
Averaging Expert Predictions

Jyrki Kivinen1 and Manfred K. Warmuth?2

1 Department of Computer Science, P.O. Box 26 (Teollisuuskatu 23), FIN-00014
University of Helsinki, Finland; e-mail Jyrki.Kivinen@cs.Helsinki.FI

2 Department of Computer Science, University of California, Santa Cruz, CA 95064,
USA; e-mail manfred@cse.ucsc.edu

Abstract. We consider algorithms for combining advice from a set of
experts. In each trial, the algorithm receives the predictions of the ex-
perts and produces its own prediction. A loss function is applied to mea-
sure the discrepancy between the predictions and actual observations.
The algorithm keeps a weight for each expert. At each trial the weights
are first used to help produce the prediction and then updated accord-
ing to the observed outcome. Our starting point is Vovk’s Aggregating
Algorithm, in which the weights have a simple form: the weight of an
expert decreases exponentially as a function of the loss incurred by the
expert. The prediction of the Aggregating Algorithm is typically a non-
linear function of the weights and the experts’ predictions. We analyze
here a simplified algorithm in which the weights are as in the original
Aggregating Algorithm, but the prediction is simply the weighted aver-
age of the experts’ predictions. We show that for a large class of loss
functions, even with the simplified prediction rule the additional loss of
the algorithm over the loss of the best expert is at most c lnn, where
n is the number of experts and c a constant that depends on the loss
function. Thus, the bound is of the same form as the known bounds for
the Aggregating Algorithm, although the constants here are not quite as
good. We use relative entropy to rewrite the bounds in a stronger form
and to motivate the update.

1 Introduction

The focus of this paper is a certain class of on-line learning algorithms. In on-line
learning the algorithm receives one by one a sequence of inputs xt and makes
after each xt a prediction ŷt. For each input xt there is also a corresponding
outcome (or desired output) yt which is revealed to the learner after it has made
its prediction ŷt.
To define our on-line learning problem more closely, we need to specify which

sequences ((x1, y1), . . . , (x`, y`)) are allowed as inputs, and what is the criterion
for judging the quality of the predictions ŷt. Regarding the input sequences, we
take a worst-case view that given some domain X for the inputs and Y for the
outcomes, for each t the pair (xt, yt) can be any element of X×Y . In particular,

? Supported by NSF grant CCR 9700201

the pairs need not come from any probability distribution, and we make no
assumptions about possible dependence between yt and xt. In this paper we
consider mainly the case X = [0, 1]n for some n and Y = [0, 1]. Many of the
results have obvious extensions to larger ranges of real inputs and outputs. We
sometimes also consider the special case Y = { 0, 1 } where the outputs (but not
the inputs) are required to be discrete.
To judge the quality of the predictions, we first introduce a loss function L

that gives a (nonnegative) quantity L(yt, ŷt) as a measure of discrepancy between
the prediction and actual outcome. The square loss given by L(y, ŷ) = (y − ŷ)2

is a good example of a loss function suitable for our setting.
In addition to the loss function, it is essential to give a comparison class

F of predictors as a reference point. The predictors are mappings from the
set of possible inputs X to the set of possible predictions. We then define
the total loss for an algorithm A that gives the predictions ŷt on a sequence
S = ((x1, y1), . . . , (x`, y`)) as LossA(S) =

∑`
t=1 L(yt, ŷt), and similarly for a

predictor f ∈ F as Lossf (S) =
∑`

t=1 L(yt, f(xt)). We can measure the perfor-
mance of our prediction algorithm by considering the additional loss LossA(S)−
inff∈F Lossf (S) it incurs compared to the best fixed predictor from the compar-
ison class. We call such performance bounds relative loss bounds.
In the extreme case that the outcomes yt are completely random, the algo-

rithm obviously cannot perform better than random guessing, but then neither
can the predictors from the comparison class, so the additional loss can still be
made small. In the more interesting extreme case that one predictor f ∈ F is
perfect and we have L(yt, f(xt)) = 0 for all t, the algorithm can still be allowed
some initial interval of bad predictions, but to achieve a small additional loss
it needs to quickly learn to make good predictions. Usually we are somewhere
between these to extremes. Some predictors from the comparison class predict
better than others, and the algorithm is required to perform roughly as well as
the better ones.
In this paper the comparison classes we use come from the framework of

predicting with expert advice [Vov90,CBFH+97]. We assume there are n experts,
and the prediction of the ith expert for the tth outcome is given by xt,i ∈ [0, 1].
The vector xt of all the experts’ predictions at trial t is then the tth input vector
to our algorithm. Hence, if we define Ei(x) = xi, then LossEi

(S) denotes the loss
that the expert Ei would incur on the sequence S. The obvious thing to do now
is to take as comparison class the set { E1, . . . , En } of expert predictors and thus
compare the loss of the algorithm to the loss mini LossEi

(S) of the best single
expert.
Earlier work on the expert framework by Vovk [Vov90] has shown that for a

very general class of loss functions his Aggregating Algorithm (AA) achieves the
bound

