 random 1024 × 1024 matrices with
±1 entries. Each such spectrum si is a line that is closely approximated by the
linear curve 2

√
n − 2i√

n
. Notice the heavy tail and low variance of the spectra:

In the plot, the 500 lines become one thick line.
Recall that after seeing half of the examples, the expected square loss for the

Hadamard Learning Problem is at least
1
2 for at least one of the target columns
(Theorem 4). When the matrix is chosen
at random, then Corollary 1 implies that
this loss is still about 1

4 .
Before we detail what is provable for ran-
dom matrices we would like to discuss
some related work. In Ben-David et al.
(2002) it was shown that most concept
classes of VC dimension d can be em-
bedded only with a trivial 2-2 margin.
This is seen as evidence that most con-
cept classes of VC dimension d “may” be
hard to learn by kernel based algorithms.
(Note that random concept classes of VC
dimension d might not even be efficiently

Fig. 1: The horizontal line represents
the spectrum si (as a function of i) of
the 1024 dimensional Hadamard matrix
(at level

√
1024). The plot also contains

the spectra of 500 random 1024 × 1024
matrices with {±1} entries. The variance
of these spectra lines is small and there-
fore the 500 lines form one thick line.

learnable by any algorithm.) Furthermore, we are not aware of any formal lower
bound in terms of the 2-2 margin.
In contrast, we completely bypass the notion of the margin and give a stronger
result. We define a class of easy to learn linear problems characterized by a ran-
dom n × n matrix with ±1 entries9. The instances are the rows of this matrix
and the target concepts are the columns of this matrix.
In the full paper we show analytically that, with high probability, any algorithm
that predicts with a linear combination of the instances cannot learn random
problems of this type. By Corollary 1 it suffices to investigate the properties of
the random variable Q = 1

n2

∑n
i=k+1 s2

i . Using techniques from Davidson and
Szarek (2003), Meckes (2004), we show that Q is sharply concentrated around
1− c · k

n where c is a scalar constant.

5 Probabilistic Models

In this section we prove lower bounds for the case when the training examples
are chosen based on some probabilistic model.

Theorem 5. Assume we have a uniform distribution on the n rows of the
Hadamard matrix. Assume the algorithm first embeds10 the n rows and then
draws k random training examples without replacement that are all labeled by
9 The VC dimension of our learning problem is at most lg n.

10 Theorem 4 guarantees that the lower bound also holds for the following protocol:
The algorithm first draws k rows without replacement. It then chooses its embedding
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one of the n targets. It then forms its hypothesis by choosing a linear combina-
tion of the embedded k training instances.

If `i is the expected average square loss when the target is the i-th target and
the loss is averaged over all n examples, then

P
i `i

n ≥ 1− k
n .

Proof Follows from Theorem 4.

The lower bound on
P

i `i

n is tight for the identity kernel and the memorizing
weight vector.

Note that we always average the loss over all n instances. We believe that
this is the only reasonable model for the case when the instance domain is finite.
In the full paper we also develop lower bounds for the case when the loss is
averaged over the n − k test instances. There are no surprises but the bounds
are slightly more complicated to state.

We now prove a similar theorem for the case when the training examples are
drawn with replacement.

Theorem 6. Assume we have a uniform distribution on the n rows of the
Hadamard matrix. Assume the algorithm first embeds the n rows and then draws
t training examples independently at random with replacement that are labeled
by one of the n targets. It then forms its hypothesis by choosing the linear com-
bination of the t embedded training instances.

If `i is the expected average square loss when the target is the i-th target and
the loss is averaged over all n examples, then

P
i `i

n ≥
(
1− 1

n

)t.
Proof By Theorem 4 the average square loss (over all instances and targets)
conditioned on the fact that k distinct training examples were drawn is at least
1− k

n = n−k
n . Note that n− k is the number of examples missed in the training

set. Let M be a random variable denoting the number of missed examples. By
the above argument the lower bound is E(M)

n .
Clearly, M =

∑
i Mi, where Mi is a binary random variable indicating

whether the ith example was missed, and

E(M) = E(
∑

i

Mi) =
∑

i

E(Mi) = nE(M1) = n(1− 1
n

)t.

6 Rotation Invariance

Kernel algorithms are commonly motivated by weight updates derived from a
“Representer Theorem” (Kimeldorf and Wahba, 1971, Schölkopf et al., 2001).
This type of theorem states that if the weight vector is produced by a certain
minimization problem, then it must be a linear combination of the expanded
instances. In the simplest form

w = arginf
w′

(
Ω(||w′ ||2) + L(w′)

)
, (2)

(that may depend on the chosen rows). Finally the chosen rows are labeled by one of
the targets and a linear combination of the embedded k training instances is chosen
as the hypothesis.
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where Ω is a monotonic non-decreasing function and L is a convex real-valued
loss function that only depends on the dot products between the weight vector
w′ (in feature space) and the expanded instances φ(xi).