LossAA(S) ≤ LossEi
(S) + cL lnn for all i (1)

where the constant cL depends on the loss function. For example, with the
square loss we have cL = 1/2. This bound has also been shown to be essen-
tially optimal [HKW98]. (Notice that for the important special case of absolute

loss L(y, ŷ) = |y − ŷ|, only bounds of a somewhat weaker form are possible
[LW94,Vov90,CBFH+97].) Vovk’s Aggregating Algorithm is based on maintain-
ing for each expert a weight that is decreased exponentially as the expert incurs
loss. The predictions of the algorithm are of course affected more by the experts
with large weights than by those with small weights, but the actual method
of obtaining the prediction is somewhat more complicated than just taking a
weighted average of the experts’ predictions.
The main technical novelty in this paper is considering what happens if we

keep using Vovk’s algorithm for maintaining the weights but replace the predic-
tion simply by the weighted average of the experts. Considering the optimality
of Vovk’s algorithm, we cannot hope to outperform it, but it turns out that for
the simplified Weighted Average Algorithm (WAA) we can still prove the bound

LossWAA(S) ≤ LossEi
(S) + c̃L lnn for all i (2)

where c̃L is a constant somewhat greater than cL in (1). For example, with the
square loss we have c̃L = 2 and cL = 1/2.
The main reason why we want to consider the simplified prediction at the

cost of slightly larger additional loss is that the simplified algorithm leads to
simplified proofs of the relative loss bounds. Another intuitively appealing aspect
of the weighted average as prediction is its probabilistic interpretation. If the
negated loss −L(yt, xt,i) can be interpreted as the log likelihood of yt given
model Ei, then the weight of the expert Ei after the trials can be interpreted as the
posterior probability assigned to that expert. The prior probabilities here are the
initial weights of the experts. In this setting, the prediction by weighted average
correponds to the mean posterior prediction. The log loss, for which the log
likelihood interpretation is most obvious, has been analyzed in this context before
[Vov90,CBFH+97,FSSW97]. It turns out that in the special case of log loss, the
prediction of the Aggregating Algorithm also is the weighted average, so the
Weighted Average Algorithm coincides with the original Aggregating Algorithm.
In reducing the algorithm’s dependence on the particular loss function, the

next step would be Freund and Schapire’s Hedge Algorithm [FS97] that needs
to assume only that the loss function has a bounded range. They can still prove
loss bounds of the same flavor as the bounds here, but in the slightly weaker
form of

LossHedge(S) ≤ LossEi
(S) + a

√
LossEi

(S)) lnn+ b lnn for all i

for certain a, b > 0. Hence, there is a progression of algorithms where Vovk’s
original Aggregating Algorithm has a weight update that is uniform for all kinds
of loss functions, but the prediction method is dependent on L. For the Weighted
Average Algorithm, the prediction is made by the weighted average regardless of
the loss function, but this happens at the cost of slightly worse constants in the
loss bounds. Finally, the Hedge Algorithm is even more uniform in its treatment
of loss functions, but the loss bounds get worse by more than just a constant.
(Also notice that the bound for the Hedge Algorithm does not work with the
unbounded log loss.)

After the technical remarks, consider now relating these results to a larger
body of work where the relative entropy is the fundamental concept for moti-
vating and analyzing learning algorithms [KW97]. Let u ∈ R

n and v ∈ R
n

be probability vectors; i.e.,
∑

i ui =
∑

i vi = 1 and ui, vi ≥ 0 for all i. The
relative entropy between u and v is then dre(u,v) =

∑n
i=1 ui ln(ui/vi). To in-

troduce relative entropy methods into the present problem, it is useful to start
by considering a slightly extended comparison class. We define Lossavg

u (S) =∑`
t=1

∑n
i=1 uiL(yt, xt,i) to be the expected loss if we predict by a random ex-

pert chosen according to u. We first rewrite Vovk’s original proof in order to
bring out how the additional loss incurred by the algorithm relates to a relative
entropy. The resulting bound is

LossWAA(S) ≤ Loss
avg
u (S) + c̃L dre(u,v1) (3)

where v1 is the algorithm’s initial weigth vector. With v1 = (1/n, . . . , 1/n),
and ui = 1 and uj = 0 for j 6= i, this simplifies to bound (2) where compar-
ison is against the single best expert Ei. Note that since always Loss

avg
u (S) ≥

mini LossEi
(S), going from (2) to (3) does not bring any improvement in the first

term of the bound. However, improvement in the second term are possible. If
there are several expert with nearly optimal performance, then substituting into
(3) a comparison vector u that distributes the weight nearly evenly among the
good experts gives a significantly sharper bound than (2). As a simple example,
assume that k experts all have some small loss Q. Then (2) gives the loss bound
Q+ c̃L lnn while the bound (3) goes down to Q+ c̃L ln(n/k). The new method
brings out in a more explicit form the feature implicit in earlier proofs (see,
e.g., [LW94,Vov90]) that having more than one good expert results in a smaller
additional loss. For log loss this feature, with bounds of the form (3) and proofs
analogous to ours, was already pointed out in [FSSW97].
Our second use for relative entropy is as a regularizing term in setting up a

minimization problem that gives Vovk’s rule for updating the weights. The basic
idea in such a derivation (see [KW97,HKW95] for other examples) is to see the
update as an act of balancing the need to maintain old information by staying
close to the old weight vector and the need to learn by moving the weights in
the direction of small loss on the last example.
In Sect. 2 we review the basic expert framework and Vovk’s algorithm. Sect. 3

gives the new upper bound for the additional loss achieved by the modified algo-
rithm that predicts with the weighted combination of experts. A straightforward
proof is given in Sect. 4. In Sect. 5 we restate the bound and proof using a relative
entropy, and give a motivation for the algorithm in terms of a relative entropy
minimization problem. Finally, in Sect. 6 we generalize the relative loss bounds
for the new algorithm to multi-dimensional predictions and outcomes.

2 The Setting and the Algorithm

We consider a simple on-line prediction setting, where learning takes place during
a sequence of trials. At trial t, the learner tries to predict a real-valued outcome

yt. The learner’s prediction is denoted by ŷt, and the performance of the learner
is measured by using a loss function L. Loss functions will be discussed in more
detail in Sect. 3, but for understanding the algorithm it is sufficient to think of,
say, the square loss given by L(y, ŷ) = (y − ŷ)2. The learner bases its prediction
ŷt on an instance xt. In the expert-based framework we use here, we imagine
there is a set of experts Ei, i = 1, . . . , n, and the instance xt is an n-dimensional
vector where the ith component xt,i of the tth instance can be interpreted as
the prediction given by expert Ei for the outcome yt.
We consider here a specific kind of algorithm based on maintaining a weight

on each expert. The weight vector vt is normalized to be a probability vector
(i.e.,

∑
i vi = 1, vi ≥ 0), and vt,i can be interpreted as the algorithm’s belief

in the expert Ei having the best prediction at the trial t. The prediction of the
algorithm at trial t is given by the weighted average ŷt = vt · xt. After seeing
the outcome yt, the algorithm updates its weights. The update method and all
other details of the Weighted Average Algorithm (WAA) we consider here are
given in Figure 1.
Sometimes it is more convenient to express the update in terms of the un-

normalized weights

wt,i = w1,i exp


−1

c

t−1∑

j=1

L(yj , xj,i)


 (4)

where w1,i = v1,i. Now vt,i = wt,i/Wt whereWt =
∑n

i=1 wt,i is the normalization
factor. Thus, ignoring the normalization factor, the logarithm of the weight of
an expert is proportional to the expert’s accumulated loss from preceding trials.
We call this the loss update to emphasize that only the values of the loss function
(and not its gradient etc.) are used.
The loss update of the Weighted Average Algorithm was introduced by Vovk

[Vov90] in his Aggregating Algorithm (AA) that generalized the Weighted Ma-
jority algorithm [LW94]. However, the prediction of the Aggregating Algorithm
is usually given by a function that is non-linear in vt and depends on the loss
function. In contrast, we use the fixed prediction function ŷt = vt · xt for all
loss functions. (A notable special case is the log loss, for which the Aggregating
Algorithm also predicts with ŷt = vt · xt.)

3 Basic Loss Bounds

We begin with a short discussion of some basic properties of loss functions. The
definitions of the loss functions most interesting to us are given in Table 1. For a
loss function L, we define Ly(ŷ) = L(y, ŷ) for convenience in writing derivatives
with respect to ŷ. Note that with the exception of the absolute loss, all the loss
functions given in Table 1 are convex , i.e., L′′y(x) > 0 for all x and y, and also
satisfy L′y(y) = 0 for 0 < y < 1. This implies monotonicity , i.e., L′y(x) < 0 for
x < y and L′y(x) > 0 for x > y. We generalize the derivative notation also for
the end points by defining L′0(0) = L′1(1) = 0. The absolute loss L(y, ŷ) = |y− ŷ|

Initialize the weights to some probability vector v1,i;
set the parameter c to some positive value.

Repeat for t = 1, . . . , `:
1. Receive the instance xt.
2. Output the prediction ŷt = vt · xt.
3. Receive the outcome yt.
4. Update the weights by the loss update defined as follows:

vt+1,i = vt,i exp(−L(yt, xt,i)/c)/normt

where

normt =

n∑

i=1

vt,i exp(−L(yt, xt,i)/c) .

Fig. 1. The Weighted Average Algorithm (WAA) for combining expert predictions

(and other loss functions that are not continuously differentiable) is not covered
by the bounds given in this paper.
Given some fixed loss function L, consider now the total loss

LossA(S) =
∑̀

t=1

L(yt, ŷt)

suffered by some algorithm A on the trial sequence with the instance-outcome
pairs S = ((x1, y1), . . . , (x`, y`)). We wish to prove upper bounds for this total
loss without making statistical or other assumptions about how the instances
and outcomes are generated. When no such assumptions are made, one suitable
way of measuring the quality of the learner’s predictions is to compare it against
the losses incurred by the individual experts on the same sequence. Thus, we
also define LossEi

(S) =
∑`

t=1 L(yt, xt,i).
Consider first the known bounds for the Aggregating Algorithm, which uses

the same weights vt as the algorithm of Figure 1 but a different prediction ŷt.
To state the optimal constants in the bounds, and the learning rates that lead to
them, define for z, p, q ∈ [0, 1] (where z should be interpreted as a “prediction”
and p and q as two possible “outcomes”) the ratio

R(z, p, q) =
L′p(z)L

′
q(z)

2 − L′q(z)L
′
p(z)

2

L′p(z)L
′′
q (z)− L′q(z)L

′′
p(z)

;

we define R(z, p, q) = 0 in the special case p = q. Let further

cL = sup
0≤z,p,q≤1

R(z, p, q) .

The bound for the Aggregating Algorithm originally given by Vovk [Vov90] can
now be stated as follows.