Here, we follow Kivinen and Warmuth (1997) and first point out that there is
a simple geometric property of an algorithm that guarantees that the algorithm
produces a linear combination of the expanded instances. This property is the
notion of rotation invariance of an algorithm. Representer theorems are a special
case of this characterization because the objective functions (eg. (2)) used in
these theorems are rotation invariant.

Representer theorems (and more generally rotation invariance) guarantee
that the weight vector of an algorithm is a linear combination of the expanded
instances. However, the lower bounds of our paper hold for any algorithm whose
hypotheses are such linear combinations. This includes (see example at the end
of section) algorithms that are not rotation invariant and algorithms that break
the kernel paradigm.

We denote the examples as (x, y) and assume that instances x already lie in
some expanded feature space X and the labels y in some label domain Y ⊆ R. For
the sake of simplicity the instance domain X = Rn for some n. An algorithm
maps arbitrary sequences of examples 〈 S 〉 = {(x1, y1), (x2, y2), . . . , (xT , yT )}
to a weight vector w(〈 S 〉) in the instance domain. We study the behavior of
algorithms when they receive rotated sequences. If U is an orthonormal matrix in
Rn×n, then 〈US 〉 denotes the sequence {(Ux1, y1), (Ux2, y2), . . . , (UxT , yT )}.
(Note that the rotation only affects the instances.)

Theorem 7. Let 〈 S 〉 = {(x1, y1), (x2, y2), . . . , (xT , yT )} ⊆ Rn×R be any se-
quence of examples and let w be the input-output mapping of an algorithm from
sequences of examples in Rn×R to vectors in Rn. Consider the following three
statements:

1. w is rotation invariant in the sense that

w(〈 S 〉)> x = w(〈US 〉)>Ux,

for all sequences 〈 S 〉, orthonormal matrices U ∈ Rn×n, and x ∈ Rn.
2. For all 〈 S 〉, w(〈 S 〉) must be a linear combination of the instances of 〈 S 〉.
3. For all 〈 S 〉 and rotation matrices U, w(〈US 〉) = Uw(〈 S 〉).

Now, 1 =⇒ 2 ∧ 3 and 3 =⇒ 1.

The following example shows that the implications 2 =⇒ 3 and 2 =⇒ 1
do not hold in general:

w(〈 S 〉) =
{

0 if x1,1 > 0
x1 otherwise.

Clearly, w(〈 S 〉) is a linear combination of the instances in 〈 S 〉 and therefore
Statement 2 holds for this algorithm. Choose U as − I, i.e., minus the identity
matrix and the first instance in 〈 S 〉 as x1 = (1, 0, . . . , 0)>. Now, w(〈 S 〉) = 0
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and w(〈US 〉) = x1 and therefore statements 1 and 3 are both false. Note that
in this example the individual components of the instances are accessed and thus
the kernel paradigm is violated. However, as long as the hypotheses produced
are linear combinations, our lower bounds apply.

Even though we only defined rotation invariance in Rn, it should be apparent
that this notion can easily be generalized to arbitrary RKHS.

7 Leaving the Span with Constraints

Consider a set of k instances (rows) of the following form (Figure 2): All
components are ±1 and all 2k bit patterns exactly appear once as a column.
Assume the instances are labeled by one of the n = 2k columns (i.e., the tar-
get is one of the n standard basis vectors). Consider two algorithms: The first
is any algorithm that predicts with a linear com-
bination of the instances and the second any al-
gorithm that produces a weight vector consistent
with the examples and the additional constraints
that the weights are non-negative and sum to one.
For each of the algorithms, form a matrix whose

−1 +1 −1 +1 −1 +1 −1 +1
−1 −1 +1 +1 −1 −1 +1 +1
−1 −1 −1 −1 +1 +1 +1 +1
Fig. 2: Each bit pattern ap-
pears once as a column of the
lg n instances (n = 8).

columns are the n weight vectors produced by the respective algorithm as the
target is varied. Clearly, the rank of the first algorithm’s weight matrix is at
most k (even if the instances are allowed to be embedded). However, we will
show now that the rank of the second algorithms weight matrix is at least 2k.
Lemma 1. Assume the examples are the rows of a k × n dimensional matrix
with entries ±1 which are labeled by one of the columns of the matrix. Then
any weight vector w that is consistent with the examples and satisfies the above
additional constraints has the following property: If wi > 0 then the i-th column
coincides with the labels. If all columns are unique, then the w is always the
standard basis vector that identifies the target column.