Table 1. Some common loss functions for the domain [0, 1]× [0, 1]

loss function L value for L(y, ŷ)

square loss (y − ŷ)2

relative entropy loss (1− y) ln((1− y)/(1− ŷ)) + y ln(y/ŷ)

Hellinger loss 1
2

((√
1− y −

√
1− ŷ

)2

+
(√

y −
√

ŷ
)2
)

absolute loss |y − ŷ|

Theorem 1. Let L be a convex monotone twice differentiable loss function and
AA be the Aggregating Algorithm with c ≥ cL and initial weights w1,i = 1. Then
for any sequence S = ((x1, y1), . . . , (x`, y`)) we have

LossAA(S) ≤
(
min

i
LossEi

(S)
)
+ c lnn . (5)

The Aggregating Algorithm was also considered by Haussler et al. [HKW98],
who showed the bound (5) optimal in the sense that under some reasonable
regularity conditions, for any on-line algorithm A there are sequences S such
that

LossA(S) ≥
(
min

i
LossEi

(S)
)
+ cL lnn− o(1) ,

where o(1) approaches 0 as n and ` approach ∞ in a suitable manner.
Vovk and Haussler et al. were mainly interested in the binary case yt ∈ { 0, 1 }

and actually state (5) only for that case in the form

LossAA(S) ≤
(
min

i
LossEi

(S)
)
+ cL,bin lnn (6)

where cL,bin = supz R(z, 0, 1). The actual proof of Theorem 1 is a simple general-
ization of the earlier proofs [Vov90,HKW98] for (6); we omit it here. Haussler et
al. also use some special techniques to show that for certain loss functions such
as the square loss and the relative entropy loss the bound (6) holds even when
yt is allowed to range over the whole interval [0, 1]. (The value of the constant
for Hellinger loss for continuous-valued outcomes was left open in [HKW98].)
The new formulation of Theorem 1 gives a unified method of obtaining bounds
in the continuous-valued case. For square, relative entropy, and Hellinger loss a
straightforward proof (omitted) shows that we actually have cL = cL,bin, so the
bound is the same for continuous-valued and binary outcomes.
The main content of the bound (5) is that even for a large number of experts,

the loss of the algorithm exceeds the loss of the best expert only by a small
additive constant, regardless of the number of trials. Thus, the algorithm is
good at weeding out the bad experts and then following the good ones. We can
prove a similar bound for the Weighted Average Algorithm that predicts with
ŷt = vt · xt. Define

R̃(z, p) =
L′p(z)

2

L′′p(z)
(7)

Table 2. Comparison of the constants in bounds (5) and (9) for various loss functions.

loss function L cL c̃L

relative entropy 1 1
square 1/2 2

Hellinger 2−1/2 ≈ 0.71 1

and
c̃L = sup

0<z,p<1
R̃(z, p) . (8)

We can now state the bound for WAA as follows.

Theorem 2. Let L be a monotone convex twice differentiable loss function and
WAA be the Weighted Average Algorithm of Figure 1 with uniform initial weights
w1,i = 1 and with c ≥ c̃L. Then for any sequence S = ((x1, y1), . . . , (x`, y`)) we
have

LossWAA(S) ≤
(
min

i
LossEi

(S)
)
+ c lnn . (9)

A generalization for multi-dimensional predictions and outcomes is given in
Sect. 6.
To compare the constants cL and c̃L in (5) and (9), respectively, recall that

(a+ b)/(a′ + b′) ≤ max { a/a′, b/b′ } for any a, a′, b, b′ > 0. From this it is imme-
diate that cL ≤ c̃L. For the most usual cases (9) is strictly worse than (5), as
can be seen from the comparison in Table 2. For the relative entropy loss the
bouds are actually equal, which is no surprise since then also the algorithms are
the same (i.e., the Aggregating Algorithm also predicts with ŷt = vt · xt).

4 The Basic Upper Bound Proof

We apply to our situation the potential function method commonly used in
computer science to analyze on-line algorithms. Thus, we introduce a potential
P , with the value Pt describing the algorithm’s state just prior to trial t. Then
Pt − Pt+1 is the decrease in the potential due to trial t. The key in proving the
loss bound for an algorithm A is to show for each trial t that the prediction ŷt

of A satisfies
L(yt, ŷt) ≤ Pt − Pt+1 , (10)

from which summing over t = 1, . . . , ` yields LossA(S) ≤ P1−P`+1. That is, the
total loss of the algorithm is bounded by the total decrease in potential. The
basic question now is, how to choose the potential P such that the equation (10)
can be satisfied by a suitable choice of the prediction ŷt, and the total increase of
the potential gives interesting loss bounds. This question was originally answered
for general loss functions by Vovk [Vov90] who generalized the potential used in
[LW94] for the absolute loss. We shall next review Vovk’s method for obtaining
total loss bounds from (10) using our notation and then show how (10) can be

achieved by the prediction ŷt = vt · xt with slightly worse constants than with
Vovk’s original prediction.
First, recall from Sect. 2 that our algorithm has at trial t an n-dimensional

weight vector wt defined in (4), and we write Wt =
∑n

i=1 wt,i. As our potential
we now choose

Pt = c lnWt (11)

where c > 0 is the same constant that is used in the updates. As it turns
out, multiplying the weights by a constant affects neither the algorithm nor our
analysis of it. Regarding the potentials in particular, multiplying the weights by
a positive constant a translates into adding the constant c ln a to the potential,
which leaves potential differences unaffected. Thus, without loss of generality we
can scale the initial weights so that W1 = 1 holds, and P1 = 0.
Elaborating further on our loss bound we get

LossA(S) ≤ P1 − P`+1

= −c ln

n∑

i=1

w1,i exp(−LossEi
(S)/c)

≤ −c lnw1,i exp(−LossEi
(S)/c)

= LossEi
(S)− c lnw1,i

for any given expert i. In particular, in the absence of any other preference it
seems natural to set all the initial weights equal, which gives w1,i = 1/n for all
i and thus results in the final bound

LossA(S) ≤
(
min

i
LossEi

(S)
)
+ c lnn . (12)

To prove Theorem 2, it thus remains to show that (10) is satisfied for the
Weighted Average Algorithm. This turns out to be true for all yt and xt ex-
actly when the constant c satisfies the condition of the theorem.
To prove (10), first write the potential difference in the form

Pt − Pt+1 = −c ln
Wt+1

Wt

= −c ln

n∑

i=1

vt,i exp(−L(yt, xt,i)/c)

where vt,i = wt,i/Wt is the normalized ith weight. We use the normalized weight
vector in the prediction by choosing ŷt = vt · xt. Then (10) becomes

L(yt,vt · xt) ≤ −c ln

n∑

i=1

vt,i exp(−L(yt, xt,i)/c) ,

or equivalently

exp(−L(yt,vt · xt)/c) ≥
n∑

i=1

vt,i exp(−L(yt, xt,i)/c) .

If we define fy(x) = exp(−L(y, x)/c), (10) therefore is equivalent with

fyt

(
n∑

i=1

vt,ixt,i

)
≥

n∑

i=1

vt,ifyt
(xt,i) .

Since vt is a probability vector, this holds by Jensen’s inequality if fyt
is concave.

Using the notation Ly(x) = L(y, x), we have

f ′y(x) = (−L′y(x)/c) exp(−Ly(x)/c)

and

f ′′y (x) = ((L
′
y(x)/c)

2 − L′′y(x)/c) exp(−Ly(x)/c) .

Hence, since we assume L′′y(x) to be positive, f
′′
y (x) ≤ 0 holds if and only if

c ≥ L′y(x)
2/L′′y(x). Therefore, (10) holds for the prediction ŷt = vt · xt if the

constant c satisfies

c ≥
L′yt
(xt,i)

2

L′′yt
(xt,i)

for i = 1, . . . , n .

This concludes the proof of Theorem 2.

The result can be generalized to multi-dimensional predictions, as we see in
Sect. 6.

5 Bounds Based on the Relative Entropy

We now wish to consider bounds in which the loss of the algorithm is compared
not to the loss of the best single expert, but the loss of the best probabilistic
combination of the experts. In particular, assume that at trial t we predict
according to the prediction of an expert chosen at random, with expert Ei having
probability ui of being chosen. For such probabilistic predictions, the expected
loss over the whole sequence is given by

Lossavg
u (S) =

n∑

i=1

uiLossEi
(S) =

∑̀

t=1

u ·Lt, ,

where Lt denotes the vector of losses of the experts at trial t, i.e., Lt,i =
L(yt, xt,i).

As discussed in the introduction, we wish to bound the loss of the algorithm
in terms of the average loss Lossavg

u (S) and the distance d(u,v1) between u and
the algorithm’s initial weight vector v1 for some natural distance function d. For
both the Aggregating Algorithm and the Weighted Average Algorithm, the most
suitable distance is the relative entropy given by dre(u,v) =

∑n
i=1 ui ln(ui/vi).

Our bound is then as follows.

Theorem 3. Let L be a monotone convex twice differentiable loss function,
and let the Weighted Average Algorithm WAA use arbitrary initial weights v1

and parameter c = c̃L, where c̃L is as in (8). Then for any sequence S =
((x1, y1), . . . , (x`, y`)) and for all probability vectors u we have

LossWAA(S) ≤ Loss
avg
u (S) + c̃L dre(u,v1) . (13)

It is easy to see that also in Vovk’s original analysis one can use the distance
dre(u,vt) as done in the above bound. As a result one gets for the Aggregating
Algorithm a bound like (13) with cL instead of c̃L.

Proof of Theorem 3: We express the progress towards the reference vector u

as follows:

dre(u,vt)− dre(u,vt+1) =

n∑

i=1

ui ln
vt+1,i

vt,i

=

n∑

i=1

ui ln
wt+1,iWt

wt,iWt+1

= −u ·Lt/c+

n∑

i=1

ui ln
Wt

Wt+1

= −u ·Lt/c+ (Pt − Pt+1) /c . (14)

Applying (10) now yields

L(yt, ŷt) ≤ Pt − Pt+1 = u ·Lt + c (dre(u,vt)− dre(u,vt+1)) .

Summing over all the trials we obtain

LossWAA(S) ≤ P1 − P`+1 = Loss
avg
u (S) + c (dre(u,v1)− dre(u,v`+1)) . (15)

Omitting the non-negative distance dre(u,v`+1) gives the bound (13) of the
theorem. ut

To see some interesting details of the proof, notice that in (14), the probability
vector u is arbitrary. So in particular we can choose u = vt and thus obtain

−dre(vt,vt+1) = −vt ·Lt/c+ (Pt − Pt+1) /c . (16)

Combining (14) and (16) gives us the following fundamental connection between
distances and average losses:

vt ·Lt = u ·Lt + c {dre(u,vt)− dre(u,vt+1) + dre(vt,vt+1)} .

We conclude this section by pointing out a strong relationship between the
update of the algorithm and the bound (13). One can show that the probability
vector u that minimizes the right-hand side of the bound (13) is v`+1. With

this minimizer u = v`+1 the value of the bound equals P1 − P`+1 (which is
the constant value of the right-hand side of (15)). Thus, the weight vector vt+1

produced by the loss update at the end of trial t is the minimizer of the bound
(13) with respect to the first t examples, and with this minimizer the bound on
the first t examples becomes P1 − Pt+1.
Alternatively, the update of the algorithm can be derived in an on-line fashion

as vt+1 = argminvUt(v) where

Ut(v) = c dre(v,vt) + v ·Lt

and v is constrained to be a probability vector. Again, substituting the mini-
mizing argument into Ut gives a potential difference, namely

Pt − Pt+1 = Ut(vt+1) ≤ Ut(vt) = vt ·Lt .