Proof W.l.o.g. the labels are all ones. Otherwise, multiply the corresponding
instance and label by −1 and keep the weights unchanged. Now, because of the
additional constraints on the weights, it is easy to see that all non-zero weights
must be on columns that contain only ones.

This means that the weight matrix of the second algorithm is the n-dimensional
unit matrix (rank n = 2k). So adding the constraint forced the rank of the weight
matrix to grow exponentially with the number of examples instead of linearly.

See Figure 3 for a simple problem where imposing these additional constraints
makes the weight of the consistent column grow exponentially. Maintaining con-
straints can be expensive. In particular, the non-negativity constraints access
the individual features and this breaks the kernel paradigm.

One simple algorithm that maintains the additional constraints is the Ex-
ponentiated Gradient (EG) Algorithm whose weight vector has the following
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Fig. 3. The examples are the rows of a random 128× 128 dimensional matrix with ±1
entries labeled by column one. Let wt be the shortest weight vector consistent with
the first t examples. For 1 ≤ i ≤ 128, we plot (left) the wt

i as a function of t (x−axis).
The line representing the first weight wt

1 grows roughly linearly and only after seeing
all 128 examples the target weight vector e1 is found. On the right we have the same
plot, but we enforce the additional constraints that wt

i ≥ 0 and
Pn

i=1 wt
i = 1. Now the

first weight grows much faster and the target weight vector is found much sooner.

exponential form:

wi =
w1

i exp
(∑k

t=1 atx
t
i

)
Z

, where Z =
n∑

j=1

w1
j exp

(
k∑

t=1

atx
t
j

)
. (3)

Here w1 is an initial weight vector satisfying the additional constraints. Note that
lnwi =

∑k
t=1 atx

t
i + lnw1

i − lnZ. So except for the additional terms introduced
by the initial weights and the normalization, the logarithms of the weights are
a linear combination of examples 11.

If the EG algorithm is used as our second algorithm then it realizes the n
standard basis vectors as follows: Set the coefficients at of the k examples to ±η
and let the learning rate η go to infinity. Each such weight vector converges to a
standard basis vector, one for each of the 2k = n sign patterns of the coefficients.
The cost of the EG algorithm is O(1) per example and feature (Kivinen and
Warmuth, 1997) and again the kernel paradigm is broken because individual
features are accessed.

In general, weight updates can be defined in terms of a link function12 f or
its associated Bregman divergence (Azoury and Warmuth, 2001). The updated
weights minimize a Bregman divergence plus η times the loss on the last instance

11 Set the nth weight to wn = 1 −
Pn−1

j=1 wj . If the initial weights are uniform then

ln
wj

1−
Pn−1

j′=1
wj′

=
Pk

t=1(atx
t
j − anxt

n).

12 Now f(〈 S 〉) is a linear combination of the (embedded) instances and
f(w(〈 S 〉))> x = f(w(〈US 〉))>Ux for any orthonormal matrix U.
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and the Bregman divergence serves as a barrier function for maintaining the
constraints (e.g., Kivinen and Warmuth, 2001, Helmbold et al., 1999).

Bounds: We only sketch the bounds provable for a slightly more general
version of the EG algorithm called EG± (Kivinen and Warmuth, 1997). This
algorithm maintains the constraint ||w ||1 ≤ U1. Assume the instances have
infinity norm at most X∞ and there is a consistent weight vector u s.t. ||u ||1 ≤
U1. (Both U1 and X∞ are parameters to the algorithm). One can show that after
receiving k training examples drawn from any fixed distribution, the expected
loss13 of this algorithm (w.r.t. the same distributions) is X2

∞U2
1 ln n

k (e.g., Kivinen
and Warmuth, 1997). If the learning rate is properly tuned, then these algorithms
also have good bounds in the noisy case.

It is important to note that even though the bounds provable for these al-
gorithms are messy to state, the essentials are quite simple. The weight vectors
are defined using a relative entropy regularization term (in general any Bregman
divergence) instead of the squared Euclidean distance used for the kernel based
algorithms (which predict with a linear combination of the instances).

8 Conclusion

In Kivinen and Warmuth (1997) and Gentile and Littlestone (1999) a pair of
dual norms was used to characterize the generalization performance of different
families of learning algorithms. For each algorithm there are certain settings in
which its bound beats the bounds of the other algorithm. In this paper we showed
how the lower bounds for one important family (the one predicting with a linear
combination of the instances) still hold even if the instances can be embedded
into any Euclidean space.

Kernel methods are often described as “non-linear” methods because they
allow the use of non-linear features. However, no matter what embedding is used,
kernel methods build linear models in feature space and for some problems this
is highly restrictive.

Acknowledgments: We thank Claudio Gentile, Adam Kowalczyk, Alan Pajor
and Stéphane Canu for insightful discussions.
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