Note that the above upper bound for Pt − Pt+1 is complemented by the lower
bound (11) that is central to the relative loss bounds proven for the expert
setting.
If we want to compare the loss of the algorithm to L(yt,u · xt) instead of

u ·Lt, a better update might result from vt+1 = argminvÛt(v) where

Ût(v) = c dre(v,vt) + L(yt,v · xt)

and again v is constrained to be a probability vector. If the loss function is convex
then L(yt,v ·xt) ≤ v ·Lt and Ut(v) bounds Ût(v) from above. The bounds that
can be obtained for algorithms based on minimizing Ût [KW97,HKW95] differ
significantly from the style of bounds we have here. When the loss L(yt, ŷt) of
the algorithm is compared to L(yt,u · xt), it is usually impossible to bound the
additional loss by a constant (such as c̃L lnn here). However, bounds where the
comparison is to L(yt,u · xt) are in some sense much stronger than the expert
style bounds of this paper.

6 Multi-dimensional predictions

We now consider briefly the case of multi-dimensional predictions. In other
words, instead of having real numbers as outcomes yt, experts’ predictions xt,i,
and predictions ŷt, we now have vectors from (some subset of) R

k, for some
k ≥ 1. For instance, the experts’ predictions and the outcomes might be from
the k-dimensional unit ball

{
x ∈ R

k | ||x||2 ≤ 1
}
. Since the prediction of each

individual expert at a given time t is a k-dimensional vector, all the expert pre-
dictions at time t constitute a k×n matrix X t. The prediction of the algorithm
will still be a weighted average (i.e., convex combination) of the experts’ pre-
dictions: ŷt = Xtvt where the weight vector vt is maintained by multiplicative
updates as before. A loss function is now defined on R

k×R
k; a simple examples

would be L(y, ŷ) = ||y − ŷ||22.
Consider now the proof of our main result Theorem 2. The only place where

we use the fact that the values yt and xt,i are real numbers is in proving that

the function fy defined by fy(x) = exp(−L(y, x)/c) is concave for all y. We do
this proof by considering the sign of the second derivative of fy.
In the multi-dimensional case, we analogously need to prove that the function

fy defined by fy(x) = exp(−L(y,x)/c) is concave. If we find a value for c such
that this holds, then the rest of the proof goes as before and we again obtain
the familiar bound LossWAA(S) ≤ (mini LossEi

(S)) + c lnn. Alternatively we
can use the relative entropy as in Sect. 5 and obtain the bound LossWAA(S) ≤
Lossavg

u (S) + c dre(u,v1) for any probability vector u.
Consider now when fy is concave. Let us denote the gradient and Hessian of

fy by ∇fy and D
2fy, respectively. We need to find out when D

2fy is negative
semidefinite everywhere. Thus, we have

(∇fy(x))i =
∂fy(x)

∂xi

= −
1

c
fy(x)

∂L(y,x)

∂xi

and

(
D2fy(x)

)
ij
=

∂2fy(x)

∂xi∂xj

=
1

c
fy(x)

(
1

c

∂L(y,x)

∂xi

∂L(y,x)

∂xj

−
∂2L(y,x)

∂xj∂xj

)
.

For z ∈ R
k we now have zTD2fy(x) z ≤ 0 if and only if

(z · ∇Ly(x))
2
/c− zTD2Ly(x) z ≤ 0 . (17)

Note that in order to have this hold for all z we at least need to have zTD2Ly(x) z
positive, i.e., the loss L(y,x) needs to be convex in x. In this case we get for c
the condition

c ≥ sup
z,y,x

(z · ∇Ly(x))
2

zTD2Ly(x)z

where y and x in the supremum range over the possible values of outcomes and
(single) experts’ predictions, respectively, and z ranges over Rk. Comparing this
with the constant c̃L defined in (8), we see that the first and second derivatives
there are here in some sense replaced with first and second derivatives in some
direction z, where the direction z is chosen as the worst case.
As a first example, consider the square loss L(y,x) = ||y − x||22. Then

∇Ly(x) = 2(x− y), and D2Ly(x) = 2I where I is the identity matrix. Hence,
we get

(z · ∇Ly(x))
2

zTD2Ly(x)z
=
(z · (2x− 2y)2

2z2
,

and this expression obtains its maximum value 2(x − y)2 when z is parallel to
x−y. Hence, if the outcomes yt and the experts’ predictions xt,i are from a ball
of radius R, so (x− y)2 ≤ 4R2, we can take c = 8R2, which gets us the bound

LossWAA(S) ≤ Loss
avg
u (S) + 8R2 lnn

for any u.

Since the square loss in the multi-dimensional case is simply the sum of square
losses on individual components, we could try handling the k-dimensional case
simply by running k copies of the Weighted Average Algorithm and predicting
each component independently of each other. Let us denote the resulting algo-
rithm by WAA(k) and compare this approach to the one analyzed above. It is
easy to see that if we allow the experts’ predictions and outcomes in the one-
dimensional case to range over [−B,B] instead of [0, 1], we must for square loss
replace the constant c̃L = 2 by c̃L(2B)

2 = 8B2. The bound we get is then

LossWAA(k)(S) ≤
k∑

j=1

(
min

i

∑̀

t=1

(yt,j − (xt,i)j)
2

)
+ 8kB2 lnn .

Comparing this with the bound we have for the true multi-dimensional Weighted
Average Algorithm (WAA), we see that the first term in the bound for WAA(k)
can be much lower if there are experts that are good for predicting some but
not all of the components. This potential for better fit is what WAA(k) gains
by having kn instead of n weights. On the other hand, the second term in the
bound for WAA(k) is linear in k, which is where WAA(k) loses for having so
many weights. (Of course, depending on how the vectors yt and xt,i are located
in Rk, the factor 8R2 in the bound for the true multi-dimensional WAA may
also grow linearly in k.)
As another example, consider the relative entropy loss L(y,x) =∑k

j=1 yj ln(yj/xj), where we assume that y and x are in the probability simplex:
yi, xi ≥ 0 and

∑
j xj =

∑
j yj = 1. Then

∂Ly(x)

∂xi

= −
yi

xi

and
∂2Ly(x)

∂xi∂xj

= δij

yi

x2
i

,

where δij = 1 for i = j and δij = 0 otherwise. Now, given y, x and a vector
z ∈ R

k, letQ be a random variable that for i = 1, . . . , k takes the value qi = zi/xi

with probability yi. We can then write

z · ∇Ly(x) = −
k∑

j=1

zi

yi

xi

= −
k∑

j=1

yiqi = −E[Q] ,

and similarly

zTD2Ly(x)z =

k∑

j=1

z2
i

yi

x2
i

=

k∑

j=1

yiq
2
i = E[Q

2] .

Thus, we have
(z · ∇Ly(x))

2

zTD2Ly(x)z
=

E[Q]2

E[Q2]
≤ 1

by the usual properties of random variables. Hence, for relative entropy loss we
have

LossWAA(S) ≤
(
min

i
LossEi

(S)
)
+ lnn

even in the multi-dimensional case.

A Old-style proof for continuous-valued outcomes

We use the notations and concepts of the earlier parts of this paper. Our goal is
to provide a sufficient condition for the constant c such that the key inequality
(10) holds. The main idea is to obtain something like the old proof [HKW98] that
gives the tighter constant cL, yet is more general in that it holds for continuous-
valued outcomes yt ∈ [0, 1] without the additional assumptions used in the earlier
work.
Thus, we are set to prove L(yt, ŷt) ≤ Pt − Pt+1 for the potential defined in

(11). Let us now define

∆t(y) = −c ln

n∑

i=1

vt,i exp(−L(y, xt,i)/c) . (18)

That is, ∆t(y) is the potential drop that would occur if the tth outcome were
y. The key inequality then becomes L(yt, ŷt) ≤ ∆t(yt). Since the learner must
choose its prediction ŷt so that the key inequality holds for all possible outcomes
yt, the condition for the prediction is that

L(y, ŷt) ≤ ∆t(y) (19)

holds for all y ∈ [0, 1]. Since we assume L(y, ŷ) to be continuous, and decreasing
in ŷ for ŷ < y and increasing for ŷ > y, for each y there is a continuous range of
values ŷt that would satisfy (19) for that y. More specifically, let us define

At(y) = min { ŷ ∈ [0, 1] | L(y, ŷ) ≤ ∆t(y) }

and
Bt(y) = max { ŷ ∈ [0, 1] | L(y, ŷ) ≤ ∆t(y) } .

Notice that∆t(y) is always nonnegative, so since L(y, y) = 0 and L is continuous,
At(y) and Bt(y) are always well-defined and At(y) ≤ y ≤ Bt(y). Now (19)
becomes

At(y) ≤ ŷt ≤ Bt(y) .

For an acceptable ŷt to exist, the condition is then that

⋂

y∈[0,1]

[At(y), Bt(y)] 6= ∅

or, equivalently, that
max

y∈[0,1]
At(y) ≤ min

y∈[0,1]
Bt(y) . (20)

We now go on to prove that At(q) ≤ Bt(p) holds for all possible outcomes
p, q ∈ [0, 1]. Thus, fix arbitrary values p, q ∈ [0, 1]. (To prove (20), we could just
take p = argmaxyAt(y) and q = argminyBt(y), but this would not simplify the
proof.) First we make some observations that simplify technical details. Since
always At(y) ≤ y ≤ Bt(y), we can without loss of generality assume p < q. If
we now have L(p, 0) > L(p, 1), we get L(q, 0) > L(p, 0) > L(p, 1) > L(q, 1).
Therefore, we may assume that either L(p, 0) ≤ L(p, 1) or L(q, 1) ≤ L(q, 0). We
do the proof assuming L(p, 0) ≤ L(p, 1); the second case is similar.
Our proof for At(q) ≤ Bt(p) is based on considering the connection between

L(p, z) and L(q, z) for 0 < z < 1. In general, knowing that L(q, z) = a is not
enough to uniquely determine L(q, z), since there can be two values z1 < q < z2

such that L(q, z1) = L(q, z2) = a but L(q, z1) 6= L(q, z2). However, for our
purposes it is sufficient to obtain a mapping that connects L(p, z) and L(q, z)
for z in a suitably restricted range. Hence, for z ∈ [p, 1] we define G(z) = L(p, z).
Since G is continuous and strictly increasing in its domain [p, 1], it has a strictly
increasing and continuous inverse G−1 in the range of G, which is [0, L(p, 1)].
Notice that by our assumption L(p, 0) ≤ L(p, 1), the value L(p, z) is in the range
of G also for 0 ≤ z < p. Notice also that if we have ∆t(p) ≥ L(p, 1), then
Bt(p) = 1 and our claim At(q) ≤ Bt(p) clearly holds. Hence, we assume without
loss of generality that ∆t(p) < L(p, 1), so ∆t(p) is in the range of G.
For 0 ≤ z ≤ 1, define α(z) = exp(−L(p, z)/c) and γ(z) = exp(−L(q, z)/c).

We get a function f such that f(α(z)) = γ(z) for p ≤ z ≤ 1 by defining

f(r) = exp(−L(q,G−1(−c ln r))/c)

for exp(−L(p, 1)/c) ≤ r ≤ 1. Our proof for At(q) ≤ Bt(p) consist of proving two
claims.

Claim 1 If the function f is concave in [p, 1] then At(q) ≤ Bt(p).

Claim 2 If c ≥ R(z, p, q) for 0 < z < 1 where

R(z, p, q) =
L′p(z)L

′
q(z)

2 − L′q(z)L
′
p(z)

2

L′p(z)L
′′
q (z)− L′q(z)L

′′
p(z)

,

then the function f is concave in [p, 1].

Hence, since cL is an upper bound for R(z, p, q), we see that At(q) ≤ Bt(p)
holds for c ≥ cL.
To prove Claim 1, assume now that f is concave, that is f ′′(α(z)) ≤ 0 holds

for p < z < 1. Define x′t,i = G−1(L(p, xt,i)). Thus x
′
t,i = xt,i for p ≤ xt,i, and for

0 ≤ xt,i < p we still have L(p, x′t,i) = L(p, xt,i) and L(q, x′t,i) ≤ L(q, xt,i). Since
γ(z) increases as L(q, z) decreases, we have

∆t(q) = −c ln

n∑

i=1

vt,iγ(xt,i) ≥ −c ln

n∑

i=1

vt,iγ(x
′
t,i) .

Applying concavity of f we now get

∆t(q) ≥ −c ln
n∑

i=1

vt,iγ(x
′
t,i)

= −c ln

n∑

i=1

vt,if(α(x
′
t,i))

= −c ln

n∑

i=1

vt,if(α(xt,i))

≥ −c ln f

(
n∑

i=1

vt,iα(xt,i)

)

= L

(
q,G−1

(
−c ln

n∑

i=1

vt,iα(xt,i)

))

= L(q,G−1(∆t(p))) .

Hence, we have G−1(∆t(p)) ≥ At(q), and since G is strictly increasing this is
equivalent with ∆t(p) ≥ G(At(q)) = L(p,At(q)). Therefore, At(q) ≤ Bt(p),
which was our claim.
We now prove Claim 2. Consider z ∈ [p, 1]. We have f(α(z)) = γ(z) and

thus f ′(α(z)) = γ′(z)/α′(z). Differentiating further, we obtain f ′′(α(z))α′(z) =
(γ′′(z)α′(z) − γ′(z)α′′(z))/α′(z)2. Since α′(z) = −L′p(z)α(z)/c < 0, we have
f ′′(α(z)) ≤ 0 if and only if γ′′(z)α′(z)−γ′(z)α′′(z) ≥ 0. By substituting α′(z) =
−L′p(z)α(z)/c and α′′(z) = (−L′′p(z)/c + (L

′
p(z))

2/c2)α(z), and using similar
expressions for γ′(z) and γ′′(z), we see that f ′′(α(z)) ≤ 0 if and only if

(
−L′p(z)L

′
q(z)

2 + L′q(z)L
′
p(z)

2 + c
(
L′p(z)L

′′
q (z)− L′q(z)L

′′
p(z)

)) α(z)γ(z)
c3

≥ 0.

Finally, since our assumptions imply L′p(z)L
′′
q (z)−L′q(z)L

′′
p(z) > 0, we conclude

that f ′′(α(z)) ≤ 0 holds if c ≥ R(z, p, q).

References

[CBFH+97] N. Cesa-Bianchi, Y. Freund, D. Haussler, D. P. Helmbold, R. E. Schapire,
and M. K. Warmuth. How to use expert advice. Journal of the ACM,
44(3):427–485, 1997.

[FS97] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization
of on-line learning and an application to boosting. Journal of Computer

and System Sciences, 55(1):119–139, August 1997.
[FSSW97] Y. Freund, R. E. Schapire, Y. Singer, and M. K. Warmuth. Using and

combining predictors that specialize. In Proc. 29th ACM Symposium on

Theory of Computing, pages 334–343. ACM, 1997.
[HKW95] D. P. Helmbold, J. Kivinen, and M. K. Warmuth. Worst-case loss bounds

for sigmoided linear neurons. In Proc. 1995 Neural Information Processing

Conference, pages 309–315. MIT Press, Cambridge, MA, November 1995.

[HKW98] D. Haussler, J. Kivinen, and M. K. Warmuth. Sequential prediction of
individual sequences under general loss functions. IEEE Transactions on

Information Theory, 44(5):1906–1925, September 1998.
[KW97] J. Kivinen and M. K. Warmuth. Additive versus exponentiated gradient

updates for linear prediction. Information and Computation, 132(1):1–64,
January 1997.

[LW94] N. Littlestone and M. K. Warmuth. The weighted majority algorithm.
Information and Computation, 108(2):212–261, 1994.

[Vov90] V. Vovk. Aggregating strategies. In Proc. 3rd Annu. Workshop on Comput.

Learning Theory, pages 371–383. Morgan Kaufmann, 1990.

